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Abstract—This paper introduces an approach to predict the
three-dimensional shape of an object belonging to a specific
class of shapes shown in an input image. We use suggestive
contour, a shape-suggesting image feature developed in com-
puter graphics in the context of non-photorealistic rendering,
to reconstruct 3D shapes. We learn a functional mapping from
the shape space of suggestive contours to the space of 3D shapes
and use this mapping to predict 3D shapes based on a single
input image. We demonstrate that the method can be used to
predict the shape of deformable objects and to predict the shape
of human faces using synthetic experiments and experiments
based on artist drawn sketches and photographs.

Keywords-shape inference, statistical priors, suggestive con-
tours

I. INTRODUCTION

Artists use contour lines to convey 3D shapes on a 2D
plane. Simple line drawings can be strikingly effective in
rendering realistic objects and scenes. Contour lines can
either be the boundary (silhouette) of an object or feature
lines that depict the transition between light and shadow in
the interior of an object. In computer vision, silhouette is the
most often used contour, because it is a strong visual cue
and it is relatively easy to extract from images. However,
silhouette only encodes shape information on the boundary
of an object, and therefore, multiple images are necessary
to reconstruct shapes. Occluding contour, which has limited
shape information in the interior of the object, is also used
in multi-view reconstruction [7]. In the other extreme, every
pixel can be used for reconstruction, as in the case of various
stereo algorithms. However, for single-view reconstruction,
the majority of the pixels depend on color and lighting
conditions and do not contain shape information.

In computer graphics, a non-photorealistic rendering tech-
nique called suggestive contour has been developed to
produce images in a style that imitates the line drawings
in artworks [8]. Figure 1 illustrates suggestive contour with
comparisons to silhouette and occluding contour. Note that
suggestive contour reveals view-dependent shape informa-
tion succinctly. This motivates us to use suggestive contours
to reconstruct 3D shapes from a single image.

In this paper, we predict the three-dimensional shape
of an object belonging to a specific class such as the

Figure 1: From left to right: silhouette, occluding contour,
and suggestive contour of a face model.

human face. We use a database of 3D shapes to learn a
functional mapping from the image space to the space of 3D
shapes. From a 3D shape, we can generate the corresponding
suggestive contour images from different viewpoints for
training. In order to establish the functional mapping, both
the 3D shape space and the image space are represented
by statistical shape models. We use principal component
analysis (PCA) on parameterized 3D shapes and images to
model the data variations.

Once the learning is complete, the approach predicts the
3D shape of an object belonging to the class of objects used
for training based on an input image as follows. First, the
approach computes the valley image of the input image. This
is the image of local pixel intensity mimima and is expected
to resemble the suggestive contour image of the 3D shape. In
fact, if the image is obtained by rendering a smoothly shaded
3D object with a diffuse light source at the origin, it can
be proven that the valley image and the suggestive contour
image are equivalent [8]. Second, the approach searches the
PCA space of the suggestive contours to find the contour that
is most similar to the valley image. Finally, the point in PCA
space corresponding to the contour that is most similar to
the valley image along with the learned functional mapping
is used to predict the 3D shape.

This way of predicting the shape of an object belonging
to a specific class can be viewed as estimating a set of
pose parameters of an a priori known parameterized 3D
deformable model based on a single input image.

We demonstrate experimentally that the method can be
used to predict the shape of deformable objects and to
predict the shape of human faces based on a single artist
drawn sketch or photograph.



II. RELATED WORK

Many algorithms, such as [13], reconstruct the three-
dimensional shape of an object from images or drawings
using smoothness constraints or using template shapes as
shape priors. Unlike the approach proposed in this paper,
these approaches do not learn a statistical model of the
shapes to be reconstructed. Since this work proposes a
training-based approach, we limit the discussion of related
literature to this scenario.

Various methods learn a multi-variate function that as-
sociates silhouettes and 3D shapes. This requires prior
knowledge about the type of object being reconstructed and
its shape variability. In general, these approaches treat the
space of all shapes of interest as a shape space and aim to
find a mapping from the space of silhouettes to this shape
space. Agarwal and Triggs [1] use relevance vector machines
(RMVs) to recover the pose of a human body from a single
photograph. Gond et al. [10] use RMVs to predict the pose
of a human body from a set of n silhouettes.

Chen and Cipolla [6] estimate the human body shape in a
fixed pose based on a given silhouette. Ek et al. [9] estimate
the pose of a human body based on a given silhouette.
Sigal et al. [18] predict human pose and body shape from a
single image. They encode the prior model using the SCAPE
model [3]. Guan et al. [11] estimate both the shape and pose
of a human body from a single photograph with a set of
markers identified by the user.

While these approaches were shown to yield satisfactory
results in many cases, they do not consider features inside
the 2D silhouette. Hence, these approaches are not suitable
in certain scenarios. For instance, when we want to predict
the shape of a human face from a single frontal image,
the silhouette does not contain enough information for an
accurate prediction. We use suggestive contours instead of
silhouettes for training to obtain an approach that can predict
a variety of shapes from a single view.

Since we consider the application of predicting the shape
of a human face in our experiments, we briefly review
literature related to predicting the three-dimensional shape of
a human face from a single input image. The training-based
methods by Blanz and Vetter [4], Romdhani and Vetter [16],
Romdhani et al. [15], and Jiang et al. [12] all predict a 3D
face shape from a single image based on the 3D morphable
model [4]. Sucontphunt et al. [19] use the 3D morphable
model to create a 3D face shape from a sketch. With the
exception of the last approach, all of these approaches rely
mostly on markers and pixel intensities in the input image
for shape prediction. By using suggestive contour images
instead of pixel intensities, we provide a unified framework
for shape- and posture prediction.

Yoon et al. [23] have recently used suggestive contours
for the application of shape retrieval of 3D models.

III. SUGGESTIVE CONTOURS

Suggestive contours [8] are a powerful tool to convey
shape information. Suggestive contours are view-dependent
features that become contours in nearby views. Figure 1
shows that suggestive contours contain more shape infor-
mation than silhouettes or occluding contours.

More formally, suggestive contours are the set of points
where the radial curvature is zero and where the directional
derivative of the radial curvature in the direction of the
projection of the viewing direction into the tangent plane is
positive. Alternatively, suggestive contours can be expressed
as minima of the dot product of the normal direction and
the viewing direction in the direction of the projection of
the viewing direction into the tangent plane. These two
definitions allow for two alternative algorithms to compute
suggestive contours. The first algorithm is based on the
first definition using radial curvature and operates on the
3D object directly. The second algorithm is based on the
second definition using the dot product and operates on a
rendered image of the 3D object. We take advantage of this
definition to estimate a suggestive contour from an image
directly when the 3D shape is unknown.

IV. TRAINING

Our method proceeds by learning a correlation between a
set of suggestive contour images and a set of shapes starting
from a data base of n 3D models represented as triangular
manifold meshes. Let X0, . . . , Xn−1 denote the 3D models
of a specific class of objects used for training. First, the
models are parameterized and compressed. Second, sugges-
tive contour images are derived from the shapes Xi [8].
Third, the suggestive contour images are parameterized and
compressed. Finally, a functional mapping from the shape
space of contour images to the shape space of 3D models
is computed.

A. Parameterizing 3D Models

We first parameterize the database of 3D models. In
general, computing point-to-point correspondences between
a set of surfaces is a difficult problem [21]. In this work,
we only consider databases of shapes belonging to the same
class of object. Furthermore, we assume that the database
contains a set of marker positions. In this case, the known
marker positions can be used to deform a template shape
to each subject of the database [2], [22]. This allows us to
express each 3D shape as an ordered vector of coordinate
values [x0 y0 z0 . . . xm−1 ym−1 zm−1]

T , where m is the
number of vertices on each shape, with the property that
the vertices with the same index on different shapes of the
database correspond to the same anatomical position on the
shapes.

After parameterization, we perform PCA of the 3D mod-
els Xi. We denote the shape space of the 3D models by
S3D. In PCA space, each shape Xi is represented by a



vector W (X)
i of PCA weights. PCA yields a mean shape

µ(X) and a matrix A(X) that can be used to compute a new
shape Xnew based on a vector of PCA weights W (X)

new as
Xnew = A(X)W

(X)
new + µ(X). This same matrix can also be

used to compute the PCA weights of a new shape Xnew as
W

(X)
new = A(X)T (Xnew − µ(X)).

B. Generating Suggestive Contours

For each shape Xi, we use k view points
to render k suggestive contour images. Let
I00 , . . . , I

0
n−1, I

1
0 , . . . , I

1
n−1, . . . , I

k−1
n−1 denote the suggestive

contour images. Note that all of the images have the same
size. We use the code by DeCarlo et al. [8] with the
parameters set to the program’s default values to compute
the suggestive contours.

C. Parameterizing Suggestive Contours

Once the suggestive contour images are generated, they
need to be parameterized in order to be used effectively.
We parameterize the suggestive contour images for each
view point separately. Computing a parameterization of the
suggestive contours of a general object class automatically
is a challenging problem because the contours differ in both
shape and topology. To assist establishing correspondences,
we manually place markers on anatomically corresponding
positions of the images when parameterizing Ij0 , . . . , I

j
n−1.

Note that these markers can alternatively be obtained by
placing markers on the 3D surfaces (only needs to be placed
manually on one surface since the 3D correspondences are
now known) and by projecting the markers to the suggestive
contour images. We compute a reference frame by comput-
ing the mean position over Ij0 , . . . , I

j
n−1 for each of the

markers. We parameterize the database by aligning each
image Iji to the reference frame using a pair of thin-plate
splines computed using the marker positions [5]. This allows
us to express each image as an ordered vector of intensities
and offsets [i0 ox0 oy0 . . . im−1 oxm−1 oym−1]

T , where ij
is the intensity of the parameterized image at pixel j, oxj
and oyj are the horizontal and vertical offsets between the
original image and the parameterized image at pixel j, and m
is the number of pixels in each image. Note that the offsets
oxj and oyj define a deformation field of the image with the
property that after deforming the images according to their
deformation fields, all of the images are aligned. By using
thin-plate splines to compute the deformation fields, we
minimize the amount of bending that the image undergoes.
Figure 2 shows a suggestive contour image before and after
alignment.

As before, we perform PCA of the suggestive contour
images Iji . We denote the shape space of these images by
S2D. In PCA space, each suggestive contour image Iji is
represented by a vector W j(I)

i of PCA weights. We denote
the mean and matrix corresponding to this shape space by
µ(I) and A(I).

Figure 2: From left to right: image with markers before
alignment, image after alignment, and visualization of the
deformation field at the marker positions.

D. Computing a Functional Mapping

As a last training step, we learn a functional mapping
between S2D and S3D that is similar to the feature analysis
approach by Allen et al. [2]. That is, we compute a linear
mapping from the PCA space of the suggestive contour data
to the PCA space of the 3D data. This approach yields a
matrix B that can be used to compute a new vector of 3D
PCA weights based on a new vector of PCA weights of a
suggestive contour as W (X) = BW (I).

V. PREDICTION

This section outlines how to predict a 3D shape given a
cropped image Inew of an object with solid background that
belongs to the class of objects used for training. First, the
algorithm processes the input image to find valleys. Second,
we compute the PCA weight that corresponds to the image in
PCA space that matches the valley image optimally. Finally,
we find the 3D shape corresponding to that PCA weight.

A. Processing Input Image

DeCarlo et al. [8] show that the suggestive contours of
a three-dimensional model can be computed by rendering
a smoothly shaded image with a light source placed at the
camera origin and by computing the valleys in intensity in
this image. Since we do not know the three-dimensional
model, we compute the valleys of intensity of Inew to ap-
proximate the suggestive contour. Our algorithm to process
Inew proceeds as follows. First, the algorithm resizes the
image to have the same dimension as the training images.
Second, the algorithm finds the valleys of the image as
follows. Pixel p[i, j] is a valley if no more than s percent
of the pixels in the disk of radius r centered at p[i, j] are
darker than p[i, j] and if pmax − p[i, j] exceeds a threshold
d, where pmax is the pixel with maximum intensity in the
disk of radius r centered at p[i, j]. We set r = 4, s = 20,
and d = 0.06. We store the valleys in an image E with the
same dimensions as the training images.

Note that using this algorithm to estimate suggestive
contours is only provably correct if the image is a smoothly
shaded image of the 3D object with a light source places at
the camera origin. However, we found experimentally that
good contours were found in case of cropped facial images.



B. Computing the Optimal PCA Weight

Given the valley image E, we aim to find the point in
S2D that corresponds to the suggestive contour that is most
similar to E. Recall that given a weight W (I) in S2D, we
can compute a vector V = A(I)W (I) + µ(I) containing the
image intensities as well as the horizontal and vertical offsets
for each pixel. Let V [i, j, 1] contain the image intensity at
the pixel in row i and column j, let V [i, j, 2] contain the
horizontal offset at the pixel in row i and column j, and let
V [i, j, 3] contain the vertical offset at the pixel in row i and
column j. Then, the image corresponding to W (I) contains
the pixel intensities Img(W (I))[i, j] = V [i+ V [i, j, 3], j +
V [i, j, 2], 1]. If i + V [i, j, 3] or j + V [i, j, 2] exceeds the
valid image dimensions, we crop the values to stay inside
the image.

To parameterize the image, we initialize W (I) in a user-
assisted way by asking the user to specify roughly the same
markers on the image that were used to parameterize the
images used for training. The algorithm uses this information
to find an RBF mapping of the new image to the reference
frame used for training. This results in a vector of image
intensities and offsets that are projected to S2D.

Next, we aim to modify W (I) to be as close to E as
possible. To achieve this goal, we modify W (I) such that
the dissimilarity D =

∑
i

∑
j(Img(W

(I))[i, j]−E[i, j])2 is
minimized, where i loops through the columns of the image
and j loops through the rows of the image. We can compute
the gradient with respect to the individual components of V
as

∂D
∂V [i,j,1]

= 2(Img(W (I))[i, j]− E[i, j]),

∂D
∂V [i,j,2]

= 2(Img(W (I))[i, j]− E[i, j]) ∂Img(W (I))[i,j]
∂V [i,j,2]

,

∂D
∂V [i,j,3]

= 2(Img(W (I))[i, j]− E[i, j]) ∂Img(W (I))[i,j]
∂V [i,j,3]

,

where ∂Img(W (I))[i,j]
∂V [i,j,2] and ∂Img(W (I))[i,j]

∂V [i,j,3] are evaluated nu-
merically. This allows to compute the gradient ∂D

∂W (I) =

A(I)T ∂D
∂V . We use the limited-memory Broyden-Fletcher-

Goldfarb-Shanno scheme [14] for the optimization.

C. Computing the 3D Shape

Once the PCA weight W (I) corresponding to E is com-
puted, we use the learned functional mapping to predict a
shape Xnew. The learned linear mapping is used to compute
the weight vector W (X) in S3D corresponding to W (I).
Finally, the learned PCA space S3D is used to compute
Xnew as Xnew = A(X)W (X) + µ(X).

VI. EXPERIMENTS

We conduct synthetic experiments and experiments with
real artist drawn sketches and photographs. The first ex-
periment demonstrates the ability of the proposed method
to learn the posture space of a shape and to use images
to predict this shape in different postures. The second
experiment demonstrates the ability of the proposed method

Figure 3: A 3D horse model and its corresponding suggestive
contour with manually placed (36) markers.

to learn the shape space of a population of shapes in similar
postures and to use images to predict new shapes of this
class.

A. Horse

This experiment aims to predict the three-dimensional
posture and shape of a horse. We learn the shape space of
the horse using different postures and we aim to predict the
posture of the horse from an input image. Predicting the
posture based on an input image is an important problem,
particularly when the goal is to predict the posture of a
human body [9], [18], [11].

Training: We use for training 10 horses with different
postures from the dataset created and used by Sumner et
al. [20]. Since the horses are already in correspondence, we
do not need to compute the point-to-point correspondences
of the 3D data. We set the dimension of S3D to 9.

In this experiment, we use the side view (k = 1). We use
a set of manually placed markers on the suggestive contour
images for parameterization. For this approach to be feasible,
we choose all of the horse models used in this experiment
in a way that the order of the legs in the side view is always
the same. Figure 3 shows a 3D model and its suggestive
contour with the marker positions. We set the dimension of
S2D to 9.

Prediction: We predict two 3D horse shapes based on syn-
thetic data. We use two horse shapes of the dataset that were
not used for training and compute their suggestive contours.
These suggestive contours are then used directly to predict
3D shapes. Note that since we use a suggestive contour as
input to the algorithm, we eliminate the possibility of errors
from the computation of the valley image and from the
search of the optimal PCA weight in S2D. Figure 4 shows
the results. The color-coding shows the distance of vertices
on the predicted shape to their corresponding vertices on the
original 3D model. The distance is measured as percentage
of the length of the diagonal of the bounding box of the
model. Note that the overall posture of the horse is predicted
correctly.

Evaluation of Robustness: We evaluate the robustness of
the approach with respect to errors in the manually clicked
marker positions used for image alignment and with respect
to changes in the pose of the 3D model used to compute the
suggestive contours. To evaluate the robustness with respect
errors in the manually clicked marker positions, we perturb



Figure 4: Prediction of horses in different postures. From left
to right: the true 3D model, the suggestive contour image
used for prediction, and the color-coded predicted shape
Xnew.

Figure 5: Robustness with respect to inaccurate marker
positions. From left to right: the true 3D model, the color-
coded predicted shape after perturbing the marker positions
using a normal distribution with a mean of 3 and 5 pixels,
respectively.

the marker positions randomly using a normal distribution
with a mean of 3 and 5 pixels, respectively. Figure 5 shows
the results using the same color-coding as above. Note that
even inaccurate marker positions yield accurate predictions.

To evaluate the robustness with respect to changes in
the pose of the 3D model, we rotate the 3D model before
computing the suggestive contour. We rotate the model by
−30◦,−20◦,−10◦, 10◦, 20◦, and 30◦ around the axis that
is orthogonal to the floor on which the horse is running.
Figure 6 shows the results using the same color-coding
as above. Note that even inaccurate poses yield accurate
predictions.

Table I summarizes the accuracy of the results. Note that

Figure 6: Robustness with respect to changes in pose. From
left to right: the true 3D model, the color-coded shapes
predicted from suggestive contours computes after rotating
the model by −30◦ and 30◦ degrees, respectively.

Figure 7: A 3D face model and its corresponding suggestive
contours with manually placed markers (29 markers on front
view and 10 markers on side view).

for all experiments, the maximum error is less than 7% of
the length of the diagonal of the bounding box of the model.

B. Face

This experiment aims to predict the three-dimensional
shape of a face shown in an input image. Capturing the three-
dimensional shape of a human face has various applications,
such as face recognition [12]. When capturing 3D shapes
for face recognition, typically only a single input image is
available.

Training: We use for training 100 faces with neutral
facial expression. Hence, we can only predict face shapes
with neutral expression. We use Xi et al.’s approach [22] to
parameterize the database based on known marker positions.
We set the dimension of S3D to 99.

For the first experiment, we use two sets of views (k =
2), namely the front and side views of the models. For the
remaining experiments, we retrain the PCA space to only
use the front view (k = 1) of the models. We use a set of
manually placed markers on the suggestive contour images
for parameterization. Figure 7 shows a 3D model and its
two suggestive contours with the marker positions. We set
the dimension of S2D to 99.

Prediction: First, we predict 3D face shapes based on
synthetic image data. We generate a set of face shapes that
were not used for training from the learned PCA space S3D
and compute their suggestive contours. These suggestive
contours are then used directly to predict 3D face shapes.
Note that since we use a suggestive contour as input to the
algorithm, we eliminate the possibility of errors from the
computation of the valley image and from the search of the
optimal PCA weight in S2D. Figure 8 shows the results
for four models. We used the front view to predict two of
the models and the side view to predict the remaining two
models. Note that the true shape and the predicted shape
are visually similar and that in the interior of the face, the
distance between the predicted shape and the true 3D model
is at most 5mm (for comparison, note that movements of the
mouth region due to a slight expression change may result
in distances of this magnitude).

Second, we predict 3D face shapes based on artist drawn
sketches of faces. Note that by using sketches as input,
we eliminate the possibility of errors from the computa-
tion of the valley image. However, unlike in the previous



Original Perturb Perturb Rotate Rotate Rotate Rotate Rotate Rotate
Markers Markers by −10◦ by −20◦ by −30◦ by 10◦ by 20◦ by 30◦

by 3 Pixels by 5 Pixels
Model in top row of Figures 4, 5, 6
Max. error 4.30 5.35 5.69 4.56 5.20 6.16 4.69 4.35 4.83
Average error 1.05 1.21 1.42 1.11 1.35 1.63 1.03 0.93 1.18
Model in bottom row of Figures 4, 5, 6
Max. error 2.62 3.40 3.79 3.48 4.08 4.25 2.91 3.22 2.93
Average error 0.62 0.73 0.78 0.75 0.85 0.97 0.64 0.72 0.67

Table I: We compute the error as distances of vertices on the predicted shape to their corresponding vertices on the original
3D model. The table gives for each experiment the maximum and average error over all vertices of the model. The distances
are measured as percentage of the length of the diagonal of the bounding box of the model. The first column corresponds to
the experiment shown in Figure 4, the next two columns correspond to the experiments shown in Figure 5, and the remaining
columns correspond to the experiments shown in Figure 6.

Figure 8: Prediction of faces. From left to right: the true 3D model, the suggestive contour image used for prediction, the
predicted shape Xnew, and the color-coded signed distance between the predicted shape and the true 3D model (in meters).

experiment, we search for the optimal PCA weight in
S2D. Figure 9 shows two sketches and the corresponding
predicted face shapes. Note that the overall shape of the
faces is captured well in the predicted results.

Third, we predict 3D face shapes based on images of
faces. Figure 10 shows the results for three subjects from
the Yale face database1. Note that the overall shape of the
faces is captured well in the predicted results. Note that
the algorithm produces visually pleasing results although

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html

the valley images differ in appearance from the suggestive
contour images extracted from 3D faces. The reason is that
the valley image is not used as input for prediction directly,
but instead is used to find the closest suggestive contour
image in the learned shape space.

Evaluation of Robustness: We evaluate the robustness of
the approach with respect to changes in lighting conditions.
While the theoretical foundation of the approach requires the
light to be positioned at the camera center, we show that in
practice, the approach can handle slight changes in lighting
conditions. We evaluate the approach by predicting the 3D



Figure 9: Prediction of faces from artist drawn sketches. The figure shows the input sketches and the predicted shapes Xnew.

Figure 10: Prediction of faces from images. From left to
right: the input image Inew, the valley image E, the sug-
gestive contour in S2D that is most similar to E, and the
predicted shape Xnew.

face shape of a subject from two images of the same subject
and by comparing the geometry of the two predictions. The
first image Icenternew is taken with the light approximately
at the camera position, while the second image I leftnew is
taken with the light on the left side of the face. We use
the images to predict the face shapes Xcenter

new and X left
new ,

and we compare the two shapes by computing the signed
distance between the shapes. Figure 11 shows the results.
We can see that the difference between the predicted shapes
is always less than 5mm although the facial expressions of
the subjects are slightly different in the two images.

C. Discussion

To summarize, we showed that suggestive contours con-
tain rich shape information that can be used to accurately
reconstruct the shape of an object of a known class of shapes.
The reconstruction is robust with respect to inaccurately
placed marker positions and changes in the pose of the 3D
model. When using as input suggestive contours generated
from known 3D models, the reconstructions are accurate (i.e.
an error of less than 5mm for face examples). Furthermore,
we demonstrated that visually pleasing 3D reconstructions

can be computed from a single artist drawn sketch of a face
or from a single input image of a face.

Certain aspects of the method remain to be further inves-
tigated. We finish with a list of limitations and topics for
future work.

• Database for training. By using suggestive contours, we
assume that the training data is not noisy. This is not al-
ways the case. New techniques need to be developed to
cope with noisy training data. Furthermore, we can only
predict shape variations, such as facial expressions, that
are present in the training database.

• Coverage of viewpoint space. In this work, we use
k views of suggestive contour images. This assumes
that these views cover the viewpoint space well. That
is, images used for prediction are taken from similar
viewpoints as the images used for training.

• Controlled background. We can only predict shapes
from an image with controlled background. This limi-
tation may be overcome by first performing a grab cut
of the image to find the background [17].

• Cropped images. We can only predict shapes from an
image that only contains the object of interest.

• Parameterization. We use manually placed markers to
aid in the parameterization of the suggestive contour
images. One challenging avenue for future work is to
automatically parameterize the suggestive contours.

• Thorough experimental validation. One avenue for fu-
ture work is to further investigate the influence of noise
and partial occlusions on the results.

VII. CONCLUSIONS

Suggestive contours contain rich shape information. Al-
though developed in a completely different context, they can
be a useful shape-suggesting image feature. Since it is a
rendering technique, it provides a natural training tool for
associating the 3D shape with the image. In this paper, we
proposed an approach to predict the three-dimensional shape
of an object belonging to a specific class of shapes shown
in an input image. The approach is a general training-based
approach that can be applied to any class of object. We
demonstrated experimentally that the method can be used to
predict the shape of deformable objects such as human faces
based on a single sketch or photograph.



Figure 11: Robustness with respect to changes in lighting conditions. From left to right: the input image Icenternew , the 3D
prediction Xcenter

new , the input image I leftnew ,the predicted shape X left
new , and the color-coded signed distance from X left

new to
Xcenter

new (in meters).
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