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Landmark-Free Posture Invariant Human Shape Correspondence

Abstract We consider the problem of computing accurate
point-to-point correspondences among a set of human bod-
ies in varying postures using a landmark-free approach. The
approach learns the locations of the anthropometric land-
marks present in a database of human models in strongly
varying postures and uses this knowledge to automatically
predict the locations of these anthropometric landmarks on
a newly available scan. The predicted landmarks are then
used to compute point-to-point correspondences between a
rigged template model and the newly available scan.

1 Introduction

We aim to compute dense point-to-point correspondences
for human shapes in varying postures. The human shapes
are assumed to be represented by possibly incomplete tri-
angular meshes, which can be acquired by 3D sensing de-
vices such as laser or structured-light body scanners. This
problem arises from building a statistical model that encodes
posture and shape simultaneously using a database of human
scans [17]. In order to build a statistical model of 3D shapes,
the raw scans have to be parameterized in such a way that
likewise anatomical parts correspond across the models [13].
Considering human posture when conducting shape analy-
sis is important since the human body shape depends on the
posture of the human due to local shape changes such as
muscle bulging.

While many approaches have been proposed to compute
point-to-point correspondences [25], only few of them have
been applied to statistical model building and shape analysis.
Hasler et al. [17] build a statistical model of human shape
and posture variation. They obtain the correspondence re-
sults by using manually placed markers to guide the compu-
tation of the correspondences. Unfortunately, manually plac-
ing the markers is a tedious task and it is impractical to use
routinely in large surveys where several thousands of sub-
jects are typically scanned.
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The purpose of this paper is to provide a fully automatic
solution to the problem of computing point-to-point corre-
spondences among a set of human shapes in varying pos-
tures. These correspondences can then be used to conduct
shape analysis while taking into account human posture. To
the best of our knowledge, previous methods for analyzing
the human body shape use known landmark positions when
computing the correspondences as discussed in detail in Sec-
tion 2. We integrate an extension of the landmark prediction
method [26] and the template fitting method [17]. Our ap-
proach starts by automatically computing a set of landmark
positions on a human body in arbitrary posture. To compute
these landmarks, we first learn the characteristics and loca-
tions of the landmarks on a human model using a database of
human models in different postures. This information is used
to predict the landmark positions on a new human shape in
arbitrary posture. Since we aim to compute the shape corre-
spondence of human shapes, we assume the knowledge of a
human template shapeT represented by a triangular mesh.
Furthermore, we assume the knowledge of the skeleton and
rigging weights ofT . Our approach fits the templateT to
the new human body shape in arbitrary posture as follows.
First, the predicted landmarks are used to fit an initial skele-
ton to the new body shape. Second, the skeleton and rigging
weights are used to adjust the posture ofT to the posture of
the new body shape. Third, the shape ofT is changed to fit
to the new body shape. A detailed overview of the approach
is given in Section 3.

2 Related Work

Correspondence of deformed shapes Computing dense
point-to-point correspondences between two possibly deformed
surfaces has received considerable attention in recent years [25].
Although many algorithms have been developed to solve the
correspondence problem, only few of these algorithms are
suitable for statistical model building and shape analysis.

Approaches that solve the correspondence problem by
aligning two shapes using a transformation that is approxi-
mately rigid [24,16,1] are not suitable to align a set of hu-
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man shapes in varying posture due to non-rigid shape and
posture changes. Hence, we focus our attention on approaches
that take non-rigid transformations into account.

Several authors suggested landmark-based methods to
obtain the correspondence and applied them to shape analy-
sis. Blanz and Vetter [9] use a set of landmarks to compute
the correspondence between pairs of human faces. Allen et
al. [2,3] use a set of landmarks and a template model to de-
form a template model to human shapes in similar and vary-
ing postures. Anguelov et al. [4] present an approach that
also works for varying postures. The approach computes the
correspondences between a large database of humans and
uses the result to build an animated surface model of a mov-
ing person. The database contains one subject in multiple
postures and the remaining subjects in the standing posture
of the CAESAR database. Hasler et al. [17] improve the
approach by using fewer landmark positions and by using
a database containing many subjects in multiple postures.
Pauly et al. [22] compute the correspondences and the trans-
formation between multiple views of a scan for the applica-
tion of scan completion using a small set of landmark posi-
tions.

Recently, several landmark-free approaches have been
proposed. Some of these methods align bending-invariant
canonical forms directly to obtain dense point-to-point cor-
respondences [19,10]. These methods are currently not ac-
curate enough to perform statistical analysis. When canon-
ical forms are aligned directly, there is no guarantee that
close-by points in one shape match close-by points in the
other shape. Huang et al. [18] proceed by iteratively alter-
nating between a correspondence optimization and a defor-
mation optimization. The approach can be viewed as an ex-
tension of the Iterative Closest Point algorithm (ICP) [8] that
is often used to solve the rigid correspondence problem. The
method is shown to perform well if the two meshes are ini-
tially well-aligned. If the initial alignment is poor, however,
the method fails. Huang et al. show that the obtained cor-
respondences yield visually pleasing shape interpolations.
The main drawback of this method is that it relies heav-
ily on non-intuitive user-defined parameters, which makes
the method hard to use. Zhang et al. [27] propose a tech-
nique that solves the correspondence problem by finding a
small set of features and by choosing the best feature cor-
respondence as the one that minimizes a deformation en-
ergy. To improve the efficiency of the algorithm, the tree of
all matching features is pruned if the features are too dis-
similar. Nonetheless, the algorithm is not as efficient as the
algorithm of Huang et al. [18]. Once the feature correspon-
dences are computed, the full correspondence is found by
deforming the full mesh based on the feature points. The
main drawback of this method is its computational ineffi-
ciency. Results are only demonstrated for models with less
than 4000 vertices. Furthermore, like the method of Huang
et al., the tree pruning relies heavily on non-intuitive user-
defined parameters. Chang and Zwicker [12] use a reduced
deformable model to compute the correspondence and the
transformation between two surfaces. Instead of operating

on the surface directly, the approach needs to convert the
surface into a voxel grid. This is computationally expensive.
Furthermore, this step introduces the use of several input pa-
rameters. While all of these methods are landmark-free, they
require a set of non-intuitive user-specified input parameters.

Methods that require neither landmark positions nor user-
specified input parameters have been proposed for motion
capture [11,15]. The methods assume that the same shape
was captured in several gradually changing poses and use
this information to learn a deformation model. In our appli-
cation, this type of input data is not available. Li et al. [20]
propose an approach to register pairs of range images with-
out using any landmark positions or input parameters. While
the method is shown to perform well, the method makes use
of the fact that each surface is a terrain and can be param-
eterized by projecting each point to a plane. Since our aim
is to register the surface of full human bodies, this method
cannot be applied.

To summarize, existing fully automatic methods are not
accurate enough to produce results that can be used for shape
analysis. Landmark-based methods yield accurate results,
but require manually placing the landmarks. In this paper,
we aim to automatically predict the landmark positions and
use them to find a correspondence of high quality.

Automatic prediction of landmark positions Ben Azouz
et al. [6] propose to find reliable correspondences by au-
tomatically predicting marker positions and by using these
marker positions to find correspondences. Their method is
based on statistical learning. This method works for models
in similar postures, but fails if the posture variation is large.
Wuhrer et al. [26] extend this method to work for humans in
varying postures by using statistical learning in a bending-
invariant embedding space.

3 Overview

We aim to compute the shape correspondence of human mod-
els. Hence, we can use a templateT of a human represented
by a triangular mesh. We manually find the set of 14 land-
marks shown in the left of Figure 1 onT . Let v(T )

i , i =

0, . . . , n denote the vertices ofT and letl(T )
i , i = 0, . . . , 13

denote the landmarks ofT . Denote the homogeneous coor-
dinates ofv(T )

i by ṽ(T )
i . Furthermore, we compute a skeleton

S(T ) consisting of 17 bones and skinning weightsW (T ) for
T using the approach by Baran and Popovic [7]. This allows
us to deform the template into an arbitrary posture by de-
forming each vertex asv∗(T )

i =
∑16

j=0 W
(T )
i,j Tj ṽ

(T )
i , where

W
(T )
i,j is the weight for thej-th bone and thei-th vertex ofT

and whereTj is the3 × 4 transformation matrix applied to
thej-th bone. Figure 1 shows the template model. The left of
the figure shows the template with landmarks and the middle
of the figure shows the template and the fitted skeleton. The
right of the figure shows the rigging weights by assigning
a color to every bone of the skeleton and by coloring each
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vertex of the template with the color of the bone that has the
largest influence on this vertex.

Fig. 1 Template modelT with landmarksl(T )
i , skeletonS(T ), and rig-

ging weightsWi,j .

Given a scanP of a human in arbitrary posture, we aim
to compute the shape correspondence of this scan and the
templateT . To achieve this goal, we first predict the lo-
cations of the 14 landmarks onP using probabilistic in-
ference. We use a database of humans in varying postures
to train a Markov network and use this network to predict
the landmark locations. This is based on Wuhrer et al.’s ap-
proach [26] and is explained in Section 4. The approach
proceeds by embedding the intrinsic geometry of the hu-
man body shape inR3 and by predicting the landmarks in
this embedding space. The embedding is invariant with re-
spect to rotations, translations, and reflections. After center-
ing the embedding and after aligning it along its principal
axes, the embedding is invariant with respect to flipping the
axes. Since there are three possible axes to be flipped, this
results in eight possible alignments. Hence, the approach
by Wuhrer et al. computes eight possible solutions. We de-
note the landmark positions bylo (P )

i in the following, where
i = 0, . . . , 13 is the index of the landmark ando = 0, . . . , 8
is the index of the option.

For each of the eight possible options, we solve a shape
deformation problem as follows. We use the locations of the
predicted landmarkslo (P )

i to find an initial skeletonS(P )

with the same structure asS(T ). We use each learned land-
mark as a vertex of the skeleton. We find the remaining ver-
tices of the skeleton using linear combinations of the learned
landmark positions. This skeleton is then refined to fit the
posture ofP using an optimization method similar to the one
used by Hasler et al. [17]. Section 5 outlines this step. This
step aligns the posture ofT to the posture ofP . Afterwards,
we refine the shape ofT to match the shape ofP using an op-
timization method similar to the one used by Allen et al. [2].
Section 6 outlines this step. Since we perform these steps for
each of the eight possible options, we obtain eight possible
solutions. Finally, we find the correct result as the one of the
eight that minimizes the symmetric shape distance toP . We
compute theshape distancebetween two modelsP0 andP1

as

d(P0, P1) =
1

2|P0|

∑

v
(P0)
i

∈P0

∥

∥

∥
v
(P0)
i −NNP1

(

v
(P0)
i

)∥

∥

∥

+
1

2|P1|

∑

v
(P1)
i

∈P1

∥

∥

∥
v
(P1)
i −NNP0

(

v
(P1)
i

)∥

∥

∥
,

where|Pi| is the number of vertices in modelPi,NNPj

(

v
(Pk)
i

)

is the nearest neighbor ofv(Pk)
i in Pj , and‖.‖ denotes the

Euclidean length.
Figure 2 gives an overview of the approach.

4 Landmark Prediction

We assume the knowledge of a database of scans of humans
in varying postures represented by triangular meshes. Fur-
thermore, for each scan, we assume the knowledge of the
location of a set of landmarksl0, . . . , l13. The landmarks are
shown as red points in Figure 3. We use this knowledge to
learn relative locations and local surface properties of the
landmark points using the approach by Wuhrer et al. [26].
The approach is based on statistical learning and models the
structure of the landmarks as a Markov network. The net-
work structure we use is shown in Figure 3. Each red land-
mark point represents a node of the Markov network. Each
black edge connecting two landmark points represents an
edge of the Markov network.

It is difficult to spatially align models of human sub-
jects in different postures due to the large posture variation.
Hence, the approach computes the canonical form [14] of
each of the models in the database. The canonical forms of
all the models have a similar posture and can be spatially
aligned using the known landmark positions. This allows to
learn the locations and relative positions of the landmarks
in the space of canonical forms. The approach uses this in-
formation to restrict the search space of the method and to
compute the edge potentials of the Markov network.

Furthermore, the approach learns a surface property for
each landmark based on the area of a geodesic neighborhood
of the landmark. This information is learned on the origi-
nal surface and not in canonical form space. Note that the
area of a geodesic neighborhood of a landmark is isometry-
invariant. The learned information is used as node potential
in the Markov network. Since all of the information con-
tributing to the Markov network is isometry-invariant, this
approach allows the prediction of landmarks in arbitrary pos-
tures.

When a new scanP becomes available, the approach
predicts the 14 landmark positions by performing probabilis-
tic inference on the learned Markov network. The search
space of the method is restricted using the learned average
locations of the landmarks in canonical form space as fol-
lows. The canonical form ofP is computed and spatially
aligned with the training data. Note that since the canoni-
cal form is invariant with respect to flipping, there are eight
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Fit Posture Fit ShapeInitial PosturePredict Land-

marks

Fig. 2 Overview of the approach. For each of the eight possible landmark predictions, the approach fits the posture and the shape. Finally, the
approach selects the best option based on the shape distance. Predicted landmarks on the front are shown in green and predicted landmarks on
the back are shown in yellow.

possible alignments. For each possible alignment, only ver-
tices in the neighborhood of the learned average location of
a landmark are considered as candidates for this landmark.

Fig. 3 Location of the landmarks and structure of landmark graph.

Since the canonical form of a shape is invariant with re-
spect to flipping, this approach produces eight resultsl

o (P )
i .

In the original approach, it is up to the user to pick the index
o that yields the best result. In this work, we use each of the
eight results to compute a shape deformation of the template
and we report the result that minimizes the shape distance
between the deformed template and the scan.

We execute the steps outlined in the following sections
for each optiono. As we considero to be fixed during these
steps, we denote the landmarks byl

(P )
i in the following.

5 Posture Fitting

This section describes how to change the posture of the tem-
plate model to fit the posture of the scanP . Posture fitting
starts with the initial skeletonS(P ) of P computed based on
the predicted landmarks and aims to optimize the location of
S(P ) to optimally fit the posture of the model in scanP .

The skeletonS(T ) has a tree structure. Hence, by pick-
ing one arbitrary but fixed bone as the root, we can order the
bones using a depth first order. We model the deformation

of the skeletonS(T ) as follows. We express the transforma-
tion of the root using a rigid transformation consisting of a
quaternion rotation, a scale factor, and a translation vector.
The relative transformation of every other bone with respect
to its parent is expressed as a quaternion rotation. Hence, the
deformation is defined using8 + 4 ∗ 16 = 72 parametersbi.
This deformation restricts the deformation of the skeleton
to deform using a single uniform scale factor and a single
translation vector. Furthermore, each bone can only rotate
with respect to its parent. If we know the parametersbi, it is
straight forward to compute the global transformationsTi of
each bone ofS(T ) using composite transformations.

Given the initial skeletonS(P ) andS(T ), we compute the
parametersbi that deformS(T ) close toS(P ) as follows. The
global scale factor is computed as the average scale factor
betweenS(T ) andS(P ) of the bones of the torso. The global
translation and rotation are computed to align the bone of the
torso. Every other rotation is computed based on the relative
positions of adjacent bones.

In a first step, we optimize the location ofS(P ) using the
predicted landmark positions by minimizing the energy

Elnd =

13
∑

i=0

((

16
∑

j=0

W
(T )
i,j Tj l̃

(T )
i

)

− l
(P )
i

)2

with respect to the parametersbi, whereWi,j is the weight

for thej-th bone and thei-th landmark ofT andl̃(T )
i contains

the homogeneous coordinates ofl
(T )
i . During this optimiza-

tion we restrict the scaling, such that the height of the person
is between 1.40 m and 2.10 m. Furthermore, we restrict the
angle of the rotation of the head, such that the head cannot
face backwards. Note that the transformationsTi depend on
the parametersbi.

In a second step, we optimize the location ofS(P ) using
all vertex positions by minimizing the energy

Enn =

n
∑

i=0

((

16
∑

j=0

W
(T )
i,j Tj ṽ

(T )
i )−NN (P )(

16
∑

j=0

W
(T )
i,j Tj ṽ

(T )
i ))2

with respect to the parametersbi, whereWi,j(T ) is the weight
for thej-th bone and thei-th vertex ofT and where
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NN (P )
(

∑16
j=0 W

(T )
i,j Tj ṽ

(T )
i

)

is the nearest neighbor of the

transformed vertex
∑16

j=0 W
(T )
i,j Tj ṽ

(T )
i in P . Note that we

only consider the term corresponding tov(T )
i if the angle

between the outer normal vectors of the transformed ver-
tex on the template and its nearest neighbor in the scan is
at most110 degrees. We use kd-trees [5] to speed up the
nearest neighbor search and minimizeElnd andEnn using a
quasi-Newton approach [21].

6 Shape Fitting

This section describes how to change the body shape of the
template model to fit the shape of the scanP . We first deform
the templateT to match the postureS(P ) computed in the
previous section. Denote this deformed skeleton model by
T ∗.

The problem that remains to be solved is to fit a template
modelT ∗ to a scanP , whereT ∗ andP are in approximately
the same posture. We solve this problem using an optimiza-
tion method similar to the one by Allen et al. [2]. That is,
we allow each vertexv(T

∗)
i of T ∗ to deform using a3 × 4

transformation matrixAi. The goal is to fitT ∗ to the scan
P while preserving the overall shape of the surface. This is
achieved by minimizing the energy

Eshape = α

n
∑

i=0

(

Aiṽ
(T∗)
i −NN (P )

(

Aiṽ
(T∗)
i

))2

+ β
∑

(i,j)∈E(T∗)

(Ai − Aj)
2

with respect to the transformationsAi, where

NN (P )
(

Aiṽ
(T∗)
i

)

is the nearest neighbor of the transformed

vertexAiṽ
(T∗)
i in P , E(T∗) is the set of edges ofT ∗, andα

andβ are weights. As before, we only consider the nearest
neighbor term if the angle between the outer normal vectors
of the transformed vertex and its nearest neighbor is at most
110 degrees. We minimizeEshape using a quasi-Newton ap-
proach [21]. We initially setα0 = 1 andβ0 = 10 and we re-
laxβt asβt = 0.5βt−1 whenever the energy does not change
much. This relaxation scheme ensures that the details of the
target mesh are fitted.

7 Results

This section evaluates the proposed method using the MPI
database [17]. This database contains the surface scans of
different subjects in up to 35 different postures. We man-
ually placed the fourteen landmarks on 300 of the models.
First, we evaluate the impact of the training data set on the
correspondence performance. Second, we conduct an evalu-
ation of the correspondence performance.

7.1 Influence of Training Data

We use a subset of the 300 models with manually placed
landmarks to learn the properties and relative locations of
the landmarks. We then compute the correspondences for
a different subset of the 300 models with manually placed
landmarks. This experiment evaluates the influence of the
data set picked for training on the performance of the corre-
spondence computation. We choose three training sets; one
that contains primarily shape variation, one that contains pri-
marily posture variation, and one that contains both shape
and posture variation. This allows us to evaluate the relative
importance of the presence of shape and posture variations
in the training set.

The data set used to compute the correspondences con-
sists of 50 models of 7 subjects and 28 different postures.
The first training setTs consists of 50 models of 43 subjects
in similar postures. Hence,Ts covers the shape variability
well, while the posture variability is not well represented.
The second training setTp consists of 50 models of seven
subjects in mostly different postures. The data set contains
at least one model in all of the 35 postures present in the
MPI database. Hence,Tp covers the posture variability well,
while the shape variability is not well represented. The third
training setTp+s consists of 200 models of 43 different sub-
jects and 35 different postures. Hence,Tp+s covers both the
posture variability and the shape variability well.

When usingTs for training, the algorithm produces visu-
ally pleasing results for72% of the models. When usingTp

for training, the algorithm produces visually pleasing results
for 74% of the models. When usingTp+s for training, the
algorithm produces visually pleasing results for78% of the
models. This shows the importance of both pose and shape
variation in the training set. Note that pose variation appears
to be slightly more important than shape variation since the
local surface area close a landmark varies more for subjects
in different postures than for different subjects in the same
posture.

7.2 Evaluation

In the following, we use the aforementioned set of 200 mod-
els to learn the properties and relative locations of the land-
marks. We compute the correspondences for the remaining
100 models of the MPI database to evaluate the accuracy of
the predicted landmarks with respect to the manually picked
landmarks. We first evaluate the accuracy of the predicted
landmarks. In the best case, our automatic algorithm always
picks the best of the eight available options. To demonstrate
the accuracy in this case, we manually pick the best of the
eight results for landmark prediction. The accuracy obtained
in this case is summarized in Table 1. We measure the er-
ror as Euclidean distance between the predicted landmarks
and the ground truth landmarks. Note that most of the aver-
age errors are under 10 cm. The predicted landmarks at the
shoulders, the elbows, and the knees have the largest average
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errors. This is a result of the non-isometric deformations of
the human body in these areas.

Note that for the remaining experiments, the landmarks
are picked automatically. Hence, we can expect the predicted
landmarks to be at most as accurate as the ones in Table 1.

Landmark Average Standard Maximum
(mm) Deviation (mm)

(mm)
1 Head 60.18 6.018 140.8
2 Crotch 75.77 4.908 205.6
3 Right Shoulder 122.3 5.652 286.9
4 Right Elbow 76.78 5.6 147.2
5 Right Hand 12.89 1.289 66.7
6 Left Shoulder 127.6 2.678 273.9
7 Left Elbow 79.43 3.94 155.1
8 Left Hand 10.24 1.024 57.06
9 Right Knee 97 3.04 179.8
10 Right Heel 20.85 0.8441 102.1
11 Right Toe 0.4487 0.04487 39.46
12 Left Knee 98 0.4846 185.8
13 Left Heel 24.24 2.424 103.8
14 Left Toe 0.8894 0.08894 39.81

Table 1 Error of landmark prediction computed over 100 test human
scans.

The algorithm produces visually pleasing results for 76
of the models. For these 76 models, we compute the shape
distance between the deformed template mesh and the origi-
nal model. The mean of the shape distance over all 76 mod-
els is 5.94 mm and its standard deviation is 0.20. We con-
sider an average error of under 6 mm as sufficient since
slight movements of the person during the acquisition of the
scan caused by breathing or slight posture changes can lead
to an error of the same magnitude in the acquired data.

Figure 4 shows some of the results. The first column
shows the model with both the predicted landmarks and the
ground truth landmarks. Ground truth landmarks are shown
in red and predicted landmarks are shown in green. When the
prediction and the ground truth are identical, only the green
point is shown. The second column shows the result after
posture fitting and the third column shows the result after
shape fitting. The algorithm finds visually pleasing results
in spite of noise in the original models (see neck of second
row) and inaccuracies of the predicted landmarks (see shoul-
der of fourth row). The difference in shape of the hands (fists
versus extended hands) comes from the shape of the hands
in the template model.

The quality of the correspondences is visualized in Fig-
ure 5. We manually applied a texture to the template model
(left of Figure 5) and transferred the texture to the bodies
shown in Figure 4 using the correspondences obtained with
our algorithm. We can see that the texture map is preserved
for models with different body postures and body shapes.
Furthermore, we manually selected a set of feature points on
the template model and assigned a unique color to each fea-
ture point. The features were then transferred to the bodies
shown in Figure 4 using the correspondences obtained with

our algorithm. Note that the locations of the features are on
corresponding anatomical parts of the bodies.

Next, we analyze the cases for which our algorithm fails
to find visually pleasing correspondences. In 17 of the cases,
the algorithm picked the wrong landmark option. In this case,
body parts are erroneously corresponded to symmetric body
parts, which results in a globally erroneous registration. An
example of this case is shown in the first row of Figure 6.
Here, the front of the body is matched to the back of the
template mesh. In the remaining seven cases, the algorithm
picked the correct landmark option, but the landmarks are
inaccurate. In this case, the result after fitting the posture us-
ing linear blending is too far from the true surface for the
nearest neighbor energy to work. An example of this case is
shown in the second row of Figure 6.

Fig. 6 Two cases where the proposed algorithm fails to find a visu-
ally pleasing correspondence. From left to right: originalmodel, result
after posture fitting, and result after shape fitting.

Finally, we demonstrate the performance of the algo-
rithm when the input model is incomplete. Note that since
our approach is based on canonical forms, it is not suitable
for shapes with missing body parts or large holes. However,
the approach is robust with respect to relatively small holes
that do not alter the global shape of the canonical form. We
use a model of the Civilian American and European Anthro-
pometric Resource (CAESAR) database [23] that was ac-
quired using a laser-range scanner and that contains a num-
ber of small holes. Figure 7 shows that a globally satisfactory
result is obtained for this incomplete model. The local arti-
fact on the left foot of the model is due to missing data at the
back of the foot, which results in an erroneously estimated
location of the landmark point at the heel.

8 Conclusions

We proposed an automatic method to compute accurate point-
to-point correspondences between a set of human models in
varying postures. We showed that in most cases, accurate
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Fig. 4 The first column shows the model with both the predicted landmarks (in green) and the ground truth landmarks (in red). The second
column shows the result after posture fitting and the third column shows the result after shape fitting.

correspondences were found. This method eliminates the te-
dious task of manually placing markers on the models to
guide the correspondence computation.

Since the presented approach is based on numerical so-
lutions of optimization problems, there is no guarantee that
a satisfactory result is obtained. In our experiments, we ob-
tained satisfactory results for 76% of all cases. We leave it
for future work to find a formulation of solving the posture

invariant correspondence problem for human shapes that is
guaranteed to converge.
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man body shapes: reconstruction and parameterization fromrange
scans.ACM Transactions on Graphics, 22(3):587–594, 2003. Pro-
ceedings of SIGGRAPH.

3. Brett Allen, Brian Curless, Zoran Popović, and Aaron Hertzmann.
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