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Abstract We consider the problem of computing accurate The purpose of this paper is to provide a fully automatic
point-to-point correspondences among a set of human badiution to the problem of computing point-to-point corre-
ies in varying postures using a landmark-free approach. Tégondences among a set of human shapes in varying pos-
approach learns the locations of the anthropometric lartdres. These correspondences can then be used to conduct
marks present in a database of human models in stronghape analysis while taking into account human posture. To
varying postures and uses this knowledge to automaticathe best of our knowledge, previous methods for analyzing
predict the locations of these anthropometric landmarks tre human body shape use known landmark positions when
a newly available scan. The predicted landmarks are thesmputing the correspondences as discussed in detail in Sec-
used to compute point-to-point correspondences betweetioa 2. We integrate an extension of the landmark prediction
rigged template model and the newly available scan. method [26] and the template fitting method [17]. Our ap-
proach starts by automatically computing a set of landmark
positions on a human body in arbitrary posture. To compute
1 Introduction these landmarks, we first learn the characteristics and loca-
tions of the landmarks on a human model using a database of

We aim to compute dense point-to-point correspondendiinan models in different postures. This information is used
for human shapes in varying postures. The human shab‘éﬁremCt the landmark positions on a new human shape in
are assumed 1o be represented by possibly incomplete HRITary posture. Since we aim to compute the shape corre-
angular meshes, which can be acquired by 3D sensing §eondence of human shapes, we assume the knowledge of a
vices such as laser or structured-light body scanners. TR{Nan template shage represented by a triangular mesh.
problem arises from building a statistical model that encodglrthermore, we assume the knowledge of the skeleton and

posture and shape simultaneously using a database of hufing weights ofI". Our approach fits the templaté to

scans [17]. In order to build a statistical model of 3D shape§€ NeW humqn body shape in arbitrary posture as follows.
st. the predicted landmarks are used to fit an initial skele-

the raw scans have to be parameterized in such a way tha h bodv sh S d. the skel 4 riqai
likewise anatomical parts correspond across the models [1 1 to the new body shape. Second, the skeleton and rigging
ights are used to adjust the posturgd'ab the posture of

Considering human posture when conducting shape an new body shape. Third, the shapeas changed to fit

sis is important since the human body shape depends on bodv sh detailed ; f1h h
posture of the human due to local shape changes sucH%€ New body shape. A detailed overview of the approac

muscle bulging. IS given in Section 3.
While many approaches have been proposed to compute

point-to-point correspondences [25], only few of them have

been applied to statistical model building and shape aisaly® Related Work

Hasler et al. [17] build a statistical model of human shape

and posture variation. They obtain the correspondence &0rrespondence of deformed shapes Computing dense

sults by using manually placed markers to guide the comgReint-to-point correspondences between two possibly deformed

tation of the correspondences. Unfortunately, manually pla!rfaces has received considerable attention in recent years [25].

ing the markers is a tedious task and it is impractical to uééthough many algorithms have been developed to solve the

routinely in large surveys where several thousands of suigrrespondence problem, only few of these algorithms are

jects are typically scanned. suitable for statistical model building and shape analysis.
Approaches that solve the correspondence problem by
National Research Council of Canada, Ottawa, Canada aligning two shapes using a transformation that is approxi-
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man shapes in varying posture due to non-rigid shape amthe surface directly, the approach needs to convert the
posture changes. Hence, we focus our attention on approasiméace into a voxel grid. This is computationally expensive.
that take non-rigid transformations into account. Furthermore, this step introduces the use of several input pa-

Several authors suggested landmark-based method&a@eters. While all of these methods are landmark-free, they
obtain the correspondence and applied them to shape anigilire a set of non-intuitive user-specified input parameters.
sis. Blanz and Vetter [9] use a set of landmarks to compute Methods that require neither landmark positions nor user-
the correspondence between pairs of human faces. Allersegcified input parameters have been proposed for motion
al. [2,3] use a set of landmarks and a template model to d@pture [11,15]. The methods assume that the same shape
form a template model to human shapes in similar and vaMas captured in several gradually changing poses and use
ing postures. Anguelov et al. [4] present an approach ti8fs information to learn a deformation model. In our appli-
also works for varying postures. The approach computes ##ion, this type of input data is not available. Li et al. [20]
correspondences between a large database of humansR4ABOSE an approach to register pairs of range images with-
uses the result to build an animated surface model of a m@&t using any landmark positions or input parameters. While
ing person. The database contains one subject in multifk¢ method is shown to perform well, the method makes use
postures and the remaining subjects in the standing post@féhe fact that each surface is a terrain and can be param-
of the CAESAR database. Hasler et al. [17] improve tHi€rized by projecting each point to a plane. Since our aim
approach by using fewer landmark positions and by usigto register th_e surface of full human bodies, this method
a database containing many subjects in multiple posturégnnot be applied.

Pauly et al. [22] compute the correspondences and the trans-To summarize, existing fully automatic methods are not
formation between multiple views of a scan for the applic&ccurate enough to produce results that can be used for shape
tion of scan completion using a small set of landmark poginalysis. Landmark-based methods yield accurate results,
tions. but require manually placing the landmarks. In this paper,

Recently, several landmark-free approaches have bg\é%aim to automatically predict the landmark positions and

proposed. Some of these methods align bending—invariﬁ? them to_fmd a _co_rrespondence of hlgh quality.
canonical forms directly to obtain dense point-to-point cor- Automaticprediction of landmark positions Ben Azouz
respondences [19, 10]. These methods are currently not &c@!- [6] propose to find reliable correspondences by au-
curate enough to perform statistical analysis. When candfmatically predicting marker positions and by using these
ical forms are aligned directly, there is no guarantee t%ﬁl‘?rker positions to find correspondences. Their method is
close-by points in one shape match close-by points in t @s'ed.on statistical Iearmlng'. This method quk_s fqr models
other shape. Huang et al. [18] proceed by iteratively altdp. similar postures, but fails if the posture variation is large

nating between a correspondence optimization and a deffnrer et al. [26] extend this method to work for humans in

mation optimization. The approach can be viewed as an §&/Ying postures by using statistical learning in a bending-

tension of the lterative Closest Point algorithm (ICP) [8] th&gvariant embedding space.
is often used to solve the rigid correspondence problem. The

method is shown to perform well if the two meshes are ini-

tially well-aligned. If the initial alignment is poor, howeye
the method fails. Huang et al. show that the obtained ¢
respondences yield visually pleasing shape interpolatiops.

Th: main draw%:)ack of thisy rﬁethodgis thari it reIieps heayye aim to compute the shape correspondence of human mod-

ily on non-intuitive user-defined parameters, which mak&sS- Hence, we can use a templétef a human represented
the method hard to use. Zhang et al. [27] propose a te@-2 triangular mesh. We manually find the setgf 14 land-
nique that solves the correspondence problem by findingn@rks shown in the left of Figure 1 dfi. Let oM =
small set of features and by choosing the best feature c@y-. ., n denote the vertices a and IetlZ(T)J =0,...,13
respondence as the one that minimizes a deformation eenote the landmarks @f. Denote the homogeneous coor-
ergy. To improve the efficiency of the algorithm, the tree Qfinates oﬁ;,fT) by ﬁgT)- Furthermore, we compute a skeleton

all matching features is pruned if the features are too dis¢r) consisting of 17 bones and skinning weight$”) for
similar. Nonetheless, the algorithm is not as efficient as t§eu

i sing the approach by Baran and Popovic [7]. This allows
algorithm of Huang et al. [18]. Once the feature (.:OWESpO[Lé to deform the template into an arbitrary posture by de-
dences are computed, the full correspondence is found

. *(T) 16 (T) ‘~(T)
deforming the full mesh based on the feature points. THIMING €ach vertex ag; ™" = 3,2, W;; ' T;0;" ", where

FOverview

1,7

main drawback of this method is its computational ineﬁMQ(T) is the weight for theg-th bone and thé-th vertex of T’
ciency. Results are only demonstrated for models with lemsc where€T ; is the3 x 4 transformation matrix applied to
than 4000 vertices. Furthermore, like the method of Huatige j-th bone. Figure 1 shows the template model. The left of
et al., the tree pruning relies heavily on non-intuitive usethe figure shows the template with landmarks and the middle
defined parameters. Chang and Zwicker [12] use a reduacddhe figure shows the template and the fitted skeleton. The
deformable model to compute the correspondence and thght of the figure shows the rigging weights by assigning

transformation between two surfaces. Instead of operatiagolor to every bone of the skeleton and by coloring each
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vertex of the template with the color of the bone that has tlas

largest influence on this vertex. 1 (Po) (Po)
d(Po, Pr) = 5=+ v = NN <Uz' O)H
2/ Pol <POZ
v, Y €Py
1 (P1) Py (,,(P1)
+ o = NN (o)
2| Py Z

U(PI)EPl
where| P, | is the number of vertices in mode}, NN i (v§Pk))

is the nearest neighbor of ) in P;, and||.|| denotes the
Euclidean length.
Figure 2 gives an overview of the approach.

Fig. 1 Template model’ with landmarkd!"”, skeletons™, and rig- 4 Landmark Prediction

ging weights¥; ;.
! We assume the knowledge of a database of scans of humans

in varying postures represented by triangular meshes. Fur-
thermore, for each scan, we assume the knowledge of the
Given a scar” of a human in arbitrary posture, we ainmocation of a set of landmarlsg, .. ., ;3. The landmarks are
to compute the shape correspondence of this scan andshewn as red points in Figure 3. We use this knowledge to
templateT. To achieve this goal, we first predict the lolearn relative locations and local surface properties of the
cations of the 14 landmarks oR using probabilistic in- landmark points using the approach by Wuhrer et al. [26].
ference. We use a database of humans in varying posturés approach is based on statistical learning and models the
to train a Markov network and use this network to predistructure of the landmarks as a Markov network. The net-
the landmark locations. This is based on Wuhrer et al.'s aperk structure we use is shown in Figure 3. Each red land-
proach [26] and is explained in Section 4. The approaadmark point represents a node of the Markov network. Each
proceeds by embedding the intrinsic geometry of the hblack edge connecting two landmark points represents an
man body shape iiR3 and by predicting the landmarks inedge of the Markov network.
this embedding space. The embedding is invariant with re- It is difficult to spatially align models of human sub-
spect to rotations, translations, and reflections. After centg@cts in different postures due to the large posture variation.
ing the embedding and after aligning it along its principaience, the approach computes the canonical form [14] of
axes, the embedding is invariant with respect to flipping teach of the models in the database. The canonical forms of
axes. Since there are three possible axes to be flipped, #lishe models have a similar posture and can be spatially
results in eight possible alignments. Hence, the approadgned using the known landmark positions. This allows to
by Wuhrer et al. computes eight possible solutions. We dearn the locations and relative positions of the landmarks
note the landmark positions %" in the following, where in the space of canonical forms. The approach uses this in-
i=0,...,13 is the index of the landmark and= 0,...,8 formation to restrict the search space of the method and to
is the index of the option. compute the edge potentials of the Markov network.
i ) , Furthermore, the approach learns a surface property for
For each of the eight possible options, we solve a shapgch jandmark based on the area of a geodesic neighborhood
deformation problem as follows. We use the locations of thg ihe |andmark. This information is learned on the origi-
predicted landmarkg ) to find an initial skeletons”) nal surface and not in canonical form space. Note that the
with the same structure & ”). We use each learned land-area of a geodesic neighborhood of a landmark is isometry-
mark as a vertex of the skeleton. We find the remaining vénvariant. The learned information is used as node potential
tices of the skeleton using linear combinations of the ledirna the Markov network. Since all of the information con-
landmark positions. This skeleton is then refined to fit thebuting to the Markov network is isometry-invariant, this
posture ofP using an optimization method similar to the onapproach allows the prediction of landmarks in arbitrary pos-
used by Hasler et al. [17]. Section 5 outlines this step. Thisres.
step aligns the posture @fto the posture of. Afterwards, When a new scar® becomes available, the approach
we refine the shape @fto match the shape @f using an op- predicts the 14 landmark positions by performing probabilis-
timization method similar to the one used by Allen et al. [2}ic inference on the learned Markov network. The search
Section 6 outlines this step. Since we perform these stepsdpace of the method is restricted using the learned average
each of the eight possible options, we obtain eight possilideations of the landmarks in canonical form space as fol-
solutions. Finally, we find the correct result as the one of th@wvs. The canonical form of is computed and spatially
eight that minimizes the symmetric shape distancB.téve aligned with the training data. Note that since the canoni-
compute theshape distancbetween two model&, andP; cal form is invariant with respect to flipping, there are eight
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Fig. 2 Overview of the approach. For each of the eight possibledaaud predictions, the approach fits the posture and the shapally, the
approach selects the best option based on the shape distarezticted landmarks on the front are shown in green andipted landmarks on
the back are shown in yellow.

possible alignments. For each possible alignment, only vef the skeletors(”) as follows. We express the transforma-
tices in the neighborhood of the learned average locationtimin of the root using a rigid transformation consisting of a
a landmark are considered as candidates for this landmaruaternion rotation, a scale factor, and a translation vector.
The relative transformation of every other bone with respect
to its parent is expressed as a quaternion rotation. Hence, the
deformation is defined usirg)+ 4 « 16 = 72 parameters;.

This deformation restricts the deformation of the skeleton
to deform using a single uniform scale factor and a single
translation vector. Furthermore, each bone can only rotate
with respect to its parent. If we know the parametgrst is
straight forward to compute the global transformatidnef
each bone 08(™) using composite transformations.

Given the initial skeleto (") and.S(™), we compute the
parameters; that deforms(™) close toS(") as follows. The
global scale factor is computed as the average scale factor
Fig. 3 Location of the landmarks and structure of landmark graph. betweens(™) andS(”) of the bones of the torso. The global

translation and rotation are computed to align the bone of the
torso. Every other rotation is computed based on the relative

Since the canonical form of a shape is invariant with r@ositions of adjacent bones.

spect to flipping, this approach produces eight res!f,ﬁl@. :jn a fidrslt Sfjep’ V‘l'(e optimize E)he location Sfp; using the
In the original approach, it is up to the user to pick the indd¥X® icted landmark positions by minimizing the energy

o that yields the best result. In this work, we use each of the 13 16 2
eight results to compute a shape deformation of the template Eppag = Z ((Z Wi(,]T-)lez(T)> _ ZZ(P)>
j=0

and we report the result that minimizes the shape distance
between the deformed template and the scan. ] ) ]
We execute the steps outlined in the following sectiof§th respect to the parametefrs whereW; ; is the weight

for each optiorv. As we consideb to be fixed during these for thej-th bone and thé-th landmark ofl” andlgT) contains

steps, we denote the Iandmarkslb’if) in the following. the homogeneous coordinatesigf). During this optimiza-
tion we restrict the scaling, such that the height of the person
is between 1.40 m and 2.10 m. Furthermore, we restrict the
— angle of the rotation of the head, such that the head cannot
5 Posture Fitting face backwards. Note that the transformatidnslepend on
the parameters;.

This section describes how to change the posture of the tem-In a second step, we optimize the locationséf’ using
plate model to fit the posture of the sc&n Posture fitting all vertex positions by minimizing the energy
starts with the initial skeleto§(") of P computed based on e 6
the predicted landmarks and aims to optimize the location pf (T ~(T) P (T)+ ~(T)\\2
S(P) to optimally fit the posture of the model in sc&h Bl = Z((Z Wiy T30 ) =NN )(Z Wi Tivi )

The skeletons(”) has a tree structure. Hence, by pick-
ing one arbitrary but fixed bone as the root, we can order thth respect to the parametérswherel; ;(T') is the weight
bones using a depth first order. We model the deformatitor the j-th bone and the-th vertex ofT" and where

i=0

i=0 ;=0 =0
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NN(P) (Z;io Wg)ij)ET)) is the nearest neighbor of the?.1 Influence of Training Data
transformed verte~ % W7 T ;5" in P. Note that we e yse a subset of the 300 models with manually placed
only consider the term corresponding g if the angle landmarks to learn the properties and relative locations of
between the outer normal vectors of the transformed vée landmarks. We then compute the correspondences for
tex on the template and its nearest neighbor in the scarigdifferent subset of the 300 models with manually placed
at most110 degrees. We use kd-trees [5] to speed up thendmarks. This experiment evaluates the influence of the
nearest neighbor search and minimizg,; andE,,,, using a data set picked for training on the performance of the corre-
quasi-Newton approach [21]. spondence computation. We choose three training sets; one
that contains primarily shape variation, one that contains pri-
marily posture variation, and one that contains both shape
— and posture variation. This allows us to evaluate the relative
6 ShapeFitting importance of the presence of shape and posture variations
in the training set.
This section describes how to change the body shape of theThe data set used to compute the correspondences con-
template model to fit the shape of the s¢arWe first deform  sjsts of 50 models of 7 subjects and 28 different postures.
the templatel” to match the posturé®) computed in the The first training sef’, consists of 50 models of 43 subjects
previous section. Denote this deformed skeleton model pysimilar postures. Hencd,, covers the shape variability
. well, while the posture variability is not well represented.
The problem that remains to be solved is to fit a templafhe second training séf, consists of 50 models of seven
modelT* to a scanP, whereI™ andP are in approximately subjects in mostly different postures. The data set contains
the same posture. We solve this problem using an optimiza-least one model in all of the 35 postures present in the
tion method similar to the one by Allen et al. [2]. That isMPI database. Hencg), covers the posture variability well,
we allow each vertex;z(T*) of T* to deform using & x 4 While the shape variability is not well represented. The third
transformation matrixd,;. The goal is to fit7T™* to the scan training setl}, |, consists of 200 models of 43 different sub-
P while preserving the overall shape of the surface. Thisjgcts and 35 different postures. Hengg, , covers both the

achieved by minimizing the energy posture variability and the shape variability well.
. When usindl; for training, the algorithm produces visu-
(T P (7)) 2 ally pleasing results for2% of the models. When usi
Eshape = a Z (A”}E S NN (A“’E ))) for training, the algorithm produces visually pleasingr[r%sults
=0 for 74% of the models. When using, .. for training, the
+ B Z (A; — Aj)2 algorithm produces visually pleasing results T8f% of the
(i,5)€E(T™) models. This shows the importance of both pose and shape
) ] variation in the training set. Note that pose variation appears
with respect to the transformatioAs, where to be slightly more important than shape variation since the

NN(P) (Aﬂ;gT”) is the nearest neighbor of the transformddcal surface area close a landmark varies more for subjects

(T - N in different postures than for different subjects in the same
vertexA;;" ) in P, E(T") is the set of edges &*, anda posture.

andg are weights. As before, we only consider the nearest

neighbor term if the angle between the outer normal vectors

of the transformed vertex and its nearest neighbor is at most ,

110 degrees. We minimiz&;,,,. using a quasi-Newton ap-7-2 Evaluation

proach [21]. We initially set® = 1 and3° = 10 and we re- _ _

lax 3t aspt = 0.53¢~! whenever the energy does not changé the following, we use the aforementioned set of 200 mod-

much. This relaxation scheme ensures that the details of @& to learn the properties and relative locations of the land-

target mesh are fitted. marks. We compute the correspondences for the remaining

100 models of the MPI database to evaluate the accuracy of

the predicted landmarks with respect to the manually picked

landmarks. We first evaluate the accuracy of the predicted

7 Results landmarks. In the best case, our automatic algorithm always
picks the best of the eight available options. To demonstrate

This section evaluates the proposed method using the M accuracy in this case, we manually pick the best of the

database [17]. This database contains the surface scaneigtfit results for landmark prediction. The accuracy obtained

different subjects in up to 35 different postures. We main this case is summarized in Table 1. We measure the er-

ually placed the fourteen landmarks on 300 of the modetsr as Euclidean distance between the predicted landmarks

First, we evaluate the impact of the training data set on thad the ground truth landmarks. Note that most of the aver-

correspondence performance. Second, we conduct an evafie errors are under 10 cm. The predicted landmarks at the

ation of the correspondence performance. shoulders, the elbows, and the knees have the largest average
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errors. This is a result of the non-isometric deformations ofir algorithm. Note that the locations of the features are on
the human body in these areas. corresponding anatomical parts of the bodies.

Note that for the remaining experiments, the landmarks Next, we analyze the cases for which our algorithm fails
are picked automatically. Hence, we can expect the predictedind visually pleasing correspondences. In 17 of the cases,
landmarks to be at most as accurate as the ones in Tablethe algorithm picked the wrong landmark option. In this case,
body parts are erroneously corresponded to symmetric body
parts, which results in a globally erroneous registration. An

Landmark A{rﬁﬁ?e Sé%?a({fgg M‘mm;’m example of this case is shov_vn in the first row of Figure 6.
(mm) Here, the front of the body is matched to the back of the

T Head 60.18 6.018 140.8 template mesh. In the remaining seven cases, the algorithm

2 Crotch 7577 4.908 205.6 picked the correct landmark option, but the landmarks are

i E:gm E:L%%der %227-2 5-5622 ﬁg-g inaccurate. In this case, the result after fitting the posture us-

5 Right Hand 12.89 1589 667 ing linear blending is too far from the true surface for the

6 Left Shoulder | 127.6 5678 5739 nearest neighbor energy to work. An example of this case is

7 Left Elbow 79.43 3.94 155.1 shown in the second row of Figure 6.

8 Left Hand 10.24 1.024 57.06

9 Right Knee 97 3.04 179.8

10 Right Heel 20.85 0.8441 102.1

11 Right Toe 0.4487 | 0.04487 39.46

12 Left Knee 98 0.4846 185.8

13 Left Heel 24.24 2.424 103.8

14 Left Toe 0.8894 | 0.08894 39.81

Table 1 Error of landmark prediction computed over 100 test human
scans.

The algorithm produces visually pleasing results for 76 \
of the models. For these 76 models, we compute the shap
distance between the deformed template mesh and the orig
nal model. The mean of the shape distance over all 76 mod
els is 5.94 mm and its standard deviation is 0.20. We con:
sider an average error of under 6 mm as sufficient since
slight movements of the person during the acquisition of tféd- 6 Two cases where the proposed algorithm fails to find a visu-
scan caused by breathing or slight posture changes can [RP!easing correspondence. From left to right. origimabdel, result

; . . after posture fitting, and result after shape fitting.
to an error of the same magnitude in the acquired data.

Figure 4 shows some of the results. The first column
ShOWS the mOdel W|th bOth the predicted Iandmarks and the Fina”y, we demonstrate the performance Of the a|go_

ground truth landmarks. Ground truth landmarks are showthm when the input model is incomplete. Note that since
inred and predicted landmarks are shown in green. When 3¢ approach is based on canonical forms, it is not suitable
prediction and the ground truth are identical, only the greggy shapes with missing body parts or large holes. However,
point is shown. The second column shows the result afige approach is robust with respect to relatively small holes
posture fitting and the third column shows the result aftg{at do not alter the global shape of the canonical form. We
shape fitting. The algorithm finds visually pleasing resul{gse a model of the Civilian American and European Anthro-
in spite of noise in j[he original mpdels (see neck of Seco%metric Resource (CAESAR) database [23] that was ac-
row) and inaccuracies of the predicted landmarks (see shQyikired using a laser-range scanner and that contains a num-
der of fourth row). The difference in shape of the hands (fisigr of small holes. Figure 7 shows that a globally satisfactory
versus extended hands) comes from the shape of the hagdglt is obtained for this incomplete model. The local arti-
in the template model. fact on the left foot of the model is due to missing data at the
The quality of the correspondences is visualized in Figack of the foot, which results in an erroneously estimated

ure 5. We manually applied a texture to the template modgtation of the landmark point at the heel.
(left of Figure 5) and transferred the texture to the bodies

shown in Figure 4 using the correspondences obtained with

our algorithm. We can see that the texture map is preserved

for models with different body postures and body shapesConclusions

Furthermore, we manually selected a set of feature points on

the template model and assigned a unique color to each fé&e proposed an automatic method to compute accurate point-
ture point. The features were then transferred to the bodiespoint correspondences between a set of human models in
shown in Figure 4 using the correspondences obtained witirying postures. We showed that in most cases, accurate
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Fig. 4 The first column shows the model with both the predicted lamkisn(in green) and the ground truth landmarks (in red). Teeond
column shows the result after posture fitting and the thiddiem shows the result after shape fitting.

correspondences were found. This method eliminates theiterariant correspondence problem for human shapes that is
dious task of manually placing markers on the models taranteed to converge.
guide the correspondence computation.

Since the presented approach is based on numerical 8%,
. R - erences
lutions of optimization problems, there is no guarantee thaFf

a ,Sat'SfaCt_OW result is obtained. In our experiments, we 0*1'. Dror Aiger, Niloy Mitra, and Daniel Cohen-Or. 4-pointsxgyuent
talned SatISfaCtOI’y I’eSU|tS fOT 76% Of a.” cases. We Iea.ve |t sets for robust surface reg|strat|0M:M Transactions on Graph-
for future work to find a formulation of solving the posture ics, 27(3):#85, 1-10, 2008. Proceedings of SIGGRAPH.
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Fig. 5 Texture mapping of the corresponded models. The templatk with feature points and a texture map is shown on the |b#.f@éature
points and the texture map are transferred to the four mosledsvn on the right using the computed correspondences.
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