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Abstract Determining camera calibration parameters is
a time-consuming task despite the availability of calibration
algorithms and software. A set of correspondences between
points on the calibration target and the camera image(s) must
be found, usually a manual or manually guided process. Most
calibration tools assume that the correspondences are already
found. We present a system which allows a camera to be
calibrated merely by passing it in front of a panel of self-
identifying patterns. This calibration scheme uses an array
of fiducial markers which are detected with a high degree of
confidence, each detected marker provides one or four corre-
spondence points. Experiments were performed calibrating
several cameras in a short period of time with no manual
intervention. This marker-based calibration system was com-
pared to one using the OpenCV chessboard grid finder which
also finds correspondences automatically. We show how our
new marker-based system more robustly finds the calibration
pattern and how it provides more accurate intrinsic camera
parameters.
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1 Introduction

The process of camera calibration determines the intrinsic
and/or extrinsic parameters of the camera from correspon-
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dences between points in 3D and their projection points in
one or more images [11,12]. People usually use easily iden-
tifiable objects, such as a chessboard, as calibration targets
to establish these correspondences. Although it is possible to
calibrate cameras from pure natural images, called autocal-
ibration [6], when accuracy is required, calibration targets
are usually employed.

It is more convenient to construct and use a planar target
object than a 3D one. A typical planar target can be printed on
a standard letter-sized page from a laser printer and mounted
on a rigid surface. Flexible calibration algorithms [10,14]
have been designed to calibrate a camera from correspon-
dences on a planar object captured from a few different
views.

While the problem of calibration has been thoroughly
studied, the issue of correspondence has received little atten-
tion. The performance of the target detection systems, for
example robustness and accuracy, has seldom been inves-
tigated. This is perhaps because calibration was tradition-
ally an off-line, once-for-all process, and one could afford to
create the correspondences manually to have a small num-
ber of cameras calibrated. However, as cameras are increas-
ingly becoming a commodity, more and more applications
make use of large numbers of cameras in often changing
configurations. Examples of these applications are security
surveillance, robot navigation, special effects in movie pro-
duction, and augmented reality. These applications demand
rapid calibration of cameras.

OpenCV [1], a popular open source library for computer
vision, provides a function for automatically finding grids
from chessboard patterns. However, it requires the user to
provide the dimensions (number of rows and columns) of
the chessboard. It attempts to order corners in a grid to find
correspondences. One disadvantage of this method is its lack
of robustness in that all points must be fitted into the grid
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for any correspondences to be reported, and so many image
frames are unusable. It does not work well for cameras with
highly distorted lenses.

Soh et al. [7,9] use a pattern of 16 squares which are
found with thresholding and blob analysis. The centroids of
the squares are arranged to fit a regular grid using attributed
relational graph matching. The use of structural knowledge
of the grid could potentially improve the robustness of the
pattern detection algorithm, though little detail was given in
the paper, nor is the software based on their method freely
available.

Shu et al. [8] have a system called CAMcal which uses
corner detectors and topological operators to find chessboard
squares to order the corner points. It, however, can fail when
false corners get detected or when the pattern is viewed from
an oblique angle such that the triangulation step does not
correctly link corners. CAMcal is quite sensitive to imper-
fections in the image. However, it does not require that an
entire pattern is in view.

This paper introduces a way to use the recently developed
ARTag fiducial marker system [3] as a more robust method to
find the correspondences. An array of self-identifying mark-
ers is presented to the camera-under-test in various poses and
the correspondences will be generated automatically.

The benefit of this system is that a camera can be cali-
brated in a matter of minutes since the correspondences are
determined robustly and automatically. The camera is sim-
ply moved around to several views in front of a planar array
of self-identifying markers and the calibration is performed
completely automatically. The whole process for a given
camera takes under 5 min. Typically about 10–15 images are
needed from different angles to accurately calibrate the cam-
era (Fig. 1).

The rest of the paper is organized as follows. Section 2
describes the ARTag patterns. Section 3 discusses the cali-
bration system. Section 4 reports experimental results of the
system running under different conditions and comparisons
with the publicly available OpenCV grid finder and semi-
manual calibration using conventional dot arrays. Finally, in
Sect. 5, we draw conclusions and offer discussions.

2 Self-identifying patterns

Self-identifying patterns are special marker patterns that can
be placed in the environment and automatically detected in
the images. Also known as fiducial marker systems, a library
of these patterns and the algorithms to detect them help to
solve the correspondence problem. Self-identifying marker
systems are typically used for applications such as calculat-
ing camera pose for augmented reality and robot navigation.

The ARTag system is detailed in [3]. Here, we give a brief
description. The marker system is bi-tonal, containing 2,002

Fig. 1 (Left) Camera-under-test is moved around to different views of
self-identifying pattern. Examples of captured images used for calibra-
tion (right). Typically 10–15 images are needed

planar markers, each consisting of a square border and an
interior region filled with a 6×6 grid of black or white cells.
A total of 1,001 markers have a black square border on a
white background, and vice versa for the other 1,001.

The algorithm for detecting the markers in an image first
locates quadrilaterals which may be perspective views of the
marker border, then the interior is sampled into 36 binary ‘1’
or ‘0’ symbols. Further processing is in the digital domain
providing a non-linear response giving very low false posi-
tive and inter-marker confusion rates. With this marker sys-
tem, the probability of falsely identifying one marker for
another, or a piece of the background as a marker, is vanish-
ingly low [2]. Figure 2 shows the markers being detected in
an image.

The correspondences are the centers of each marker or
the four corners of each marker located in the image (Fig. 2).
Both the usage of the four corners, and just the marker cen-
ter were investigated with the conclusion being that the best
accuracy is obtained using the marker center.

Since each marker is unique, the 3D coordinates associ-
ated with the marker can be found once the marker is identi-
fied. Therefore, there is no need for ordering the markers.

While the points themselves are reliable as far as identi-
fication, the accuracy of their reported image locations will
affect the accuracy of calibration. The location of each marker
corner is determined by finding the intersection of the line of
the two adjoining sides. The line equations themselves are
found by fitting a line to points of locally maximum derivative
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Fig. 2 Stages of marker
detection. Markers (left) are
searched in the input image
(middle) and their corners or
centers and the matching world
coordinate point used as
correspondences (right)

perpendicular to the line. This differentiates ARTag from
the basic greyscale thresholding technique used in many
calibration and fiducial systems. A measure of accuracy of
the image location is the jitter, with full room lighting and
good focus, an ARTag marker corner’s coordinate has a stan-
dard deviation of about 0.03 pixels when a marker is viewed
with a 640 × 480 greyscale Dragonfly IEEE-1394 camera
(surprisingly this experiment yields the same result regard-
less of marker size).

3 Calibration

Camera calibration typically involves finding parameters for
a camera model given world-point correspondences. Photo-
grammetry’s bundle adjustment is highly accurate and has
complex models with dozens of parameters. At the other end
of the spectrum of complexity is the two parameter model of
focal length and scale, or horizontal and vertical focal lengths
(Fx , Fy). The horizontal Fx and the vertical Fy focal lengths
in pixels can be simply calculated by measuring the image
width and height of a known object at a known distance. This
assumes a pinhole projection model with the center of pro-
jection (uo, vo) as being the image center, this is sufficient
for many projects.

The next step in complexity is to calculate the entire cam-
era matrix K containing Fx , Fy, uo, vo and possibly the skew
factor s. Suppose X = [ X Y Z 1 ]� is a 3D point and x =
[x y 1]� is its projection in the image plane, both in homoge-
neous coordinate. The perspective projection can be modeled
by

λx = K[R t]X,

where λ is an arbitrary constant, R is a rotation matrix and t
is a translation vector, together they relate the world coordi-
nate frame to the camera coordinate frame, and K is an upper
triangular matrix defined as

K =
⎡
⎣

Fx s u0

0 Fy v0

0 0 1

⎤
⎦ .

Most cameras, especially low-cost ones with lenses of
large curvature, require going beyond this pinhole model to
address the “barrel” or “pincushion” effect of radial distor-
tion. Radial and thin prism distortion is typically modeled

by polynomials with 1 or 2 term coefficients. Zhang’s model
[13,14] finds these, which this paper labels as Fx , Fy, uo, vo

for the focal lengths and image center, k1, k2 for the radial
distortion, and the thin prism parameters p1, p2.

To calibrate a camera, one needs to have a list of corre-
sponding image points and world points (either co-planar 2D
points, or 3D points). Gathering these correspondences has
usually been a manual task, which is slow and tedious and
prone to errors that adversely affect the results. If the camera
is moved or jarred, its focus or zoom changed, it must be
re-calibrated. Ways to do it automatically would find much
use.

Our system was created by combining the marker detec-
tion with OpenCV’s cvCalibrateCamera() function, which
implements Zhang’s algorithm [14]. An array of 19 × 9
markers was printed and mounted on a table top size 60 in.×
30 in.meddite panel and was used for most of the experiments
in this paper. Two smaller marker arrays patterns were printed
on 8.5 in. × 11 in. pages for the experiments in Sect. 4.2.

Figure 1 shows a webcam being calibrated by capturing
views of the meddite panel. Figure 3 shows the recovered
camera positions relative to the panel.

The quality of each calibration is evaluated by comput-
ing the reprojection error, which is the Euclidean distance
between the identified marker point and the projection of its
corresponding pattern point onto the image.

Fig. 3 Automatically recovered camera positions relative to the marker
array
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Table 1 Calibration using Zhang’s algorithm with points extracted automatically using the pattern array with two methods: using the marker center
as a correspondence point, or using all four corners

Sequence K matrix Distortion parameters Re-projection error
std. Dev/maximum

# Avg. Fx Fy uo vo k1 k2 p1 p2 Center Corner
Frms Pts/Frm set points

Powershot S60 short focal length (640 × 480 pixels)

63 48 531.70 531.46 322.45 243.19 −0.1448 0.1090 0.0005 0.0006 0.14/1.64 0.25/4.64

Point grey research dragonfly IEEE-1394 camera with 8 mm lens #0 (640 × 480 pixels)

44 55 1097.63 1100.41 327.69 256.40 −0.0523 −0.0883 −0.0023 −0.0019 0.13/1.62 0.35/7.28

Creative webcam live ultra for laptops USB 2.0 Webcam (640 × 480 pixels)

35 62 520.90 521.24 332.92 277.33 −0.2968 0.0903 −0.0006 −0.0020 0.16/1.97 0.25/6.66

Logitech quickcam Pro 4000 USB 2.0 webcam (640 × 480 pixels)

25 37 786.26 789.44 373.26 271.22 0.1227 −0.0660 0.0028 0.0049 0.29/2.62 0.63/5.8

SONY 999 NTSC camera captured with ATI PCI framegrabber (640 × 480 pixels)

40 59 633.87 620.20 304.13 240.31 −0.2034 0.1060 −0.0002 −0.0003 0.13/1.25 0.27/5.06

Single-board X10 greyscale NTSC camera captured with ATI PCI framegrabber (640 × 480 pixels)

27 31 632.60 616.31 346.58 239.30 −0.4231 0.1764 −0.0002 0.0000 0.19/1.21 0.39/4.72

Calibration parameters are shown for the center method

A variety of cameras or camera /frame-grabber configura-
tions were calibrated ranging from low-cost webcams with
resolutions 320×240 pixels, NTSC cameras, to high resolu-
tion 1,280×1,024 digital cameras. Table 1 shows the results
of automatic calibration of some of these cameras using the
marker array.

4 Performance evaluation

4.1 Comparison with OpenCV grid finder

The OpenCV grid finder function cvFindChessBoardCorner-
Guesses() can be used to automatically find correspondences
between the image points and the points in the calibration
plane. The function starts with converting the input image
into a greyscale image followed by thresholding to obtain a
binary image. It then finds contours from the binary image
and extracts all the contours with exactly four sides. The
corners of those four-side contours are considered to be the
corners of the chessboard. They are ordered into a grid based
on their geometric proximity.

The function often does not recognize all the points as dis-
cussed earlier. The images must have low radial distortion,
the grids must be completely visible, and the lighting has to
be good for the thresholding step to succeed. In general, the
detection can be unreliable and we found many images had
to be captured to provide enough successfully detected grids
could be found for calibration. Table 2 shows some sample
results of how often grids are located, images are taken with
five cameras of a 8 × 10 pattern.

This low detection rate can be compared to our system
where correspondences are found in all images and there
is no requirement to see the full pattern. With our marker
system, every image taken with reasonable lighting, focus,
and lack of motion blur produces at least some correspon-
dences. The ARTag marker system has a very low false
detection rate when compared to the many false corners
detected by the OpenCV grid finder, especially if the scene
around the pattern is cluttered. Also, markers can be detected
to almost 85◦ from the normal whereas we could not get
the OpenCV grid finder to find markers past 60◦ from the
normal.

The main advantage of the ARTag pattern over the
chessboard pattern is that each marker is unique, therefore
its coordinates in the pattern plane can be recovered as soon
as the marker is identified. For the chessboard, these coordi-
nates have to be obtained through ordering the quadrilaterals
based on their geometric proximity. In the OpenCV imple-
mentation, the ordering requires the entire grid to be visi-
ble. Although methods can be designed to detect and order
partial grids in the chessboard [8], it is generally difficult to
order the grids robustly, especially when the lens distortion is
high.

Zhang’s method requires multiple views with different
perspectives and it is difficult in OpenCV to get many views
where the points stretch well into the image corners, where
the distortion is greatest and in most need of calibration.
This limits the potential accuracy of the calibration. In
contrast, our method allows the pattern to be larger than
the field of view so that any view has pattern points seen
throughout the image. Our method is ideal for providing the
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Table 2 Comparison of calibration using marker corner, marker center, circular blobs, and chessboard methods

Camera Marker corners Marker centers Circular blobs Chessboards

% avg. Reproj. % avg. Reproj. % avg. Reproj. % avg. Reproj.
det. pts error det. pts error det. pts error det. pts error

Powershot S60 100 76 0.55/3.55 96 37 0.43/3.23 100 80 0.49/3.81 13 63 0.72/5.86

Dragonfly 8mm 100 79 0.18/2.00 100 68 0.32/2.43 100 80 0.27/1.99 6 69 46.1/477

HICOL Dragonfly 100 80 0.78/9.45 100 63 1.44/9.56 100 80 1.19/8.37 40 60 1.65/13.7

Creative Ultra 100 79 0.45/3.55 100 48 0.50/5.78 100 80 0.62/5.93 58 78 0.99/10.7

Intel Pro 100 78 0.46/3.54 100 45 0.51/3.92 100 80 0.47/3.65 14 60 20.2/301

An array was made for each method and used to calibrate each camera. The ‘% det.’ column is the percentage of frames for which the calibration
grid could be extracted, the ‘avg. pts’ column is the average number of points used in each successfully detected grid (maximum 80), and the
reprojection error is shown as standard deviation/maximum in the ‘error’ column

correspondences for correcting the radial distortion as in
the method suggested by Hartley and Kang [5].

4.2 Comparing accuracy with marker corners, marker
centers, OpenCV grid finder, and circular dots

Another experiment was performed to directly compare the
marker corner and center methods, the OpenCV grid finder,
and the traditional circular dot array used in calibrating cam-
eras. The planar array of dots was used as a benchmark to
compare the marker and the OpenCV grid finder methods.
This allows comparison against what is likely the most com-
mon camera calibration method.

To fairly compare the four methods, identical poses were
captured for each method. The cameras were mounted on
tripods and the four calibration patterns were hinged together
so they could be changed without changing the pose. The
same number of images were taken for each method, for each
of five cameras. The marker points are in the same positions
in each image locations, all have eight rows and ten columns
of points. Each point corresponds to a marker corner in the
marker corner method, to a marker center in the marker cen-
ter method, to a dot center in the circular dot method, and
to an inner corner in the chessboard pattern for detection by
OpenCV grid finder. The experiment setup is shown in Fig. 4.

The results are shown in Table 2. The circular dots were
all found manually and so have a 100% detection rate, and
the full 80 points found in each image. The markers were
detected in all the frames with varying number of correspon-
dence points. With all the four array types, the reprojection
error was calculated by projecting onto a larger set of points.
The marker system achieved equal or better accuracy than the
circular dot method but was performed in seconds as opposed
to several hours for manually locating and verifying the dot
centroid locations. The OpenCV grid finder provided infe-
rior calibration results, this could be due to the less number of
calibration grids that were found, and/or a possible intrinsic
weakness in using intersections corners.

4.3 Image set size

A practical question asked by one wishing to calibrate a
camera is how many images are necessary. We performed
an experiment on several camera configurations where we
calibrated using image set sizes varying from 3 to 30 image
frames per set. The accuracy of the intrinsic parameters
extracted was evaluated by measuring the reprojection error
when projected back to the full set of all frames. We ran-
domly chose a subset of images from the full set, calibrated
the camera using the marker center method, and then evalu-
ated these intrinsic parameters. The intrinsic parameters were
evaluated using the full set of images, calculating only the
extrinsic parameters, and observing the reprojection error.
The standard deviation and maximum reprojection error was
averaged over all the calibration runs. Ten iterations were
performed for each set size. Starting with set size of 2, we
incremented the set size to 3, 4, 5, etc. up to a set size of 30.

Figure 5 shows the result for one of the cameras (Power-
shot S60); plots for more cameras can be found in [4]. The
x-axis is the number of frames in a set, the top plot is the
average standard deviation error, the bottom is the average
maximum error. We observed that between 10 and 15 images
are needed to calibrate a camera.

4.4 Sensitivity to lighting and focus

With all these methods each correspondence’s location is
determined by the position of borders or corners, the posi-
tion is susceptible to the effects of the non-ideal properties
of real cameras and lenses with respect to lighting change
and blur. With an ideal pinhole a bright point in the scene
maps to a single image plane point, however, with a finite
aperture size and defocus the image plane point expands.
With increasing irradiance and binary threshold decisions to
find lines, corners and circular blobs, light/dark edges tend to
move toward the darker side, corners on dark ARTag markers
move inward, and dark circular blobs shrink. Lighting and
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Fig. 4 Comparison of
calibration using marker corner,
marker center, circular blobs,
and chessboard method using
identical poses and locations of
correspondence points

focus thus affect the image coordinates in the correspondence
points used for calibration. With the greyscale Dragonfly
camera ARTag marker corners moved by up to 1.5 pixels
between light and dark exposures. The centroid of circu-
lar dots and the centers of ARTag markers move less than
the marker corners due to the canceling effects of opposing
changes from opposite sides. Also, the intersection point at
the checkerboard corners will turn into two corners as either
the opposite white or black squares merge due to bright or
dim lighting. The OpenCV grid finder averages the distance
between these two nearby corners found as endpoints of sides
of closed quads, however, it is not clear how the follow-
ing sub-pixel corner find operation will affect the reported
position.

Therefore we would expect to see the calibration results
to be affected by increasing light and lens/aperture non-ideal
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Fig. 5 Calibration accuracy vs set size

properties. We expect to see the ARTag corner positions
move more than the centers, and we are unsure of how the
OpenCV grid finder will respond. This was examined in an
experiment where calibrations were performed at different
exposure settings. With the Dragonfly IEEE-1394 camera it
is possible to turn off the automatic shutter control and over-
ride it with a manual setting from 0.25 to 60 ms. We took 16
different exposure settings in this range at each of 20 cam-
era-pattern poses and separated the images into 16 separate
calibration runs. This experiment was performed both with
the meddite ARTag array and a 4 × 5 checkerboard image.
We also took 35 images with the normal auto-shutter of the
ARTag meddite array and used the marker centers as the
“full set” for evaluating the 16 calibration runs with each
system. Figure 6 shows some images from the ARTag and
checkerboard image sets. Four images from a single pose
are shown for both the ARTag and chessboard array, some
close-ups of a corner as it changes with shutter setting are
shown.

This provided us with two groups of images, one for the
ARTag array and one for the checkerboard array. Each group
contains 16 sets of 20 images, each set being from a different
shutter setting. Correspondences in the checkerboard group
are found with the OpenCV CheckerBoardGuesses() func-
tion. For the ARTag array, correspondences are found for
both the center and corner methods. The intrinsic parameters
are found for each of the three methods for each shutter set-
ting and the accuracy evaluated by reprojecting to the “full
set” of points.

Figure 6 shows a plot of the results, the ARTag cen-
ter method shows a flatter, i.e., less sensitive response to
lighting than the ARTag corner approach. The bottom of
the ARTag corner curve is in the region of the 18 ms which
the automatic shutter chosen with the lighting reflected off
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Fig. 6 Sensitivity of calibration accuracy due to lighting and non-ideal
lens and aperture qualities. The camera shutter was manually controlled
in 16 settings from 0.25 ms (dark exposure) to 60 ms (bright exposure)
at each of 20 pose positions for both the ARTag and checkerboard array.

Due to the point spread function corners move with increased lighting
and defocus, the results show that the ARTag center method is less sen-
sitive to the lighting (shutter setting) than either the ARTag corner or
OpenCV grid finder

the ARTag array when auto-shutter was turned back on. The
OpenCV grid finder provides a more erratic response, possi-
bly due to only about 50% of images having the grid extracted,
but the accuracy does seem to be higher closer to the 30 ms
shutter setting chose by the auto-shutter mode. Our hypoth-
esis of the ARTag center method being less sensitive to the
ARTag corner method was verified, and both were found to
be less sensitive than the checkerboard method.

5 Conclusions

Calibrating cameras is a time-consuming task despite the
availability of calibration algorithms and software. This paper
introduced a system where a camera can be calibrated fully
automatically by simply taking images aimed at a self-
identifying pattern. Experiments were performed calibrat-
ing several cameras in a short period of time with no manual
intervention.

It was found that when using self-identifying markers, the
best calibration results are achieved using the marker center
instead of each corner; this reduces the number of correspon-
dence per marker but decreases the sensitivity to lighting and
focus. This is assumed to be analogous to using the centroid
of a circular dot, the center will move less with blooming and
defocus than will a marker or dot’s edges.

It was found that the OpenCV grid finder is not as suitable
for automatic accurate calibration since it functions well only
when the array is small compared to the size of the image, and
cannot fill the full extent of the image as is needed for accu-
rate calibration as that the non-linear radial and thin prism
distortion effects manifest themselves with greatest magni-
tude away from the image center. It was shown that the grid
was often not detected when the pattern filled the image, and
the grid had to be small relative to the image for repeatable
enough detection to allow calibration.

A summary of the comparison between the OpenCV grid
finder and the new self-identifying marker based system is
that the marker system provides more accurate intrinsic
parameters, verified by several experiments. We hypothe-
size that the increased accuracy is due to two reasons; more
calibration points are found due to a more robust pattern
detection, and these points extend further into the image cor-
ners. The system can use a pattern that extends beyond the
camera view so that correspondences more completely fill
the image, and utilizes all the input images (with reason-
able lighting and focus/blur conditions). The OpenCV grid
finder’s “all or nothing” approach where all points in the cal-
ibration grid must be recognized causes many images to be
unusable with zero correspondences provided.

Regarding how many frames are necessary for a good
calibration, it was determined experimentally that reason-
able calibration results can be obtained with as 10 frames for
most cameras, but that a recommended number of frames is
15 or 20.
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