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Abstract Silhouettes are robust image features that

provide considerable evidence about the three-dimensional

(3D) shape of a human body. The information they pro-

vide is, however, incomplete and prior knowledge has

to be integrated to reconstruction algorithms in order

to obtain realistic body models. This paper presents a

method that integrates both geometric and statistical

priors to reconstruct the shape of a subject assuming

a standardized posture from a frontal and a lateral sil-

houette. The method is comprised of three successive

steps. First, a non-linear function that connects the sil-

houettes appearances and the body shapes is learnt and

used to create a first approximation. Then, the body

shape is deformed globally along the principal direc-

tions of the population (obtained by performing princi-

pal component analysis over 359 subjects) to follow the

contours of the silhouettes. Finally, the body shape is

deformed locally to ensure it fits the input silhouettes

as well as possible. Experimental results showed a mean

absolute 3D error of 8mm with ideal silhouettes extrac-

tion. Furthermore, experiments on body measurements

(circumferences or distances between two points on the

body) resulted in a mean error of 11mm.
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1 Introduction

Three-dimensional human shape models are instrumen-

tal to a large number of applications. Special effects,

video games, ergonomic design and biomedical engi-

neering are just a few examples of industries that rely

heavily on those models. Depending on the application

at hand, the requirements (accuracy, cost, speed, etc.)

vary tremendously and, consequently, so must the tech-

nology used to perform the reconstruction.

Active vision systems (laser or structured light scan-

ners, for example) can produce highly accurate mod-

els when the use of specialized hardware is acceptable

and stereo-reconstruction methods [26] can be used to

produce dense and accurate models without specialized

hardware when image quality and experimental con-

ditions are thoroughly controlled. However, there are

applications (garment fitting being one example) where

tolerance to imperfect experimental conditions and cost

make traditional approaches unacceptable.

Silhouettes-based reconstruction methods, on the

other hand, are much more resilient to imperfect ex-

perimental conditions. Silhouettes are generally simpler

to extract than other image features (especially when

background subtraction can be used) and they provide

significant cues about the 3D shape of the imaged ob-

ject. Moreover, extracting silhouettes does not require

special equipment and can be performed using low-cost

digital cameras.

Unfortunately, different objects can cast the same

silhouettes and, thus, reconstructing an object’s 3D shape

from its silhouette(s) is an ill-defined problem. The in-

herent uncertainty linked to the reconstruction of 3D

models from their silhouettes can, however, be allevi-

ated by the use of prior knowledge. Instead of comput-

ing the shape of an object based on its silhouette(s),
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Fig. 1: Typical silhouettes casted by a human subject.

Left: Front silhouette. Right: Lateral silhouette.

we can compute the shape of the most likely object

given the observed silhouettes if a statistical model of

the object’s shape is known beforehand.

Human body shapes represents a good example of

a family of shapes where great variability can be ob-

served, but where the set of admissible shapes is also

highly constrained. Height, weight, musculature, sex,

etc. contribute to the great diversity of shapes that can

be observed, but basic anatomy greatly limits the vari-

ations that do occur. In this context, a statistical model

of the human body shape is likely to constrain the re-

construction from silhouettes enough to achieve good

accuracy, ease of use and speed.

In this paper, we tackle the specific problem of re-

constructing human bodies in a standardize posture us-
ing two silhouettes. Figure 1 presents an example of

these inputs. We choose a single standardized posture

to minimize the potential causes of error in the body

shape reconstruction. This does mean, however, that

subjects need to be compliant for the reconstruction al-

gorithm to be applicable. Human pose estimation and

body shape reconstruction in spite of varying postures

are very interesting problems, but are different topics.

The contributions of this paper are two-fold. First,

we present a new reconstruction method that combines

three ideas that were used in isolation in the past. In

the proposed approach, an initial estimation is gener-

ated using a mapping learnt from examples of associ-

ations between 3D models and their silhouettes. The

shape is then refined by searching within typical vari-

ations of the human body which one is the most likely

candidate. Then, since every individual is unique, the fi-

nal model is optimized locally to ensure the final model

explains as much of the silhouette contour as possible.

This combination has several advantages:

– it is largely insensitive to convergence problems since

the functional mapping ensure the optimization pro-

cesses start close to the final solution,

– it minimizes an intuitive and image-based error met-

ric, and

– it is not limited to shape variations seen in a prede-

fined databases.

Second, we propose an extensive validation of the method

using both synthetic experiments where a ground truth

was directly available and real-world experiments where

ground truth was only available for derived measure-

ments. To our knowledge it is the most extensive vali-

dation of a method that reconstructs 3D model of the

human body based on two silhouettes.

2 State of the art: Reconstructing human body

shape from silhouettes

The appeal of shape-from-silhouettes methods is sim-

ple to understand. They only require geometrically cal-

ibrated cameras and a way to separate the silhouettes

from the background (see [16,12,31,21,25] and refer-

ence therein). No assumptions have to be made about

the object’s reflectance (i.e. the visible surfaces do not

have to be Lambertian), lights positions, color balance,

etc. However, it is impossible to reconstruct from sil-

houette(s) with absolute certainty, since different ob-

jects can cast the same silhouettes.

One solution is to simply seek the largest 3D shape

that can be explained by a set of silhouettes. The result-

ing shape is then called the visual hull ; a concept de-
fined by Laurentini [20]. Unfortunately, the visual hull

will not in general tend asymptotically to the object’s

shape when the number of viewpoints is increased. It is

bounded by the convex hull of the object in most cases

(that is when no cameras are installed inside the convex

hull of the object).

It is possible to go beyond the theoretically limited

accuracy of the visual hull by using more image-based

information. Silhouettes can be combined with color in-

formation. For example, it is possible to check for color

consistency between the cameras to further refine recon-

structed shape beyond the visual hull, which is the basic

idea behind space carving [19]. The same idea can be in-

tegrated in methods that aim at reconstructing human

shapes. Cheung et al. [8,7,9] use what they called col-

ored surface points (which are photo-consistent points

at the surface of the visual hull) to reconstruct moving

objects and tracking human beings. Using more image

information is a perfectly valid choice, one has, how-

ever, to be very conscious about it since it generally
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means making more assumptions about the object’s re-

flectance and the experimental conditions.

2.1 Human Body Models

It is entirely possible to obtain more accurate estimates

of human shapes than their visual hull without us-

ing other image features. It is, however, necessary to

use a smarter criterion than selecting the largest pos-

sible shape. The general idea is to integrate more prior

knowledge about what makes a 3D shape look human.

One possibility is to consider the human body as

an articulated model or a kinematic chain. The general

shape of the model can then be expressed by the angles

(and/or positions) of the different articulations. Dela-

marre and Faugeras [10], for instance, used forces to

attract an articulated made of parallelepipeds, spheres

and truncated cones to silhouettes contours. Mikić et al.

[23] used an analogous approach where an articulated

model made of ellipsoids and cylinders was drawn to

the visual hull. Similarly, Kakadiaris and Metaxas [17]

used a part decomposition algorithm to parameterize

the human body with superellipsoids.

Those articulated models compactly represents the

general shape of the subjects (especially moving sub-

jects). Furthermore, basic measurements such as height

or shoulder width can be done on them. However, finer

details such as musculature or body fat are generally

filtered out by this kind of representation. It is thus nec-

essary to adopt a richer body shape description when

various body shape measurements are expected to be

important, especially when a standardized posture al-

ready mitigate the usefulness of articulated modeling.

A dense mesh can be used to describe the body

shape. The number of parameters to estimate becomes,

however, very large unless it is deformed only via the

principal modes obtained by applying principal compo-

nent analysis over a sufficiently large database of sub-

jects. This idea was applied by Allen et al. [2] to model

synthesis. Moreover, the same idea can be useful to re-

construct 3D models from silhouettes. Seo et al. [27]

used it with two orthogonal silhouettes while Xi et al.

[33] worked with a single frontal silhouette.

Both ideas of articulated modeling and dense shape

representation based on a statistical model can also be

combined. That was the idea of the SCAPE model pub-

lished by Anguelov et al. [3] and later applied to recon-

struction of 3D human body model from silhouettes

images [5,30]. Hasler et al. [15] also presented recently

a method to combining both shape and pose using a bi-

linear model. The added functionality of such a model

comes, however, with a higher number of degrees of free-

dom (which in turn makes the model estimation prob-

lem more difficult).

2.2 Model estimation

Selecting a proper model for the body shape is of great

importance, but another critical matter is the estima-

tion method. Indeed, a great model is useless if its esti-

mation is intractable in practice. Among the methods

previously published in the literature, we distinguish

two large families of estimation methods.

First, iterative methods that optimize the similarity

between the observed silhouettes and simulated silhou-

ettes of the reconstructed body model. The similarity

measure can be defined in various ways. For instance,

Delamarre and Faugeras [10] defined it using the sil-

houettes’ contours, Balan et al. [5] used the overlap be-

tween observed and simulated silhouetttes while Mikić

et al. [23] used a voxel representation of observed silhou-

ettes to achieve the same purpose. The non-linear opti-

mization method used to maximize similarity also varies

considerably: Mikić et al. [23] used extended Kalman fil-

tering, Balan et al. [5] stochastic optimization and Seo

et al. [27] a direction set method.

Second, instead of proceeding by iteratively improv-

ing an initial estimation, some methods learn a multi-

variate function that associates silhouettes features and

3D shapes using a set of training examples. For exam-

ple, Agarwal and Triggs [1] used relevance vector ma-

chines (RVMs) to recover the pose of a human body

from a single photograph. The approach uses the his-

togram of shape context as feature space for the silhou-

ettes. Gond et al. [13] also used RVMs to predict the

pose of a human body, but operates on a set of n sil-

houettes. The feature space in this case is given by a

voxel distribution in a cylinder centered on the center

of the body mass.

Xi et al. [33] aim to estimate the human body shape

in a fixed pose based on a given silhouette. Starting

from a parameterized database of human meshes, the

approach performs PCA of the 3D body shape and the

2D silhouette contour. The approach then computes

a linear mapping from the PCA space of the silhou-

ette data to the PCA space of the 3D data. Chen and

Cipolla [6] later proposed a similar method where the

functional mapping between the silhouettes and the 3D

shapes was learnt using a Shared Gaussian Process La-

tent Variable Model (SGPLVM) [28]. Given a new sil-

houette, these approaches map the silhouette into sil-

houette PCA space and use the SGPLVM to map to

the PCA space of the 3D meshes. This allows to com-

pute the new body shape. Ek et al. [11] use a similar
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approach to estimate the pose of a human body based

on a given silhouette.

Sigal et al. [30] predict human pose and body shape

from a single image. They encode the prior model using

the SCAPE model [3]. They proceed by encoding the

image silhouette using a histogram of shape context de-

scriptor and by learning a mapping from this descriptor

to the SCAPE parameters of the models using kernel

linear regression.

2.3 Validation

It is essential that the precision and accuracy of 3D hu-

man models reconstructed using a shape-from-silhouettes

approach be studied, if those models are going to be

used in any practical applications. However, most of the

shape-from-silhouettes methods applicable to human

bodies were proof-of-concepts and thus were not ex-

tensively validated. For instance, Seo et al. [27] demon-

strated only their method on one example. Xi et al. [33]

used 24 subjects in a synthetic experiment to deter-

mine the mean error associated with their method and

demonstrated the results on two individuals with real

images. Balan et al. [5] reported the overlap between

the real silhouettes and silhouettes simulated from re-

constructed models in one sequence. They also vali-

dated one measurement (the height) on one subject.

Sigal et al. [30] reported validation for two measure-

ments (height and arm span) on two subjects.

In this paper, we propose a more extensive valida-

tion on real and synthetic experiments. Synthetic ex-

periments will allow us to characterize the proposed

method in ways that would be extremely difficult with

real subjects (response to image noise, for instance).

Validation experiments with a set of 14 common body

measurements will also be presented, which is impor-

tant since most practical applications rely primarily on

measurements.

3 Reconstruction of Human Body Models from

Silhouettes

In light of the literature review and of the boundaries

of our exact problem, we designed a new method that

reconstructs 3D human body models from silhouettes.

This method does not use any form of articulated model,

since our subjects are compliant and their posture nor-

malized. The method proceeds by learning a relation-

ship between a set of silhouettes and the body shapes

using a data base of n 3D models modeled as trian-

gular manifold meshes. Let Xn denote the 3D models

used for training and let Skn denote the corresponding

silhouettes, where k is the number of silhouettes used

for the reconstruction. In this work, we use two sets of

silhouettes (k = 2), namely the front and side views

of the models. The method is, however, general enough

to handle any combination of silhouettes. Given a set

of silhouettes S0, . . . , Sk−1 of a human shape that cor-

respond to the same views used in the training data,

the method uses this statistical model to predict a new

shape X. Then, this shape X is refined iteratively by

minimizing an image-based cost function along the prin-

cipal components of a 3D statistical model. Finally, fine-

grained adjustment are made to the model X to ensure

its silhouettes are as close as possible to the input sil-

houettes.

3.1 Learning the distribution of 3D human shapes and

2D human silhouettes

In order to uncover the statistical relationship between

human bodies and human body silhouettes, we started

with the Civilian American and European Surface An-

thropometry Resource (CAESAR) dataset. CAESAR

collected thousands of range scans as well as 3D an-

thropometric landmarks from volunteers aged from 18

to 65 in Europe and North America [24]. The anthro-

pometric landmarks were manually collected by experts

and are usually associated with bone markers that are

close to the skin surface. The range scans can include

holes and are not readily comparable because their pa-

rameterization can differ substantially.

They therefore need to be processed before further

uses. We thus fitted a generic template to 359 range

scans from this dataset using an approach proposed by

Xi et al. [32] in order to obtain a consistent parame-

terization for all models. Xi et al.’s approach takes ad-

vantage of the anthropometric landmarks to compute

an initial alignment using an RBF kernel. Then, finer

alignment is obtained by minimizing a non-linear cost

function that combines fitting error and transformation

smoothness.

Silhouettes were then simulated by rendering the 3D

models with the desired camera parameters. A consis-

tent parameterization of the silhouettes is attained by

sampling the contours and using the projection of pre-

defined anthropometric landmarks to ensure the same

number of points are sample for all subjects in a given

section of the silhouette. For each training subject, the

parameterized silhouettes in different views are concate-

nated into one single vector for training.

Then, we performed Principal Component Analysis

(PCA) of the 3D models Xi. We denote the shape space

of the 3D models by S3D. In PCA space, each shape

Xi is represented by a vector W
(X)
i of PCA weights.
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PCA yields a mean shape µ(X) and a matrix A(X)

that can be used to compute a new shape Xnew based

on a new vector of PCA weights W
(X)
new as Xnew =

A(X)W
(X)
new + µ(X). This same matrix can also be used

to compute the PCA weights of a new shape Xnew as

W
(X)
new = A(X)T (Xnew − µ(X)).

Furthermore, we performed PCA of the concate-

nated silhouettes Si. We denote the shape space of the

silhouettes by S2D. In PCA space, each concatenated

silhouette Si is represented by a vector W
(S)
i of PCA

weights. We denote the mean and matrix corresponding

to this shape space by µ(S) and A(S).

3.2 3D Body Shape Regression

We learn a functional mapping between S2D and S3D
that is similar to the approach by Chen and Cipolla [6].

That is, we compute a mapping from the PCA space

of the silhouette data to the PCA space of the 3D data

using a Shared Gaussian Process Latent Variable Model

(SGPLVM) [28].

The Gaussian Process Latent Variable Model is ef-

fective to model a high dimensional data set lying on

a low-dimensional manifold in a probabilistic way. The

model automatically extracts a set of low-dimensional

latent variables of an object from a high-dimensional

observation space. SGPLVM is a variant, which extends

to multiple observations that share the same underlying

latent structure.

We are given n pairs of observations as training

data, namely [(W
(S)
0 ,W

(X)
0 ),

(W
(S)
1 ,W

(X)
1 ), . . . , (W

(S)
n−1,W

(X)
n−1)]. SGPLVM computes

a set of latent variables L = [l0, l1, . . . , ln−1] that de-

scribe the manifold containing the observations, where

li controls the pair (W
(S)
i ,W

(X)
i ) (we used source code

by Ek et al. [11] to perform this operation). The ob-

servations in S2D and S3D are conditionally indepen-

dent given the latent structure L. Once the mapping is

known, it can be used to predict a new latent point l

given a new observation W (S) in S2D.

The new latent point l is then used to predict the

new observationW (X) in S3D that corresponds toW (S).

A first approximation Xinit of the 3D body model can

then be easily computed since Xinit = A(X)W (X) +

µ(X). In our experiments, we used 50 dimensions for

the PCA spaces and 20 shared dimensions in the latent

space.

In theory, the latent space can be multi-modal and

therefore multiple solutions could be generated by this

method. It could happen if, for example, we had peo-

ple randomly deciding to either face the camera or to

turn their back to it. In a case like this, there might

be two modes in latent space. One would correspond

to a forward facing subject and a second to a person

facing away. Selecting the wrong mode would result

in larger reconstruction errors. Fortunately, our exper-

imental setup is standardized in such a way that this

type of problem never occurred.

3.3 Maximum a-posteriori shape estimation

Regression-based methods have the advantage of not

requiring an initial guess to operate correctly. However,

they don’t maximize explicitly the agreement between

the input silhouettes and the silhouettes casted by the

estimated model. Their result can thus often be refined

further using an iterative method. Furthermore, it is

also desirable to take into account the subjects’ posi-

tions and orientations, since even compliant subjects do

not always align themselves perfectly with the cameras.

We thus wish to find the shape X and rigid trans-

formation T that maximizes the posterior probability

p(T (X)|S0, . . . , Sk−1). This probability is unfortunately

difficult to model directly. However, using Bayes’ theo-

rem and since the silhouettes S0, . . . , Sk−1 are constant

for each reconstruction, we can show that maximizing

the posterior probability is equivalent to maximizing

log(p(S0, . . . , Sk−1|T (X))p(T (X))).

The likelihood p(S0, . . . , Sk−1|T (X)) is modeled us-

ing the distances from the parameterized simulated sil-

houettes contours of the current model estimate to the

input silhouettes contours. More precisely, the current

shape estimate T (X) is projected to the image planes

πj and vertices pi of T (X) that lie on the silhouettes

contours are identified. The indices of those points are

regrouped in a set noted Sil(πj). Then, the distances

from the projection of vertices pi (noted p
πj

i ) to their

nearest neighbors on the input silhouettes NNSj

(p
πj

i )

are summed. This operation is summarized by the fol-

lowing equation :

log(p(S0, . . . , Sk−1|T (X))) ∝
k−1∑
j=0

∑
i∈Sil(πi)

‖pπj

i −NN
Sj

(p
πj

i )‖2.

The prior p(T (X)) was modeled as a multivariate

Gaussian distribution over the 3D points of the body

shape. The parameters of that Gaussian distribution

are those obtained in section 3.1 using PCA on aligned

3D body shapes, which means it is given by the follow-

ing equation:

log(p(X)) ∝W (X)TW (X).
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In order to make the problem numerically tractable,

we perform the optimization by adjusting only the first

n PCA weights of the vector W (X). Which means we

have the following optimization problem :

{W (X), T} = argmax
W (X),T

γW (X)TW (X)+

k−1∑
j=0

 ∑
i∈Sil(πi)

‖pπj

i −NN
Sj

(p
πj

i )‖2
 ,

where γ governs the weight of the prior with respect

to the importance given to the likelihood and where

W (X) has non-zero values only in its first n compo-

nents. The rigid transformation T is implicitly part of

the cost function since it is used to create the projected

points p
πj

i . When the optimization is completed, we can

compute the current body shape XMAP = T (AW (X) +

µ(X)).

3.4 Silhouettes-shape similarity optimization

This step aims to deform the current shape estimate

to fit the given silhouettes S0, . . . , Sk−1 while allowing

the human shape to leave the learned shape space S3D
if necessary. This may be required if either the shape

or the posture of the person described by S0, . . . , Sk−1

exhibit a variability not present in the training data.

This step can only be used if the current shape estimate

already fits the silhouettes well overall. Hence, we start

with Xcurrent = XMAP as current shape estimate.

Since we aim to deform Xcurrent to fit the given sil-
houettes S0, . . . , Sk−1, we start by identifying the ver-

tices pi of Xcurrent that lie on the silhouettes. This is

achieved by projecting Xcurrent to the image planes πj
in order and by finding the vertices that project to the

silhouettes. Let p
πj

i denote the projection of pi to πj
and Sil(πj) the set of indices of points that project

to the silhouette in image plane πj . In the following,

we only consider the indices i in Sil(πj). We find the

nearest neighbor of p
πj

i in Sj and we denote this point

by NNSj

(p
πj

i ). The shape Xcurrent fits the given sil-

houettes perfectly if p
πj

i and NNSj

(p
πj

i ) are identical.

Hence, we aim to move pi such that its projection p
πj

i

is close to NNSj

(p
πj

i ).

There is a unique best direction in which to move

p
πj

i to get as close as possible to NNSj

(p
πj

i ) in πj . How-

ever, due to the projection, there is no unique best

direction in which to move pi. Hence, we restrict the

movement of pi to be along the surface normal ni of

Xcurrent at pi. We can now formulate the problem of

moving pi as an optimization problem, where we aim

to find an offset oi such that the projection of pi + oini
to πj is as close as possible to NNSj

(p
πj

i ).

We can solve this problem by minimizing an energy

function. We project the normal vector ni at pi to πj
and denote this projection by n

πj

i . We now aim to min-

imize

Esil =

k−1∑
j=0

∑
i∈Sil(πj)

‖pπj

i + oin
πj

i −NN
Sj

(p
πj

i )‖2.

If we only minimize Esil, then only some vertices of

Xcurrent will move. This will lead to a non-smooth and

highly non-human shape. Hence, we also consider the

following smoothness term

Esmooth =

m−1∑
i=0

∑
j∈N1(pi)

(oi − oj)2, (1)

whereN1(pi) is the one-ring neighborhood of pi inXcurrent.

We minimize E = (1 − λ)Esil + λEsmooth for the

fixed nearest neighbors NNSj

(p
πj

i ), where λ is a weight

with 0 < λ < 1 (in practice we used λ = 0.5). We then

repeat the computation of the nearest neighbors and

the energy minimization until the difference in Esil no

longer changes significantly.

3.5 Implementation details

The reconstruction method described above was de-

signed to be accurate, efficient and intelligible. All the

details needed for a general implementation of the method
have therefore already been provided. However, some

details of the implementation are worth describing since

they contribute to the quality of the results for our spe-

cific application.

First of all, the method relies on the ability to ef-

ficiently determine which vertices of a 3D model were

projected to the contour of the silhouettes. This opera-

tion has to be performed for each evaluation of the cost

functions presented in sub-sections 3.3 and 3.4, speed

is thus critical. There are many valid solutions to this

problem, but we observed in practice that the simplest

and fastest method was to: render the 3D model, re-

trieve the z-buffer [29], convert the z-buffer content back

to 3D positions, and finally to search for the nearest

vertices using a kd-tree [4].

Second, we use the limited-memory Broyden-Fletcher-

Goldfarb-Shanno scheme [22] for all the non-linear op-

timization procedures. This choice worked well in prac-

tice, but other minimization methods could very well

be considered for other specific applications.
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Third, since the resolution at the fingers of the model

used in our implementation is low, the effect of the

smoothing term of Equation 1 is too strong in this area.

That is, fingers tend to get unrealistically fat (collapse,

respectively) when some points on the silhouette move

in direction of the outer normal (inner normal, respec-

tively). Hence, we do not move the points on the fingers

of the template model during the last step of the algo-

rithm.

Finally, the position of the cameras as well as the

posture of the subjects were selected to avoid seeing

the arms on the side silhouettes. That decision reduces

the variability of the silhouettes shapes seen on the side

silhouettes and makes the functional mapping between

the silhouettes and the 3D model more specific. Unfor-

tunately, the CAESAR dataset was not designed with

this constraint. Thus, the 3D statistical model created

using the CAESAR dataset integrates too much vari-

ability with respect to the arms orientation as seen from

the side view. We compensated for this by simply ex-

cluding the arms when the current model estimation

has to be rendered from the side view to create virtual

silhouettes.

4 Validation Method and Experimental Results

In order to use the proposed method for practical ap-

plications, it is important to characterize the quality of

the reconstructions that it provides. Doing so is, how-

ever, more difficult than it appears. Human subjects

move constantly and cannot reliably reproduce a pose

(even a neutral one), thus comparison between multiple
acquisitions are at best difficult to perform.

We thus decided to first use high-quality comput-

erized models (from the CAESAR dataset) to perform

synthetic experiments. That allowed us to design tests

where the ground truth was known with absolute cer-

tainty. Furthermore, it also enabled us to isolate factors

that are intrinsic to the reconstruction procedure pre-

sented in this paper and not factors that are primarily

linked to the experimental setup used to collect the sil-

houettes.

Applications have different needs which cannot be

quantified using a single standardized error metric. We

therefore validated the proposed method using three

different strategies: measuring the three-dimensional er-

ror between a known 3D model and a 3D reconstruc-

tion, measuring the influence of silhouettes extraction

errors on the quality of the reconstructed model, and,

finally, collating measurements realized on the recon-

structed models (from real images) and measurements

obtained using a different source.

4.1 Three-dimensional comparisons

We selected a total of 220 human subjects from the

CEASAR database [24] for validation purposes. These

models are high-accuracy surface models of human sub-

jects assuming a natural, but standardized posture. More-

over, none of these subjects were used to create the

statistical model used in the proposed method.

Then, we created front and side silhouettes for all

the selected models. To do so, we simply rendered the

models with ambient light only. Those silhouettes im-

ages were then used as inputs to reconstruct 3D models.

Because the original 3D models are known with high

precision, it is possible to compare both the original and

its corresponding reconstruction to analyze reconstruc-

tion errors. The final mean absolute error for all models

was 8mm (it was 15mm after 3D body shape regression

and 9mm after MAP estimation). Figure 2 presents an

example of the difference between the original 3D model

and its reconstruction. The absolute three-dimensional

error is generally below 10mm, but higher values are

observed on the front and back edge of both arms as

well as in the hands regions. Arms and hands are not

visible on the side view thus larger errors were indeed

expected.

The reconstructed models were all comprised of 60,000

triangles and, generally, about a thousand vertices were

selected by the nearest neighbor searches at each itera-

tion to compute the cost functions associated with the

MAP estimation and the silhouettes-shape similarity

optimization.

The processing time required to obtain the final

models did not vary considerably. On average, the 3D

body shape regression took 6 seconds, the MAP esti-

mation 30 seconds and the silhouettes-shape similarity

optimization 3 minutes (on a Intel Core i7 CPU ca-

denced at 3GHz). It is important to stress that those

processing times are from single-threaded implementa-

tion, which could be greatly greatly optimized.

As the example of Figure 2 suggests, some regions

of the anatomy are better reconstructed than others.

This is very important since some applications are more

tolerant to errors in certain areas. Thus, even if the

global error measure seems acceptable, it is crucial to

make sure the distribution of errors on the body is also

acceptable.

To investigate this matter more closely, we recon-

structed the 220 subjects already selected for valida-

tion using the proposed method. We computed the re-

construction error at each location for all subject and

averaged it. In this context, the reconstruction error is

defined as the distance from a given vertex in the re-

constructed model to its nearest neighbor in the original
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(a) (b) (c)

Fig. 2: Comparison of an original model with the corresponding reconstruction. Input silhouettes are printed in

red, silhouettes of the reconstructed model in cyan and superpositions of both in grey. (a) Front view. (b) Side

view. (c) 3D Reconstruction with color-coded error (in millimeters).

Fig. 3: Localization on the human body of the reconstruction errors. The color at each point of this model illustrates

the mean absolute error at this anatomical location for all the subjects used in the validation process.

model. Figure 3 presents the distribution of reconstruc-

tion errors on a template model.

Once again, we can observe that error is concen-

trated on the back and front edges of the arms and

around the hands. We can also observe slightly higher

errors on the left side of the subjects, which is often

occluded since the lateral silhouettes are captured from

a camera located on the right side of the subjects.

4.2 Silhouettes extraction errors

An obvious factor that influences the quality of the

reconstructions obtained by any shape-from-silhouette

method is the quality of the aforementioned silhouettes.

If the silhouettes have to be absolutely perfect, then the

algorithm is of little use.

To demonstrate the robustness of the shape-from-

silhouette reconstruction, we added first order auto-
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Fig. 4: Example of noise corrupted silhouette (σε = 3)
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Fig. 5: Influence of an auto-regressive noise added to

input silhouettes on the accuracy of the reconstruction

body shape.

regressive Gaussian noise to the parameterize silhou-

ettes of the validation models. That is, if we parame-

terize with parameter t the pixels coordinates of the sil-

houette contour (Cx(t), Cy(t)), then the noise corrupted

points are given by:

C ′x(t) = Cx(t) + εx(t)

C ′y(t) = Cy(t) + εy(t)

with εx(t) = φεx(t− 1) + ψn0,σ

εy(t) = φεy(t− 1) + ψn0,σ.

In this experiment φ = 0.9512 (which means the

time constant of the noise process τ is 20 pixels) and

n0,σ represents zero-mean Gaussian noises. The stan-

dard deviation of the gaussian noise was varied so that

the standard deviation of εx and εy went from 0.5 pixels

to 16 pixels. Figure 4 illustrates the effect of such noise

process on a human silhouette and Figure 5 demon-

strates the effect of an increasing noise on the silhou-

ettes on the reconstruction accuracy for a large number

of test subjects.

Even if a first order auto-regressive model is a sim-

plistic noise model for segmented silhouettes, the re-

sults presented in Figure 5 demonstrate that three-

dimensional reconstruction of human body model from

two silhouettes can be robust even with large extraction

errors in the silhouettes. However, in practical scenar-

ios, the departure of the extracted from the true silhou-

ette may not be governed by a zero mean process and

outliers may also be present.

4.3 Synthetic Measurements

We designed a set of measures that was manageable

(number of measurements), diverse (covering different

portions of the body), and commonly used in garment

fitting (since this is the industry we are primarily con-

cerned about) to further validate the reconstructions

obtained from silhouettes. Figure 6 introduces the 16

measurements that were selected for our experiments.

Measurements represented with straight lines are

Euclidean distances between vertices of the reconstructed

models and measurements represented by an ellipse are

circumferences that are measured on the body surface

using geodesic distances [18] between a few points on

the desired contour. Since the reconstructed model have

consistent parameterization (i.e. vertices with the same

indices in different models are positioned on the same

anatomical structures), indices of the relevant vertices

were identified on a template model and are used to

automatically measure the reconstructed models.

The accuracy of the measurements was tested by re-

constructing the 220 subjects selected for validation us-

ing their frontal and lateral silhouettes, measuring the

resulting models, and comparing with measurements

performed on the original models from the CAESAR

dataset. Also, we compared our reconstruction approach

to two other possible methods while using the same sil-

houette parameterization (sGPLVM mapping [6] which

is the first step of our algorithm and linear mapping

[33]). The results are compiled in Table 1. It should

be noted that the proposed method performs better on

all measurements, although the differences between two

best performing methods can be large (as in the case of

the vertical distance between the should-blade and the

crotch) or small (as in the case of the pelvis circumfer-

ence).

4.4 Live Subjects Measurements

In addition to synthetic experiments, we also performed

an experiment where four subjects’ bodies were recon-

structed from silhouettes extracted from photographs
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A

B
P

C

D

E

F
G

H

I

J

K

L

M

N

O

Measurement

A Head circumference
B Neck circumference

C Shoulder-blade/crotch length
D Chest circumference

E Waist circumference

F Pelvis circumference
G Wrist circumference

H Bicep circumference

I Forearm circumference
J Arm length

K Inside leg length

L Thigh circumference
M Calf circumference

N Ankle circumference
O Overall height

P Shoulder breadth

Fig. 6: Three-dimensional measurements used in the validation process.

Measurement Proposed sGPLVM Mapping Linear Mapping

Mean error±Std. Dev. Mean error±Std. Dev. Mean error±Std. Dev.

A 10±12 23±27 50±60

B 11±13 27±34 59±72

C 4±5 52±65 119±150
D 10±12 18±22 36±45

E 22±23 37±39 55±62
F 11±12 15±19 23±28

G 9±12 24±30 56±70

H 17±22 59±76 146±177
I 16±20 76±100 182±230

J 15±21 53±73 109±141

K 6±7 9±12 19±24
L 9±12 19±25 35±44

M 6±7 16±21 33±42

N 14±16 28±35 61±78
O 9±12 21±27 49±62

P 6±7 12±15 24±31

Table 1: Comparison between measurements made on the ground truth models to the same measurements made

automatically on the reconstructed 3D models. Errors are expressed in millimeters. See Figure 6 for measurements

illustration.

acquired using two Canon EOS 5D cameras. Then, we

measured those individuals with the tools that would

normally be used to create a custom-fitted garment (i.e.

measuring tape and ruler).

The differences between the measurements performed

manually on the subjects and the automatic measure-

ments obtained from the reconstructed 3D are presented

in Table 2. The differences are compatible with the re-

sults obtained from the synthetic experiments (see Ta-

ble 1), but usually slightly higher.

Three main reasons explains this slight increase.

First, the experimenter had little experience in acquir-

ing manual body shape measurements. Gordon et al.

[14] reported repeatability close to 1cm for similar mea-

surements after extensive training and regular controls.

Second, some of the proposed measurements involve
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bony landmarks that are difficult to locate without pal-

pation. Thus, the two procedures (the manual and the

automated one) were perhaps not measuring from the

exact same locations. Third, the consistency in the pa-

rameterization may not be perfect. The same vertices

in different reconstructed models may not correspond

exactly to the same anatomical location, which means

that the manual and automatic procedure once again

may refer to slightly different measures. The 3D models

are reconstructed using silhouettes without manually

pre-established 3D correspondences across the body.

Therefore, there are areas of the body where little in-

formation is available from the silhouettes. The param-

eterization in those areas is thus primarily determined

by statistics and not by image features.

5 Discussion and Conclusion

In this paper, we choose to limit ourselves to one stan-

dardize posture. This transpires both in the reconstruc-

tion method itself and in the validation experiments

that we performed. This choice reduced the number of

parameters that had to be accounted for, which made

the experiments tractable. However, this choice might

also be responsible for a portion of the reconstruction

errors. Even though the subjects are directed to assume

a standardize posture, there was always some varia-

tions in the subjects’ stance. That means some posture

variability is integrated in the shape variability model

which decreases its predictive power. As a future work,

it would therefore be interesting to test whether the ad-

dition of a skeleton (to represent the postures) would

result in more accurate reconstructions or if the addi-

tional parameters would just create more problems with

the optimization procedures.

The differences between the synthetic experiments

and the real experiments highlighted to fact that cer-

tain measurements are more difficult to perform reliably

both on computerized models and on actual subjects.

Studying and/or designing a new set of body measure-

ments that can be performed easily without resorting to

palpation would be useful for further validation studies.

Moreover, it would also be interesting to investigate the

quality of the parameterization of the resulting models,

since automated measurements relies on correct param-

eterization to perform properly.

In summary, we demonstrated in this paper that

shape-from-silhouettes can be applied to the reconstruc-

tion of the human body from a lateral and a frontal sil-

houette. Moreover, we showed that with the integration

of a statistical prior, the resulting 3D models are realis-

tic and accurate. The proposed method is comprised of

three steps. First, a non-linear mapping that goes from

silhouette appearance space to the space of body shape

models is used to generate an initial 3D model. That

mapping uses a shared gaussian process latent variable

model (sGPLVM) to link the principal components of

the silhouettes to the principal components of the body

shape model. Then, maximum a posteriori estimation

of the body shape is performed using the first step’s re-

sults as initial approximation. Finally, the body shape

model is refined to best fit the input silhouettes.

We also demonstrated through real and synthetic

experiments that the 3D models obtained with the pro-

posed method are robust to perturbations applied to

the input silhouettes. These experiments led us to be-

lieve that the proposed method may be adequate for

applications such as garment fitting. More importantly,

the method is also fast and completely repeatable whereas

measurements performed manually are slower and sub-

ject to large inter-observer variations. To our knowl-

edge, it was the first time the accuracy of reconstruc-

tions performed using a frontal and a lateral silhouettes

were extensively analyzed.
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