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Abstract—For the design of mass-produced wearable objects
for a population it is important to find a small number of
sizes, called a sizing system, that will fit well on a wide
range of individuals in the population. To obtain a sizing
system that incorporates the shape of an identity along with its
motion, we introduce a general framework to generate a sizing
system for dynamic 3D motion data. Based on a registered
3D motion database a sizing system is computed for task-
specific anthropometric measurements and tolerances, specified
by designers. We generate the sizing system by transforming
the problem into a box stabbing problem, which aims to find
the lowest number of points stabbing a set of boxes. We use
a standard computational geometry technique to solve this; it
recursively computes the stabbing of lower-dimensional boxes.
We apply our framework to a database of facial motion data
for anthropometric measurements related to the design of
face masks. We show the generalization capabilities of this
sizing system on unseen data, and compute, for each size,
a representative 3D shape that can be used by designers to
produce a prototype model.
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I. INTRODUCTION

Face masks and respirators exist in many different types
and sizes and are widely used, by the military (e.g. for pilots’
oxygen masks [1]), by public safety departments (e.g. res-
pirators for firefighters [2]), and for medical (e.g. aerosol
face masks [3]) and automotive applications (e.g. paint
respirators). Depending on the type of face mask, it is
designed to supply oxygen or filter air. For most kinds of
face masks it is important to fit many different kinds of
face shapes. Leakage could cause, for aerosol face masks,
a contamination of the caregiver’s area, and for respirators,
an inhalation of harmful gases and particles, which could
cause lung diseases or other health problems. Furthermore,
loosely fitting oxygen masks with leakage towards the eyes
are uncomfortable to wear. A tight fit without leakage is
therefore crucial for the design of an effective face mask.

In ergonomics, many works exist that aim at creating
sizing systems based on anthropometric measurements for
the design of face masks [3], [1], [2], [4], helmets [5],
gloves [6] or more general, for apparel [7]. The aim of
generating a sizing system for a population with a low

number of different sizes is that a designed product fits a
wide range of individuals in the population. To generate a
sizing system, design-specific anthropometric measurements
are gathered for a population and groups are formed, where
identities with similar measurements are within the same
group. Each group is then represented by a size within the
sizing system.

In computer vision, many works focus on human faces
due to the wide variety of potential applications, such as
entertainment or security. Due to the availability of several
3D face databases (e.g. [8], [9], [10], [11]), statistical
methods are widely used to analyze the facial shape and
its variations across different identities and different expres-
sions. These statistical methods are used for various tasks,
e.g. to reconstruct 3D faces from low-dimensional data like
2D images [12] or to compute animations of 3D faces given
static face scans [13].

Further applications of statistical methods are in er-
gonomic design, e.g. to study the influence of shape varia-
tions for the design of face masks [14], [15]. Furthermore,
3D face databases can be used to generate sizing systems
for anthropometric measurements extracted from a registered
static face database [5].

Currently, the design of face masks only considers the
shape of neutral faces. Since face masks are worn for long
periods, it is likely that a wearer will move his or her face
while wearing the mask, e.g. by talking or changing facial
expressions. Therefore, a tight fit of the face mask is also
necessary in the presence of facial motion, to avoid leakage
caused by motion.

We introduce a general framework to generate a sizing
system for any kind of 3D motion data. 3D motion data
in this context are databases that contain sequences of 3D
scans of the same class of object (e.g. human faces or
bodies). This database contains data of different identities,
each performing one or more motion sequences consisting of
an arbitrary number of frames. All shapes in these sequences
need to be in full correspondence.

Given a registered motion database, the input for our
framework is the specification of the anthropometric mea-
surements used. Furthermore, an ordered set of tolerances



must be specified for each dimension, and the number of
sizes that should be computed must be given (otherwise a
sizing system is found that fits for all input data). These
input parameters are specific for the designed product and
must be specified by designers. Given these parameters, our
framework outputs a sizing system with the specified number
of sizes, together with representative 3D shape models for
each size.

Given a set of problem-specific anthropometric measure-
ments, each shape in the database of 3D motion data is
represented by a point in high-dimensional parameter space.
A sizing system is then computed by solving a stabbing
problem in parameter space.

Our contributions are
• A general framework to generate a sizing system for

dynamic 3D motion data.
• Generation of a representative 3D model for each size

for fabrication.
• Application of our framework to generate a specific

sizing system for facial motion data.
Our framework is independent of the kind of data and the

type of measurements. While our method is able to compute
a sizing system for a set of anthropometric measurements
without a given registered motion database, for the computa-
tion of a representative 3D shape for each size, the registered
database is needed.

Leveraging tools and datasets developed by the 3D vision
and graphics communities for automated design systems has
the potential to improve design processes and lead to safer
and more comfortable products.

II. RELATED WORK

Our work is most related to works in ergonomic design
that aim at generating sizing systems for faces. Amirav et
al. [3] improve the design of aerosol face masks for infants
based on two anthropometric measurements taken from 3D
face scans. They cluster the set of measurements, compute
representative 3D face shapes for each cluster and use these
to fabricate face masks. Lee [1] classifies the importance
of anthropometric facial measurements for the design of
oxygen masks. Based on two measurements, he computes
a sizing system for the design of oxygen masks for Korean
air force pilots. Han et al. [4] use ten anthropometric mea-
surements from 3D face scans for the design of face masks.
They compute a sizing system by splitting each measurement
dimension independently into three groups. In contrast to our
approach, these methods cannot be used to generate a sizing
system considering design-specific tolerances. Furthermore,
none of these methods can be applied for dynamic motion
data.

Moreover, methods exist that are not directly applied
to the design of face masks, even though they potentially
could be. McCulloch et al. [7] and Wuhrer et al. [5]
propose methods that compute general sizing systems for
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Figure 1. Representation of the anthropometric measurements face length
(purple) and lip width (blue) for motion sequence. Left: 3D motion
sequence. Right: Resulting curve in parameter space.
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Figure 2. Given some tolerances ti and tj and some gear designed for
measurements represented by a point p in parameter space, all points within
a parameter box B centered at p are fit by the gear.

anthropometric data. McCulloch et al. define a distance
function that measures the distance of measurements from
the sizing system and the measurements taken from the
database. To get a good fitting system, they perform a non-
linear optimization. Wuhrer et al. generate a sizing system
with fixed sizes by solving a box-covering problem for
arbitrary anthropometric measurements. While both methods
are able to compute a sizing system with a fixed number of
sizes, and furthermore are able to operate in an arbitrary
dimensional parameter space, they are not applicable for
dynamic motion data.

To the best of our knowledge, our method is the first one
generating a sizing system in any number of dimensions for
dynamic motion data.

Another body of work statistically analyzes the shape of
the face and studies its influences on the design of face
masks. Zhuang et al. [14] and Luximon et al. [15] analyze
the facial shape by computing principal component analysis
(PCA) on a set of facial landmarks for datasets of 3D
faces. Zhuang et al. discuss the potential influence of learned
variations for the design of respirators, Luximon et al. the
influence on the design of face masks and eyewear.

Also related to our work are methods that capture
databases of 3D faces in motion. Databases that capture
dynamic 3D faces are e.g. BU-4DFE [10] and D3FACS [11].
The BU-4DFE database captures motion data of 101 subjects
of different ethnicities performing six different expressions
over time. The D3DFACS database captures, for 10 sub-
jects, several different Action Units from the Facial Action
Coding System. Our goal is to compute a sizing system
for a dynamic motion database. We apply our framework to
registered sequences of the BU-4DFE database.
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Figure 3. Computation of box covering using box stabbing. Left: Multiple
points in parameter space from different identities (one color per identity)
that should be covered. Center: Identity boxes together with a stabbing point
(black). Right: Parameter box centered at the computed stabbing point that
covers all points of different identities.

III. PARAMETER SPACE FOR DYNAMIC MOTION DATA

In this section, we introduce a parameter space of an-
thropometric measurements for dynamic data, and describe
a method to fully automatically compute a sizing system
for this parameter space. Given a database of 3D faces in
motion in full correspondence, we extract an ordered set of
d anthropometric measurements from each scan. For each
scan si of a motion sequence, the set of measurements is
denoted by pi ∈ Rd. The set of all measurements of all
scans defines the high-dimensional parameter space P ⊆ Rd.
Since each frame of a motion sequence gives a point in P,
an entire sequence is represented by a curve in P. Figure 1
shows two measurements extracted from a motion sequence,
resulting in a curve in P. Since for each identity, multiple
motion sequences may exist, one identity is represented by
a set of curves, one for each motion sequence.

The designer can specify a tolerance ti along each dimen-
sion i that specifies the amount of stretch supported by the
specific gear. For the specified tolerances, a d-dimensional
axis-aligned parameter box B is defined, where the length
of the side in dimension i is ti. Some gear designed to
fit for some measurements p ∈ P therefore also fits to all
points in P within a translated copy of B centered at p (see
Figure 2). A sizing system can then be computed by covering
the parameter space using translated copies Bi of B. Since
our goal is to design a sizing system for motion data, where
the gear fits for an identity through various motions, all
curves of one identity must be contained within the same
box Bi.

IV. COVERING OF PARAMETER SPACE USING BOX
STABBING

All curves of one identity need to be covered by the same
box. The greedy box covering method by Wuhrer et al. [5]
repeatedly selects the box centered at a point in parameter
space that covers the most uncovered points. This greedy
covering method cannot be applied to dynamic data, since
a box centered at one point does not necessarily cover all
curves of the identity.
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Figure 4. Computation of the identity box Iid for points of one identity.
The box Iid bounds the area, where each point chosen as center of Bi

covers all points of the identity in parameter space.

Instead, we transform the problem into a d-dimensional
stabbing problem as shown in Figure 3. First, we compute,
for each identity, the area Iid, where a box Bi can be
centered to cover all curves of that identity. Figure 4 shows
the construction of Iid for three selected points of one
identity. For each point pi from one identity (for one identity,
each frame of each motion sequence is represented by
pi ∈ P) we define Ii to be the area within a copy of B,
centered at pi. By construction, any Bi with center within
Ii contains pi. We obtain Iid by intersecting all Ii of one
identity. For each identity the area Iid defines a region where
each point chosen as the center of Bi covers all points pi

belonging to one identity. If a point within the intersection
of multiple Iid is chosen as the center of Bi, Bi contains
multiple identities.

To get a covering of the parameter space we now search
for the minimum set of points such that each Iid is stabbed
by at least one point. Each stabbing point represents the
center of a cover box in parameter space. We use the method
by Nielson [16] to compute this stabbing.

A. Full Stabbing of Dynamic Identity Boxes

To compute the optimal stabbing of 1-dimensional in-
tervals and axis-parallel d-dimensional boxes, Nielson [16]
proposes two divide-and-conquer algorithms. While the 1-
dimensional stabbing can be solved optimally, computing
a d-dimensional stabbing for d ≥ 2 is NP-complete. The
proposed algorithm to compute the d-dimensional stabbing
gives a bounded approximation of the optimal solution.

To get an optimal 1-dimensional stabbing, the rightmost
lower interval point is selected and all intervals that are
stabbed by this point are removed. This is repeated until
all intervals are stabbed. This stabbing is computed using
the following output-sensitive algorithm. The input set of n
intervals I is recursively split into right and left subsets of
intervals, with respect to the median of all lower interval
endpoints. If a subset contains only one interval, the lower
endpoint of the interval is chosen as a stabbing point. All
intervals stabbed by the chosen stabbing point are removed
from further processing. The algorithm stops once all inter-
vals are stabbed. The time complexity of this stabbing is



Θ(nlogc∗(I)), where c∗(I) denotes the minimum number
of stabbing points necessary to stab all intervals.

To compute a stabbing of a set I of n d-dimensional
axis-parallel boxes, the input set of boxes is separated into
three subsets. For dimension d of the boxes, a stabbing is
computed for the 1-dimensional intervals and the median
stabbing point is used to separate the input set of boxes into
three subsets: all boxes that intersect the median stabbing
point, the subsets to the left, and the subset to the right of
the median stabbing point. The right and left subsets are then
recursively separated into three subsets. For the intersecting
subset, the stabbing median value is fixed for dimension
d and the stabbing of the (d − 1)-dimensional boxes is
computed recursively. The method outputs c(I) points in
time O(dnlogc(I)), where c(I) ≤ b∗(I)(1 + log2b

∗(I))d−1

with b∗(I) is the maximum number of pairwise disjoint
boxes.

B. Stabbing with a Fixed Number of Points

For the design of wearables for large populations, it is not
desirable to create a sizing system with a large number of
different sizes that fits the entire population. Instead, a sizing
system with a fixed number of sizes that fit the maximum
number of individuals is sought. We therefore search for
a fixed number of stabbing points that stab the maximum
number of identity boxes. We use a greedy approach to solve
this. We first compute the full stabbing of the parameter
space using the method described in Section IV-A. We
then iteratively select the stabbing points that stab the most
unstabbed identity boxes.

V. REPRESENTATION OF COVERING

After computing a sizing system for the parameter space,
we aim at computing a representative 3D face model for
each of the sizes. This representative face model can be
used for fabrication. One possibility is to compute the full
Procrustes mean [17] of all identities covered by the box.
To compute the full Procrustes mean of a set of shapes in
correspondence, we iteratively compute the mean over all
shapes, and each of the shapes is rigidly aligned to the mean
shape. This is also used by Wuhrer et al. [5] to compute a
representative model.

Another possibility is to select the model that is closest
in parameter space to the cover box center as used by Han
et al. [4] and Lee [1]. For data that are dense in parameter
space, the model closest to the cover box center is expected
to give a good representation of the box.

A further method to compute a representative model for
the cover box is feature analysis by Allen et al. [18] as used
by Wuhrer et al. [5]. Wuhrer et al. compute a linear mapping
between the parameter space and a linear PCA space of 3D
faces to reconstruct 3D faces for given sets of measurements
in parameter space. In contrast to our approach, their method
only uses faces in one neutral expression, and the variations
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Figure 5. Important measurements for face mask design. Left: Two
important measurements for the design of aerosol face masks [3]. Right:
Six measurements classified as being of high importance for the design of
oxygen masks [1].

of the data can therefore be modeled using a linear PCA
model. Since our data contain variation due to motion and
shape differences of different identities, the variations cannot
be modeled using a linear space. Therefore, a linear mapping
between the parameter space and the non-linear model space
does not lead to representative 3D face models.

VI. EVALUATION

This section evaluates the proposed space covering using
measurements associated with the design of face masks.
The motion data are from the BU-4DFE database [10],
which contains the motion data of 101 identities performing
six expressions (anger, disgust, fear, happiness, sadness,
surprise) over time. The motion database is registered using
the method described by Bolkart and Wuhrer [13]. There,
an entire motion sequence is registered using a multilinear
model as statistical prior. Based on the temporal registration
of the motion sequences, we choose five representative
frames of each sequence that cover the full range of motion.
In the following, each sequence is therefore represented by
five points in parameter space.

In our experiments we show how well the computed sizing
system fits for a given dataset, and its generalization to
unseen data. To this end, we randomly divide the motion
sequences into a training and a test set, each containing
about 50% of the data, with the same ratio of male and
female subjects. For our experiments we do not consider the
surprise facial expression, since many of the surprise motion
sequences are performed in an artificial fashion by fully
opening the mouth, which we think would be an unnatural
behavior for a person wearing a face mask. Hence, for each
identity up to five motion sequences are used, which gives us
up to 25 points in parameter space for each identity. Overall
we use 390 dynamic motion sequences from 98 identities.

A. Anthropometric Measurements for Face Mask Design

For the design of face masks, different measurements
are important, depending on the type of mask and its
application area. Amirav et al. [3] use two measurements
(at left in Figure 5) for the design of aerosol face masks.
Lee [1] classifies 22 facial measurements according to their
importance for the design of oxygen masks. The six facial
measurements shown at right in Figure 5 are classified as



Measurement Face length Lip width
Mean 10.87 8.05
Standard deviation 3.35 3.05
Median 10.98 8.08
Maximum 19.43 14.40

Table I
STATISTICS IN MM COMPUTED OVER THE MAXIMUM MEASUREMENT
RANGE OVER ALL IDENTITIES FOR THE 2D PARAMETER SPACE (FOR

MEASUREMENTS SEE LEFT OF FIGURE 5).

Measurement 1 2 3 4 5 6
Mean 10.47 10.87 1.47 1.07 4.68 8.05
Standard deviation 3.32 3.35 0.56 0.50 1.80 3.05
Median 10.2 10.98 1.52 1.02 4.66 8.08
Maximum 18.59 19.43 2.91 2.34 8.28 14.40

Table II
STATISTICS IN MM COMPUTED OVER THE MAXIMUM MEASUREMENT
RANGE OVER ALL IDENTITIES FOR THE 6D PARAMETER SPACE (FOR

MEASUREMENTS SEE RIGHT OF FIGURE 5).

being of high importance for oxygen masks. We use two
different sets of measurements to evaluate our approach:
first, the two measurements used by Amirav et al. leading
to a 2D parameter space, and second, the six measurements
by Lee, leading to a 6D parameter space.

B. Dynamic Data Analysis

This section evaluates the variations within the training
data caused by motion. For each identity, we compute the
axis-aligned bounding box covering all points in parameter
space. This axis-aligned bounding box is computed as the
difference of maximum and minimum values along each
measurement dimension over all points of the identity in
parameter space. For each identity the axis-aligned bounding
box is the smallest possible parameter box that is able to
cover the identity. Since for static data each identity consists
of only a single point in parameter space, the side length
of an axis-aligned bounding box for static data would be
zero. The side length of the box measures the influence
of the motion for dynamic motion data. We analyze the
variation of the measurements due to motion by computing
mean, standard deviation, median and maximum of the side
lengths of the axis-aligned bounding boxes over all identities
(see Table I for the 2D parameter space, and Table II for
6D, respectively). For both tables, the maximum values
describe the minimum parameter box size necessary for a
full covering of the parameter space to be computed.

C. Space Covering of Training Data

Given a fixed number of boxes, we want to get a good
covering of the parameter space of the training data. We
therefore choose the tolerances for the size of the box B
based on the analysis of the training data from Section VI-B.
For the covering of the 2D parameter space (at left in
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Figure 6. Overview of our parameter space covering approach. Upper left:
Points in 2D parameter space. Upper right: Computed identity boxes Iid.
Lower left: Full stabbing of identity boxes with 5 stabbing points. Lower
right: Resulting covering in parameter space.

Space dimension 3 boxes 5 boxes
2D 94.0 100.0
6D 74.0 82.0

Table III
PERCENTAGE OF COVERED TRAINING DATA WITH A FIXED NUMBER OF

PARAMETER BOXES FOR 2D AND 6D PARAMETER SPACE.

Figure 5) we choose tolerances of 20 mm for the face length
and 17 mm for the lip width. Figure 6 shows the different
steps of our covering method for the training data. The upper
left of Figure 6 shows the training data in parameter space,
where each identity is represented by up to 25 points. The
upper right shows the identity boxes computed as described
in Section IV. The lower left then shows the stabbing points
for the identity boxes from Section IV-A. The lower right
shows the resulting covering. For the covering of the 6D
parameter space, spanned by the measurements at right in
Figure 5, we choose the tolerances 1 = 20 mm, 2 = 20 mm,
3 = 5 mm, 4 = 5 mm, 5 = 10 mm, and 6 = 17 mm.

For both parameter spaces, we compute a covering with
three and five boxes and measure the number of identities
that are fully covered by these boxes (see Table III). With
three boxes, 94% of the identities in 2D parameter space are
covered, and 74.0% of the 6D parameter space. With five
boxes, all identities of the 2D parameter space are covered,
and 82.0% of the 6D parameter space. Since for the 6D
case the same number of points is embedded in a higher-
dimensional parameter space, it is expected that more boxes



Figure 7. Representation of the motion space covering. Top: Procrustes
mean shape for the five cover boxes for the 2D parameter space of the
training data. Bottom: Faces from the training data closest to the box center
in parameter space for the 2D parameter space of the training data.

Space dimension 3 boxes 5 boxes
2D 81.4 91.7
6D 58.3 64.6

Table IV
GENERALIZATION OF THE COVERING. PERCENTAGE OF COVERED TEST
DATA WITH THE COVERING COMPUTED FOR THE TRAINING DATA FOR

2D AND 6D PARAMETER SPACE.

are needed to cover the full space and that the same number
of boxes cover a lower percentage of the data. Computing
the full covering of both parameter spaces takes less than a
second, running on a standard PC.

For each of the computed 2D cover boxes, we compute
representative 3D face shapes as described in Section V.
First, for each box, we compute the full Procrustes mean
over all identities fully covered by the box. The top of
Figure 7 shows the full Procrustes mean for the five 2D
cover boxes. Computing the full Procrustes mean leads to
a good representation if the mean of the shapes used for
computation is close to the box center. For our dynamic
motion data a large amount of variation in parameter space
is caused by the motion rather than by shape differences
between different identities. Since identities need to be fully
covered by boxes, the sizes of the boxes need to be large
for data with large motion variations. With large boxes the
overlap between different boxes is also large, and some
identities are covered by multiple boxes. This causes the
Procrustes mean shapes of different boxes to be similar.

Second, we find, for each box, the shape within the
training database that is closest to the center of the box
in parameter space. The bottom of Figure 7 shows the
face shapes closest to the box centers in parameter space.
Compared to the Procrustes mean shape, they are more
distinctive and give a representative 3D geometry for the
boxes.
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Figure 8. Covering applied to unseen data. Upper left: Midpoints of first
three greedily selected cover boxes (stabbing points). Upper right: First
three greedily selected cover boxes. Lower left: Midpoints of full training
covering (stabbing points). Lower right: Full training covering.

D. Generalization of Space Covering

In this section we evaluate how well the space covering
computed for the training data from Section VI-C general-
izes to unseen data. Figure 8 shows in 2D parameter space
the covering computed on the training data applied to the test
data. The top row of Figure 8 shows the first three greedily
selected stabbing points (left) and cover boxes (right), the
bottom row shows the stabbing points (left) and cover boxes
(right) of the full training covering.

To compute the generalization ability, we check, for each
identity of the test data, whether it is fully covered by one of
the training parameter boxes. An identity is fully covered by
a parameter box if for that identity, all its points in parameter
space are within the same box. Table IV shows the covering
rates for the test data. For three cover boxes, 81.4% of the
test data identities are covered in 2D parameter space, and
58.3% in 6D parameter space. For five cover boxes, 91.7%
of the test data identities are covered in 2D parameter space,
and 64.6% in 6D parameter space. As for the covering of the
training data, it is expected that the same number of boxes
covers a lower percentage of the data in 6D than in 2D.

VII. LIMITATIONS

While the sizing system computation in our framework is
generally applicable for all kinds of measurements, our over-
all framework has some limitations. Since the computation
of a 3D face representation requires a registered database,
facial hair, or other partial occlusions caused by glasses, are
not accounted for by our framework.



Furthermore, we assume the tolerances for each measure-
ment dimension to be independent and therefore form a box
in parameter space. If the tolerances are not independent,
e.g. they form any other convex shape Ii in parameter space
covering pi, the region Iid for each identity is given by
an arbitrary-shaped convex object (intersection of Ii of all
points). To obtain a sizing system for these tolerances, we
would need to compute the stabbing of arbitrary-shaped
convex shapes.

Producing a real prototype of a face mask based on our
computed sizing system for dynamic data together with a
user study to evaluate its quality in a real-world application
is left for future work.

VIII. CONCLUSION

In this work, we proposed a general framework to com-
pute a sizing system for dynamic motion data. We com-
pute a covering of the low-dimensional parameter space
with translated copies of a box of fixed size, defining the
tolerances of a designed product along each measurement
dimension. The covering is computed using a d-dimensional
box stabbing method. We apply our framework to sets of
anthropometric measurements used for the design of face
masks, and evaluate our sizing system in terms of its ability
to fit unseen data. For each size of the sizing system created,
we compute a representative 3D geometry that can be used
by designers to produce a prototype model.
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