
EUEVIER

PARALLEL
COMPUTING

Parallel Computing 21(1995) 1749-1767

Parallel path planning on the distributed array
processor +

Chang Shu ap l , Hilary Buxton b

a Department of Mechanical and Aerospace Engineering, Carleton Uniwrsi& Ottawa KlS 586,
Canada

b School of Cognitiw and Computing Sciences, Uniwrsity of Sussex, Brighton BNl 9QH, UK

Received 15 September 1992; revised 22 June 1995

Abstract

An approach to the path planning problem is presented in which a distributed represen-
tation of the workspace is used, and related to it, parallel processing techniques are
presented to search the world model. The representation, which is based on configuration
space and can be computed in parallel, naturally captures the real world geometry. The
search is based on a celhdar automaton and diffuses strengths from the goal to find the
shortest path. The approach can be extended to deal with rotational as well as translational
motions. Paths can be found at different resolutions of the workspace. It also has the useful
property that the complexity of the search is almost constant with varying degrees of
environmental clutter.

Keywords: Path planning; Distributed representation; Robotics; SIMD machines

1. Introduction

Effective and efficient generation of motion which causes objects in the world to
move in some desired way is central to the field of robotics. For example, we may
want to generate a motion which will cause an autonomous vehicle to move to a
specific position or a motion which will move a silicon wafer from one point to
another or even a motion to move one moving object around another. Another
major concern is that these motions are collision-free. The basic problem can be
stated as: Given the initial and desired final configurations of a rigid object in two-

+ The experimental work reported here was carried out while the authors were at Dept. of Computer
Science, Queen Mary and Westfield College, University of London.

* Corresponding author, E-mail:cshu@mrco2.carleton.ca

0167~8191/95/$0.9.50 0 1995 Elsevier Science B.V. All rights reserved
SSDZ 0167-8191(95)001024-3

1750 C. Shy H. Buxton / Parallel Computing 21 (1995) I749 - I767

or three-dimensional space, and given the description of the obstacles in the space,
and given the description of the obstacles in the space, determine whether there is
a continuous motion of the object from the initial configuration to the final
configuration, and find such a motion if one exists. This problem is also called
Movers Problem or Findpath problem.

Theoretically, given algebraic descriptions of all the motion constraints, the
generalized movers’ problem is solvable. Schwartz and Sharir [lo] provided the first
general solution to the problem. They gave an algorithm which runs in a time
polynomial in the number of algebraic constraints, but doubly exponential in the
number of degrees of freedom. This result was later improved by Canny [2] who
provided an algorithm solving the problem in time O(nk log n), where n is the
number of geometric constraints and k is the degrees of freedom of the system.
This result reduces the time complexity of the algorithm from double exponential
in k to single exponential. However, the running time of the algorithm also
includes a large constant of proportionality, which depends on the degree and
coefficient magnitude of the constraint polynomials. It is shown that general
motion planning is intrinsically hard [91. Certain variants of the general motion
problem are proved to be intractable. In particular, the three-dimensional Eu-
clidean shortest path problem is NP-hard [2].

Since Schwartz and Sharir, many algorithms have been proposed for special
cases, e.g. [4,8,11]. These algorithms assume polygonal or polyhedral models of the
environment, and work for special shaped robots such as line segments and discs. A
common feature of these methods is that they are based on exact models and
exploit mathematical structures of the motion constraints. Therefore, they usually
provide algorithms which provably converge and which seek to improve worst-case
asymptotic efficiency. These algorithms are generally difficult to implement. Given
the high complexity of the motion planning problem, many researchers have been
working on approximate methods, e.g. [1,6,19]. These methods usually discretise the
motion constraints. They use various heuristics and aim at good average-case
efficiency. Our approach uses an effective and efficient search of a distributed
configuration space which can find the shortest path. It also has the advantage that
it is robust to environmental complexity for a range of problems.

2. Distributed respresentation

An important technique, used in many motion planning algorithms, is obstacle
transformation. The idea is to transform the obstacles in such a way that the robot
can be seen as a point in a higher dimensioned space, called Con$gurution Space.
This reduces the problem of planning the motion of a dimensioned object to the
problem of planning motion of a point.

Formally, let ti be a rigid object moving in a Euclidean Space ZY, called
Workspace. Let B,, B,, . . . , B, be fixed rigid objects in ZY. We attach a coordinate
frame 9, to “w and a coordinate frame S;, to M. The position of ZZ’ can be
specified by the origin of 9’. in YU and the orientation of .@ can be specified by the
orientation of J$ relative to F&..

C. Shu, H. Burton / Parallel Computing 21 (I 995) I749 - 1767 1751

A configuration of an object is a two-element tuple (9, 81, where 9 and 8 are
the position and orientation of Yd with respect to ZZ&. The set of all conligurations
of _Q? is called the contlguration space of JY, denoted gspuced, or %? for short. As
the motions of & are constrained by the obstacles, not all possible configurations
in %spuced are valid. Those invalid configurations form a region in the &pace,
which is important to the path of &. This region is called the ‘C-obstacle region’,
denoted as %?g. The complement of g9 is called ‘free space’ and is denoted as
99.

Much research has focused on obtaining a discrete representation of Y-5@. Most
methods use a connectivity graph to characterise 5?9 and eventually reduce the
problem to a graph search. These algorithms assume a piecewise linear model of
the environment. While we can approximate any object to any degree of accuracy
using piecewise linear objects, and efficient piecewise linear algorithms are found
in some cases, there are several disadvantages of this assumption. First, it often
takes too many straight line segments to model a simple curve realistically. Second,
it takes a considerable effort to construct a good piecewise linear approximation to
a real object. Third, algorithms based on this assumption are not robust, for a small
error in the model may cause devastating consequences for the planning algorithm.

In this paper, we propose to use a distributed array model to represent the
world. The construction of this model is simple. We first discretise the space into
regular cells. Then we register those elements in the binary array corresponding to
the cells occupied by objects in the space with value 1, and register other elements
with value 0. Then the environment under consideration is represented as a
collection of bits. In the case of two dimensions, it is equivalent to the bitmap
representation in computer graphics. In computer vision, this representation is
called spatid occupancy enumeration. Like the piecewise linear model, a binary
array can approximate any object to any degree of accuracy. However, there are
other advantages to the use of this model. First, it is robust. Geometric features are
represented implicitly in the binary array. A global feature is distributed in many
local parts of the representation. This makes the subsequent reasoning algorithms
tolerant of incomplete and partially incorrect information in the original represen-
tation. Second, it is easily obtainable from sensory data. This facilitates a motion
planner encapsulated in an autonomous system consisting of vision or other
sensing devices. Such a system could work in an unknown or partially known
environment.

To formalise the representation, consider an object .U moving in a two-&men-
sional workspace Y=@. The configuration space % is B2 if the robot moves in a
fixed orientation, or W* X [0,27r] if the robot rotates as well as translates in the
plane. We divide the workspace 5Y into regular square grids. Each grid represents
either a free space area or an obstacle area. We define a map f:%~+ {OJ}:

VxEw,f(x)= 1 if x is in an obstacle area
0 if x is in a free area

1752 C. Shu, H. Bmton / Parallel Computing 21 (199.5) 1749- 1767

Therefore the workspace is modelled as a binary array, denoted as 9%~. 99~ is a
conservative approximation of the workspace ‘ZK Each point in %V represents an
area in %Y &YV can be made arbitrary close to ‘Y by increasing the resolution, The
subsequent planning algorithms work on L&%K

Obviously, the binary array representation is data intensive. Therefore, the
manipulation of this model can be expensive when the resolution is high. However,
by using massively parallel computers, we can deal with many cells in parallel. The
theme of this paper is to identify parallelism in the processing of this model, and
develop parallel techniques for manipulating the model so as to develop robust and
efficient solutions to the motion planning problem.

Lozano-Perez [6] showed that the configuration space obstacles due to an object
moving with a fixed orientation can be obtained by set difference operations on the
point sets of the obstacles and the moving object. This result was then used to
derive an algorithm for computing C-obstacles for polygonal obstacles and moving
objects, where the set operations are only required to perform on the vertices of
the polygons. For general environments, the result serves only as a definition of the
C-obstacles rather than a procedure for computing them, for there are infinite
number of set operations to be performed. We show, in this paper, the set
difference definition of configuration space obstacles can be further defined by a
geometric transformation, translation, which is easy to implement on our proposed
parallel architecture, the Distributed Array Processor (DAP). We describe a
parallel algorithm which performs translation operations on all obstacles in the
workspace simultaneously. Given a discretised map representing the workspace,
the algorithm produces a new discretised man representing the configuration
space.

3. Computational model

We consider a SIMD computer which consists of a N X N array of processors
(usually N = 2”). each processor element (PE) in the array is connected with its
four neighbours, and each may operate on the data in its own local memory. A
central control unit broadcasts an instruction to all PE’s, and all enabled PE’s
simultaneously execute this instruction. This computer supports the parallel manip-
ulations of N x N matrix data. For any matrices A, B and C of the same data
type, there are operations of the form:

C=A*B

performed in one machine cycle, where ‘ * ’ can be normal arithmetic operations or
logical operations depending on the data type of the matrices.

Suppose aij and bij(i = 1,. . . , N, j = 1,. . . , N) are elements of Boolean matrices
A and B respectively, and cij denotes elements of Boolean matrix C. As will be

C. Shu, H. Buxton / Parallel Computing 21 (I 995) 1749 - I767 1753

seen, we are particularly interested in the operations:

(1) C =A V B, where cij V bij;
(2) C = A A B, where cij = aij h bij;
(3) C = 7 A, where cij = 7 aij.

In addition, the machine provides all PE’s the function of simultaneous access to
their neighbours. This function is expressed as four shift operations, shift-
north, shiftsouth, shifteast, and shiftwest.For matrices A and B, if
B = shiftnorth(then B is the marix obtained by shifting A’s elements by
one row to the north. The other three shift functions perform similar operations
except that the directions in which they shift the matrix are different.

As our distributed representation involves amount of data arranged in two- or
three-dimensional arrays, it naturally appeals to the distributed processor array
model. We map elements of the data array to the PEs and apply homogeneous
matrix operations to the whole area of the data. In this way, we can first construct
the configuration space and then search in this space efficiently.

4. Computing C-obstacles

To compute the configuration space %? involves mapping the discretised repre-
sentation of workspace 95~ to a space, such that the moving object is transformed
to a point with obstacles grown at the same time. Our essential data structure is a
binary array representing both the workspace and the configuration space. When
LX? is a disc or when LZ’ is a dimensioned object allowed to translate (i.e. the origin of
FM can follow any path in &?z@ without rotation (i.e. 9, has a fixed orientation
with respect to YY>, the configuration space %’ can be represented as a two-dimen-
sional binary array. When M is allowed to rotate as well as translate, GY can be
represented as a three-dimensional binary array. In this section we examine the
case where d can only translate in the plane. We construct the configuration space
G? in the form of a two-dimensional binary array and show that %? can be generated
in parallel. The case that includes rotational motions is discussed in Section 6.

4.1 The algorithm

For a general asymmetric moving object M, we propose a method which
subdivides ti into a collection of vertical line segments and incrementally build the
C-obstacles. Observe that the C-obstacles due to a vertical line segments moving
with a fixed orientation in a plane are easy to compute. We shall show that the
C-obstacles due to JZ? can be obtained by the union of the transformed C-obstacles
due to its component parts.

Objects in the plane can be viewed as sets of points and computing of
C-obstacles can be viewed as transformations on these sets. The following defini-
tion defines a few operations on sets of points.

1754 C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767

Definition. Let S, and S, be sets of points in the plane. The set sum, set difsereence,
and set negation are defined as:

Lemma 1. For any sets A? and 9, %L&‘& =9 --A?(O).

Proof. Cf. Theorem 1 of [6]. 0

Consider an arbitrary line segment _!Z as a moving object, there is a immediate
corollary of this lemma.

Corollary 1. For any set 9 and a line segment 9, &&BP =9 -L?(O).

In [6], by using the result of Lemma 1, an efficient algorithm for computing CB’s
for polygon objects was provided. The algorithm exploits properties of convex
polygons so that CB’s can be computed by performing set operations only on the
vertices of the polygons. Since we consider a more general problem which allows
the obstacles to be arbitrary shapes, there are no special properties to use in order
to reduce the number of set operations. Instead, we introduce another geometric
operation, translation, to define the C-obstacles due to a line segment 9.

Definition. Let p be an arbitrary point and X be a set of points in the plane. The
transformation TP such that T,(X) =p +X is called the translation of set X in the
direction @, where 0 is the coordinate origin.

Definition. The swept volume of a set X in the plane along a line segment 1 is the
set of points S,(X) such that

S,(X) = U T,(X).
UEl

0
”

Fig. 1. Illustrations of the notions of translation and swept volume.

C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767 1755

Fig. 2. A C-obstacle due to a vertical line.

In other words, the swept volume of X along 1 is the set of all the translations
of X along the line 1. Fig. 1 illustrates the notion of translation and swept volume.

Theorem 1. For any set 9 and line segment _5? in the plane, 279” = S,(B).

Proof. For any s E S _ ,(9’), according to the definition of swept volume, there
exists a point a EL? such that s E T-,(9’). Then there exists b ~59 such that
s = b - a. It follows s E.@’ -.9. By Lemma 1, s E &Y&92.

On the other hand, if s E g9’, there exists b ~9 and a EL? such that
s = b - a, So s = b + (-a>. Then s E i’_,(G’). Therefore s E S_&Z?). 0

Theorem 1 implies that the C-obstacle of a planar object 99 due to a line
segment _Y is the swept volume of 9? along 9. In our case, we are interested in a
vertical line segment _H(A,B) with a reference point up on it. Thus L(A,B) =
L(A,rp)U L(lp,B),i.e. L(A,B) consists of two vertical line segments with reference
points on ends. For an object 9, the C-obstacle due to U&D) is the swept
volume of 9 along UA, up) and the C-obstacle due to L(rp,B) is the swept
volume of 9 along L(rp, 9). The overall C-obstacle due to L(A,B) is the union
of these two parts. Fig. 2 illustrates this situation. The swept volume in the vertical
direction can be computed by applying shift-union operations to the map plane.
Algorithm CBL shown in Fig. 3 computes the %‘&5” for a vertical line segment 9.

Suppose an object JZ! is divided into a number of parts. The following theorem

Algorithm CBL(BW, L(A, B))
begin

4 + IB - rpl;
lz + 1~ - Al;
CB := BW;
for i:=l to II do

CB := CB V shiftnorth(
end;
for j:= 1 to 12 do

CB := CB V shiftsouth(
end;

end

Fig. 3. Algorithm for computing %‘S’PI.

1756 C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767

establishes the realtionship between the C-obstacles due to M and the C-obstacles
due to its component parts.

Theorem 2. Let JY be a two-dimensional object moving with a fived orientation in the
plane. Suppose M can be decomposed into n(n > I) parts, tit, . . . , dk, then ZC’gti =
IJ FE 1(‘8G7Mi - rpi) where 4 is @A as an independent moving object with its reference

point at ‘pi.

Proof. The region of the plane occupied by &$A at the its initial configuration of d
is denoted by .$A(0), and the region of the plane occupied by A$ at its initial
configuration is denoted by 4(O). Obviously, 4A(0) = ‘pi +zz$O) See Fig. 4. Simi-
larly, for any x E R2, we have ~$~<x> = ‘pi +4(x>.

For any x E ‘8,~8’~, there exists b EZB n&x). Thus b ~9 and b E&(X). That b
belongs to A?(X) implies b must be in a certain component of ..w’ at configuration x,
i.e. there exist i, such that b EA$~(x). From 4.1, there exists a E&$X), such that
b = ‘pi + a. Then there exists a’ EJZ?~(O) such that a =x + a’. This is equivalent to
b = ‘pi fx + a’ which follows x = b - a’ - rpi. So x ~93’ --M,(O) - ‘pi. By Lemma 1,
x E gsMi - ‘pi. Therefore 5?9?& C lJ f= r(gAYdi - rpi>.

On the other hand, if x E %‘&I& - ‘pi for some i, then x =x’ -‘pi for some x’
E f??.~&‘~~. This implies that here e$sts b such that b ~3 and b EA$(x’). There-
fore, there exists a E.$(O) such that b =x’ + a. Equivalently x’ = b - a. Then
x = b - a - ‘pi = b - (a + rpi). Let a’ = a + ‘pi. Since a C&$(O), we have a’ EA$~(O).
Thus a’ E&(O). It follows x ~9 -J&O>. So x E 52gd. Therefore, U y= ,(‘~FL%‘~~ - rp,)
~,!FLZ& and our proof is complete. 0

Note that ‘279’tii - ‘pi is actually a translation of ‘2?3Ytii by -vi, i.e. T_,$kY9&
This theorem states a method for computing C-obstacles by decomposing the
moving object and computing, translating, and union the C-obstacles due to its
component parts. The simplest decomposition of a planar shape is the rectangle
decomposition. In our binary array representation, objects are approximated by a
set of regular squares. Those squares which have the same x-coordinates form a

Fig. 4. Illustration of Theorem 2.

C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767 1757

rectangle with one unit width and the object can be seen as a set of these
rectangles with different heights. When a sufficiently high resolution is used, the
widths of these rectangles can be neglected and the object can be seen as a set of
vertical line segments. Algorithm CBL is used for computing the C-obstacles due
to each of the verical line segments. These C-obstacles are translated according to
the relative positions of the individual vertical lines’ reference point and that of the
moving object’s reference point. A translation in an arbitrary direction can be
broken down into a translation in x-direction followed by a translation in y-direc-
tion. Suppose (rp(x>, rp(y>) is the coordinate of MS reference point and (q+(x),
q+(y)) is the coordinate of ~$3 reference point. Then the actual value of transla-
tion of %?,9Ydi is Ilp(x) - q+(x)l in x-direction and Irp(y) - rp,(y)l in y-direction.
Algorithm CB shown in Fig. 5 details the computation of C-obstacles for genetal
shaped moving objects.

4.2 Complexity

Assume the resolution of BW is 1 x 1 and we use l2 processors. Since the main
loops in the algorithm consist of shift and union operations, we can use the number
of parallel shift and union operations to measure the running time of the algo-
rithm. As & = lJ y= 1 .S$, where 3 is a vertical line segment with length llzi
measured in the number of cells contained in it. The main loop in the Algorithm

Algorithm CB(BW, A, rp);
begin

z,,,in t the minimal z-coordinate of A;
z,,,~+ t the maximal z-coordinate of A;
CB t BW;
for i=z,in to z,.,,.. do

CBl t CBL(BW, L(i));
if rp(x)- i > 0 then

for j=l to rp(x) - i do
CBl t ahifteaat(CB1);

end
else

for j=l to i - rp(x) do
CBl t shiftwest(CB1);

end

m 4- w(y) - W(l);
if m >0 then

for k =l to m do
CBl t shiftsouth(CB1);

end
else

for k = 1 to (ml do
CBl t shiftnorth(CB1);

end ~
CB t CB v CBl;

end
end

Fig. 5. Algorithm for computing C-obstacles.

1758 C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767

CB compute each C-obstacle due to every vertical line spanning from x,~,, to x,,,.
For each iteration, there are three groups of operations contribute to the time
spent on this iteration: the time for CBL, the time for shifting CBl to the right
position, and the time to union the newly obtained CB’s with the existing one. Let
n=x mllx --xmin + 1. The overall time for algorithm CB is:

i=l i-l i=l

where (x,,y,) is the coordinate of 3’s reference point. CLEFT,, mi is the number of
cells in A. For the second term, Cy= ilxi - rp(x)l, Xi belongs to the series xmin,

X,jn + l,. * * 7 Ip(‘), * ’ * > x,,,* Let n, = rp(x> -xmin + 1 and rr2 =x,,, - v(x). We
have

~Ixi-lp(x)~=t~li+i~i= n2+n;2n,n,
i=l

The worst case occurs when p(x) =x,,,. In the case n2 = 0 and the second term
becomes $(n” + n).

For the third term, Cy= llyi - p(y)], the worst case is that for every i(l I i I n),
lyi - v(y)] reaches its maximum. This is the case when we choose v(y) to be the
maximal y-coordinate of A, y,,,, and choose yi to be the minimal y-coordinate of
A, ymin, or vice versa. Let m =y,,, -ymrn. Then C~xllyi - rpoJ)l I mn.

Thus, a conservative estimation of the running time of Algorithm CB can be

where s is the number of cells in A. Generally, s, n2, and mn are in the same order
of magnitude, while s I mn and mn I n* when m sn. Let k = ma.x(m,n}. The
time complexity of the algorithm is O(k*>. Dehne et al. [3] presented a parallel
algorithm for the same task. Their algorithm runs in O(h) time on a Mesh-of
Processors architecture with IZ processors. This is better than ours, but it requires
pipeline operations.

5. Search algorithm

Given the configuration space 27 represented as a binary array of two or three
dimensions, the next step is to search in the free space to find a sequence of grids
which connect the initial and the goal configurations. We present in this section a
parallel search method which is based on diffusion strengths in free space. This
search method was proposed by Steels [15]. It differs from the graph-search
methods, such as [16], because there is no explicit connectivity graph being
constructed. It is similar to the potential field approaches, but no attempt is made

C. Shu, H. Buxton / Parallel Computing 21 (I 995) I749 - 1767 1759

to define a potential function over the workspace or configuration space. We model
the algorithm as a cellur automaton and represent the search algorithm in terms of
inter-cell communication rules.

5.1 Cellular automata

Cellular automata are mathematical models of systems in which space and time
are discrete. They are generally used as a tool for investigation of self-organisation
and non-linear dynamical systems [17,18]. In its simplest form, a cellular automaton
consists of a line of sites, with each site initially having a value. It evolves in
discrete time steps. At each time step, the value of each site is updated according
to a definite rule. The new value on each site is specified in terms of the values of
its neighbours. One example of a cellular automaton rule is

ai+l = <a:_1 + ai+,)mod 2

where ai is the value of site i at time t.
In this section, we use a two-dimensional cellular automaton which involves

rules based on values of the four neighbourhoods of each site. An example of a
two-dimensional cellular automaton rule is

a:,? ’ = (af_ lj + at_, + afj+, + af+ ij)mod 2

Since the rule is applied to all sites simultaneously at each time step, it makes a
good model for SIMD parallel computers.

5.2 Strength space

We define strengths on the grids of configuration space B. These strengths
encode information about the grids which can be spread in the free space. They are
the strengths to move to the south, north, west, and east (Fig. 6). We shall use
aij(N), aij(S>, aij(E), aij(W) to denote the first four bits of aij, and use aij(Free)
to denote the fifth bit.

That a grid has a strength in the north means, if the robot were at the location
of the grid, it may move one step to the north, and similarly for the strengths in the

N

Ezl
S

E

Fig. 6. Strengths on grids.

1760 C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - I767

south, west, and east. We define the fifth strength as invariant, i.e. for all t

a:,? ‘(Free) = afi(Free)

5.3 Search by dijjiuing strengths

The general search strategy is that we first assign strengths to the immediate
four neighbourhood grid points of the goal configuration, and then diffuse these
strengths in parallel in the four directions according to some rules. Initially, the
four grid points neighbouring the goal grid was each assigned a strength which
points to the goal grid, as shown in Fig. 7. The diffusion rules are specified in the
following formula:

Uif’(N) = (U:j(N)V Ufj+l(N)V U:j+l(E)l/a:j+l(W))Au:i(Free) (1)

aij”(S) = (a:j(S> V Ufj_ ,(S) V aij_ ,(E) V afj_,(W)) A a:j(Free) (2)

aff’(E>= (U:j(E)V Uf+*j(E)VUf.,j(s)VU~+,j(N))hafj(Free) (3)

UfT ‘(W> = (Ufj(W> V Ui_lj(W) V U:_lj(S) V V Uf_ lj(N)) A a:j(Free) (4)

Eqs. (l)-(4) specify how to compute the strengths on an arbitrary grid in one
step of the iteration. Eq. (1) indicates that the north strength value on the next step
depends on its present value as well as the east and west stength value of its north
neighbourhood (‘ V ’ and ‘ A ’ represent logical ‘or’ and ‘and’ respectively). It is
necessary to consider the east and west strength when the north strength is
diffused because otherwise the flow of strengths would not be able to avoid the
obstacles. Note that grids in a obstacle area cannot acquire any strength in any
direction. Thus Eq. (1) implies that for any free grid aij acquires a north strength
on this iteration if

(1) its present north strength value in 1, or
(2) its north neighbourhood grid has a north strength, or
(3) its north neighbourhood grid has an east or west strength.

Fig. 7. The initial stre :ngth space and the configuration of the strength space after two steps of diffusion.

C. Shu, H. Buxton / Parallel Computing 21 (1995) I749- 1767 1761

The implications of Eq. (2) through Eq. (4) should be apparent from the above
explanation.

The diffusion process terminates in two situations: (1) the starting grid point
acquires a strength; and (2) there is no space to diffuse. In the first case, the robot
makes a one-step move according to the strength value on its location grid. If the
grid has strengths in more than one direction, any of them can be choserr’as the
direction for the robot to move. Fig. 7 shows the configuration ‘,.of the strength
space after two steps of diffusion. In the second case, the algoriibr.$ concludes that
there is no path exists. To make the robot move further steps towards the goal, the
strength space is cleared and repeats the same process as described above.

5.4 Analysis

In this subsection, we analyse the length of the path generated by the algorithm
introduced in the above subsection and discuss the complexity of the algorithm. We
shall prove that the algorithm gives a shortest path in terms of the number of grids
comprising of the path.

Definition. The length of a path in a grid plane is the number of grids which
comprise of the path.

Definition. The distance between two positions in the grid plane is the length of
the shortest path linking these two positions. We use &t(p) to denote the distance
of a point p to the goal position.

Lemma 2. For any point p in the grid plane, if dist(p) = n, then in the n-th iteration of
the algorithm Di$%sion, p acquires its first strength.

Proof. We proof by induction on n. When n = 1, p is a neighbour of the goal and
is initially assigned a strength pointing to the goal. Thus, it acquires a strength in
the first iteration. Suppose the lemma is true for n = k, where k > 1. For a point q
which has a distance k + 1, it must have a neighbour that has a distance k. By
induction hypothesis, this neighbour acquires its first strength in the kth iteration.
According to the diffusion rules (Eqs. (l)-(4)), q acquires its first strength in the
(k + 1)th iteration. q

Theorem 1. The algotithm Di’sion returns a moue which makes the starting point s
mow one step on its shortest path toward the goal point g.

Proof. If dz$) = 1, the theorem is obviously true. Now we consider the case
d&(s) = n(n > 1). Suppose ss,_ r n 2...s1g is the shortest path from s to g. Then s _
S n-1 is a neighbour of s and dist(s,_ 1) = n - 1. Without loss generality, we assume
that s,_ 1 is the eastern neighbour of s. By lemma 2, in the (n - l)-th iteration,
S n-1 acquires some strengths and s acquires no strength (otherwise d&(s) would be
n - 1). It follows that s,_ r (W) # true, because by Eq. (4), in the (n - 11th

1762 C. Shu, H. Buxton / Parallel Computing 21 (1995) I749 - I767

iteration, s,_ i(W) becomes true only if s(N), SW, or SW> is true. Therefore, one
of s,_ i(E), s, _ i(N), or s,, _ ,(S) must be true. By Eq. (31, in the next iteration, i.e.
the nth iteration, s(E) becomes true. This means in the nth iteration, s acquires a
strength pointing to its eastern neighbour s,_ 1. By the definition of the algorithm,
s moveto s,_l. 0

Suppose there are 12 cells in the grid plane (n = l2 for some integer 1). On each
iteration, the diffusion algorithm diffuses strengths to at least one new cell, so the
algorithm finds if there is a path in O(n) time.

6. Moving in rotation space

6.1 Computing configuration space

Now we consider the case where JZ’ is allowed to rotate as well as translate in a
two-dimensional plane, i.e. %Y= R2 x [0, 27r].’ The configuration space obstacles
are three-dimensional volumes in R3. As the workspace is modelled as a bit plane
where free space and obstacle areas are distinguished by different pixel values, we
model the three-dimensional configuration space as a discretised volume in which
the space occupied by the C-obstacles is represented by a collection of voxels
whose union encompasses the C-obstacles. The approach we adopted to compute
the three-dimensional C-obstacles is to discretise the range of orientation and
approximate the three-dimensional C-obstacles by a collection of two-dimensional
C-obstacles which are corresponding C-obstacles due to A? at a series of fixed
orientations. This method, called ‘slice projection’, was due to Lozano-Perez 15-71.

In our particular case, the configuration space ‘5’ can be represented as a set of
three-element tuples:

C = ky,8)l(x,y) E R2,6~ [0,2rll}.

The algorithm for computing the slice approximation of the C-obstacles decompos-
ing the range of the orientations of .w’ into a finite number of intervals. Let
I = [t3,0’] be the range of valid orientations of ZZ? If we want to approximate the
three-dimensional configuration space with n Bslices, we divide I into II non-over-
lap intervals, [e,, 6;], . . . , [8,,8;]. Then the slice-projection approximation of the
C-obstacles are:

For any interval [0,,0;], we choose a number of sampling points (pi, (Ye,. . . , am,

’ ky,27r) is identified with (x,y,O).

C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767 1763

where (Y~ E[6,,0;]. LP.G&‘~,~,~;~ is approximated by the union of C-obstacles due to .JY
at fixed orientations (pi, CY~, . . . , am, i.e.

In the case that L-Y is a polygon, the swept volume of ti over the range [&,e,‘]
can be approximated by a polygon &” and ~9’9~,~,,~~ is the C-obstacle due to _M”
[5]. This is a more conservative approximation of the original C-obstacles. The
approximated configuration space B in our bit array representation is represented
by a series of bit planes, each corresponding a @-slice of the exact configuration
space.

4.2 Di$fhsion in 3-space

The diffusion in the three-dimensional configuration space is handled analo-
gously to that of two-dimensional diffusions except that in addition to diffusions in
the (x,y)-plane, there have to be diffusions in the (x,z)-plane. We introduce two
more strengths: the strength to move up and the strength to move down, denoted
ajjk(U) and aij,(D) respectively.

As in the two-dimensional case, the diffusion of a strength involves looking at
each cell’s six neighbours. For a cell aijk, if we want to decide whether ajjk(N) is
true or not, we need to examine its north neighbour aii+,,. If either a,i+,,(N),
aii+ Ik(E), aii+ ,,W>, aii+ Ik(U), a,i+ Ik(D) is t rue, then a,(N) is set to true. The
decisions of other strengths of a aijk are similar. Thus we can define the equations
of diffusion strengths in three-dimensional space (the other five directions are
similiar).

afi’,W) = (afj,(N) V afj+ Ik (N) V aij+ l,(E) V afj+ Ik(W) V

Xafj+lk(U).V ajj+Ik(D)) A afjk(l+ee). (5)

The algorithm implementing these equations makes use of parallelism in the
(x,y)-plane. Initially, the free neighbours of the goal point are set strengths
pointing to it. There are then two parts of iterations: (1) diffusion in the (x,y)_planes
for S, N, E, W strengths; and (2) diffusion vertically for U and D strengths.

Suppose the workspace consists of II cells and we use n processors (n = Z2>.
Then the configuration s ace consists of II & cells. It’s not hard to find that the
algorithm runs in O(n4 P 12 I.

7. Experimental results

The algorithms were originally implemented on AMT DAP510 which is an
SIMD machine (ideal structure for implementing cellular automata) with 32 X 32
array of processors. Each processor is connected to its four nearest neighbours

1764 C. Shu, H. Buxton / Parallel Computing 21 (1995) 1749 - 1767

(north, south, east, and west) and each processor has its own memory. The program
was written in DAP Fortran which exploits the bit serial nature of the individual
processors to give fast execution time for the binary representations. Many compu-
ations are conveniently expressed with the built-in function ‘shift’, whose functions
we defined in our compuational model in Section 3.

When working on a map of configuration space with a resolution of 32 x 32,
each grid of the map is directly mapped onto the corresponding processor. When
working on resolutions which are greater than 32 X 32, the map is represented by
mutiple 32 x 32 matricx. Parallel instructions are applied on single matrix, while
between matrixes, instructions have to be excuted repeatedly. We present the
results of two groups of experiments demonstrating features of the path planning
methods discussed in this paper.

Z 1 Rotational motions

The algorithm was tested in many environments with the robot being allowed to
rotate as well as translate. Here we present six examples (Fig. 8) typically illus-
trated in the motion planning literature. Table 1 shows the timing results of these
examples. These results compare favourably with ones reported that have been
generated by appoximate cell decomposition methods. For instance, Example 3 was
first reported in [l] requiring tens of minutes on a Lisp machine. This result was
recently greatly improved by Zhu and Latombe [19] whose algorithm runs in 5.5
minutes to solve this problem on a Machintosh II. Our algorithm is able to solve
this problem in 84.20 seconds (1.40 minutes) on the AMT DAPSlO.

Note that these examples use simple polygonal environments which favours
methods based on piecewise linear models in the comparison. Fig. 9 illustrates a
path around arbitrarily curved obstacles. Our algorithm solves this problem in less
than 30 seconds.

8. Conclusion

We have presented an effective and efficient approach to the search of a static
configuration space. There are two characteristics of this approach, namely, the
distributed representation of the workspace and, related to it, the use of parallel
processing techniques to manipulate the world model. The distributed representa-
tion is a natural abstraction for the geometry of the real world objects. IJnlike the
piecewise linear model, or more generally, the semi-algebraic model which repre-
sents the boundaries of objects, it can be thought of as the kind of representation
which characterises the whole object. The main advantage of using this representa-
tion in motion planning is that it is easily obtainable from sensory systems, such as
vision, and therefore is most useful for motion planning problems in unknown
environments.

The data intensive nature of the distributed representation suggests the use of a
massively parallel architecture. We used a Distributed Array Processor (DAP)

C. Shu, H. Buxton / Parallel Computing 21 (I 995) 1749 - 1767 1765

Fig. 8. Path planning with rotation - Example 1-6.

model which has simple local connections among processors. We found that by
using simple parallel matrix operations, many geometric transformations for mo-
tion planning can be achieved efficiently. In particular, we ftrst described an
algorithm for computing configuration space obstacles. The algorithm runs in time
basically proportional to the size of the robot. Second, given a discrete representa-
tion of the configuration space, the search in this space can also be performed in
parallel. The parallel search algorithm given in this paper exploits local constraints
by diffusion stengths in the space. It is interesting to note that the complexity of

1766 C. Shy H. Bwon / Parallel Computing 21 (1995) 1749- 1767

Table 1
Timing for experiments with rotation motions. Times are given in seconds

Example Rotation pattern C-space Diffusion Total

1 19.45 0.58 57.40 77.62
2 19.45 0.83 170.78 191.25
3 19.45 0.72 63.83 85.20
4 19.45 0.67 156.72 180.04
5 19.45 21.19 17.78 58.62
6 19.45 22.04 3.68 45.36

Fig. 9. Path planning in an environment filled with curved obstacles.

this algorithm depends on the resolution of the workspace map rather than the
complexity of the environment. This is a unique feature of algorithms based on a
distributed representation. It implies that this algorithm can handle complicated
environments efficiently. The algorithm finds shortest path in O(n’) time for fixed
orientation motions and in O(n4&> time for rotational as well as translational
motion, where II is the number of cells comprising the environment map. In the
special case where the robot can be approximated as a disc, the performance of the
algorithm can be improved by adaptive use of a hierarchy of resolutions [13]. In
conclusion, the approach presented here seems well suited to a range of problems
in robotic path planning as it can deliver the shortest path effectively in a known
amount time. It is also possible to extend the approach in a very natural way to
dynamic motion planning problems 1141.

References

[l] R.A. Brooks and T. Lozano-PCrez, A subdivision algorithm in configuration space for findpath
with rotation, IEEE Trans. Systems, Man, and Cybernetics 15(2) (1985) 224-233.

[2] J.F. Canny, The Complexity of Robot Motion Planning (MIT Press, Cambridge, MA, 1988).

C. Shy H. Buxton / Parallel Computing 21 (1995) I749- 1767 1167

131

141

151

b1

171

181

191
1101

1111

1121

1131

1141

1151

Ml

1171

1181
1191

F. Dehne, A-L Hassenklover and J-R Sack, Computing the configuration space for a robot on a
mesh of processors, Parallel Comput. 12 (1989) 221-231.
D. Leven and M. Shark, An efficient and simple motion planning algorithm for a ladder amidst
Polygonal barriers, J. Algorithms 8 (1987) 192-215.
T. Lozano-Perez, Automatic planning of Manipulator transfer movements, IEEE Trans. Systems,
Man, and Cybernetics, SMC-ll(10) (1981) 681-698.
T. Lozano-PBrez. Spatial planning: A configuration space approach, IEEE Trans. Computers C-32
(2) (1983) 108-120.
T. Lozano-Perez, A simple motion-planning algorithm for general robot manipulators, IEEE
Trans. Robotics and Automation, RA - 3(3) (1987) 224-238.
C. 6’DGnIaing and C.K. Yap, A retraction method for planning the motion of a disc, J.
Algorithms, 6 (1982) 187-192.
J.H. Reif, Complexity of the generalized mover’s problem, in [121(1987) 267-281.
J.T. Schwartz and M. Sharir, On the piano movers’ problem: II. General techniques for computing
topological properties of real algebraic manifolds, Advances in Applied Math. 4 (1983) 298-351.
J.T. Schwartz and M. Shark, On the piano movers’ problem: The case of a rod moving in three
dimensional space amidst polyhedral obstacles. Commun. Pure and Applied Math. 37 (1983)
815-848.
J.T. Schwartz, M. Shark, and J.E. Hopcroft, Planning, Geometry, and Complexity of Robot Motion
(Ablex, Norwood, NJ, 1987).
C. Shu ad H. Buxton, A parallel path planning algorithm for mobile robots, In Proc. 1st Inter.
Conf Automation, Robotics and Computer vision, Singapore (1990) 489-493.
C. Shu and H. Buxton, Dynamic motion planning using a distributed representation, J. Intelligent
and Robotic Systems, 12 (1995) 1-12.
L. Steels, Steps towards common sense, Technical Report WB AI Lab Memo 88-3, Vrije
Universiteit Brussel, 1988.
C.E. Thorpe, FIDO: Vision and navigation for a robot rover, Technical Report No. CMU-CSdC
168, Department of Computer Science, Carnegie-Mellon University, 1984.
I. Toffoli and N. Margolus, Cellular Automata Machines: A New Entironment for Modelling (MIT
Press, Cambridge, MA, 1987).
S. Walfram, Statistical mechanics of cellular automata, Reu. Modem Physics 55 (3) (1983) 601-644.
D. Zhu and J-C Latombe, New heuristic algorithms for efficient hierarchical path planning. IEEE
Trans. Robotics and Automation 7 (1) (1991) 9-20.

