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Abstract. This paper describes techniques for the piecewise linear ap-
proximation of trimmed NURBS surfaces. The problem, called surface
triangulation, arises from many applications in CAD and graphics. The
new method generates triangular meshes that are adaptive to the local
surface curvature. We use e�cient data structures for the handling of
trimming curves. We also generate Delaunay triangulation on the surface
to improve the quality of the meshes.

x1. Introduction

Tensor-product NURBS are widely used in today's CAD systems for describing
and exchanging surface geometry. For many applications, however, piecewise
linear approximations of smooth surfaces are required. Examples of these ap-
plications include �nite element analysis, stereo-lithography, and visualization
of geometric models. In these applications, we need to generate a triangular
mesh that approximates the original surface within a given tolerance. We refer
to this problem as surface triangulation, stated in the following de�nition.

De�nition. Given a NURBS surface N(u; v), its trimming boundary, and

a real number ", the surface triangulation problem is to �nd a set of linearly

parameterized triangles fTig such that

1) Any triangle Ti satis�es supkTi(u; v)�N(u; v)k < ".

2) For any triangle edge not on the boundary, there is exactly one neighbor-

ing triangle sharing this edge.

The �rst condition is usually called chord height tolerance, which restricts
triangles to be close to the surface. The second condition requires the trian-
gular mesh to be topologically correct.

A good surface triangulation algorithm is expected to be e�cient because
real world models tend to contain large numbers of surface patches. Further-
more, certain optimization factors are desirable. Two of the most important
ones are triangle shape and the number of triangles in the mesh. For exam-
ple, in �nite element analysis, triangles with bad aspect ratio (one angle is
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signi�cantly smaller or larger than the others) reduce the solution precision.
In all applications, a mesh with a small number of triangles saves computing
and transmission time as well as storage space.

Several authors [4,6,8,14] have approached the surface triangulation prob-
lem by computing a bound on the length of triangle edges in parametric space
so that if all triangles have their edge lengths smaller than the bound, the
resulting triangulation satis�es the chord height tolerance. Since the edge
length bound applies to the whole surface, the density of the triangulation
distributes uniformly across the surface and may lead to unnecessarily large
mesh size. Along another line of thought, Klein and Stra�er [5] considered
the problem of placing points based on the surface curvature. Recently, Piegl
and Tiller [11] used adaptive subdivision of the surface. Obviously, for a given
chord height tolerance, adaptive algorithms generate fewer triangles than the
uniform subdivision algorithms. But adaptive algorithms tend to be slower.

In this paper, we give a method that has the following features:

1) adaptive to the surface curvature,

2) e�cient insertion of the trimming curves, and

3) triangle shape improvement.

Our general strategy is that we �rst approximate the surface with hierar-
chical quadrilaterals without considering the trimming curves, then we insert
the trimming curves and triangulate the quadrilaterals. The result is a trian-
gulation that satis�es the chord height tolerance. We improve the e�ciency
of trimming curve insertion by organizing the quadrilateral hierarchies in a
quadtree structure. Also, we improve the quality of the triangles by convert-
ing the initial triangulation to a Delaunay triangulation.

x2. Curve and Surface Subdivision

We begin by discretizing the surface and its trim curves independently. We
assume that the surfaces are trimmed in the parametric domain and the trim-
ming curves are represented as NURBS with consistent orientation. Our �rst
objective is to approximate the curves with connected line segments such that
they do not deviate from the surface more than the tolerance ". >From well-
known results in B-Spline theory [7,10], a NURBS curve can be split into two
pieces without changing its shape by inserting new knots. The consequence
of this splitting is that we introduce new control points that are closer to the
curve than the control points of the original curve. If we keep dividing in this
way, the control polygon converges to the surface. When a sub-curve's control
polygon becomes \
at" enough, we can stop the dividing process. Accord-
ing to the convex hull property of NURBS, the maximum distance from any
point on the sub-curve to the line segment joining the two end control points
is bounded by the maximum distance between control points to the segment.
Therefore, we can use this bound to control the 
atness of the sub-curves.

The surface can be approximated in the same way by quadrilaterals. At
this time, we ignore the trimming boundary. Here, we insert knots in both u
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Fig. 1. Full surface subdivision.

and v directions. The 
atness test is a little more complex. We examine every
row and column of the control polygon and test their 
atness. We also have to
consider the twist factor of a surface patch. Peterson [10] gives a subdivision
method, which we generally follow. Fig. 1 (left) shows a surface approximated
by quadrilaterals.

We use a quadtree data structure to keep track of the surface subdivision
process. A quadrilateral is divided if it does not satisfy the 
atness test. Its
children are subject to the same test until at a certain level they are 
at
enough. Therefore, more subdivisions are needed at places where surface
curvature is high.

x3. Trim Curve Insertion

We assume the trimming curves are given in the parametric space of the
surfaces which they delineate. They are �rst discretised into line segments
using the same tolerance for the surface. Then the trimming curve segments
are inserted into the quadtree cells by walking through the quadrilaterals using
adjacency information. The right-hand �gure in Fig. 1 shows an example of
the insertion.

The insertion can be done completely in the parametric domain in which
the quadrilaterals correspond to rectangles in two dimensions. Starting with a
vertex of the trimming segments, we �rst �nd the rectangle in which this vertex
is contained. This can be done e�ciently by traversing down the quadtree.
By following the trimming segments, we can �nd the segment that crosses one
of the edges of the rectangle. We insert a new vertex on the intersection point
and then start the insertion in the new rectangle.

For e�cient insertion of the trimming segments, we make use of a data
structure that can quickly �nd the neighboring rectangle from the edge of a
rectangle. We store in each rectangle (quadrilateral) vertex the pointers of
the rectangles that use the vertex. Given an edge e = (p; q), we collect all
the rectangles that contain both p and q, Qe = Qp \ Qq, where Qp and Qq

are the sets of rectangles associated with vertices p and q respectively. This
is a local operation. The number of elements in Qe should either be 1 or 2.
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Fig. 2. Trimming curve insertion.

In the case of two elements, one of them is the neighboring rectangle we look
for. When there is only one element in Qe, our rectangle does not have a
compatible neighbor. However, if we go up the quadtree, at some level there
must be a rectangle that is the compatible neighbor. Then coming down the
tree, we �nd the leaf rectangle that is partially neighboring our initial quad.
This is the rectangle that the trimming segment enters.

The time complexity of the insertion process is linear in the number of
quadrilaterals.

Fig. 2 shows the insertion of trimming curves into the rectangles in para-
metric domain. Fig. 3 shows the two cases that a trimming segment enters a
new rectangle: 1) entering from an edge; 2) entering from a vertex.

Fig. 3. Two entering cases.

x4. Initial Triangulation

After the insertion of the trimming segments, we have two kinds of rectangles:
those that are cut by the trimming segments and those that do not intersect
with any part of the trimming segments. For each rectangle being cut, we sort
the vertices of the trimming segments inside the rectangle in counter-clockwise
order to form boundaries of polygons. In general, there can be multiple poly-
gons and each polygon can have multiple boundary loops. Those cells that lie
inside the boundary are triangulated in parametric space. There is no short-
age of triangulation algorithms for 2-dimensional polygonal domains. Here
we adopt the algorithm from [13]. Note that most rectangles lie completely
in the interior of the trimming boundary; their triangulation can simply be
done by triangulating a rectangular domain [1]. If a rectangle is cut-free and
lies outside the trimming boundary, we can simply ignore it. This case can be
decided easily by testing if one of the vertices of the rectangle is in the interior
of the polygon formed by the trimming segments. For robustness reasons, we
choose the centroid of the rectangle for doing the test.
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Fig. 4. Initial triangulation in parametric space and in 3-space.

An initial triangulation in 3-space is obtained by evaluating the para-
metric triangulation. Fig. 4 gives an example of a surface triangulated in
the parametric domain (left) and the corresponding triangulation in 3-space
(right).

x5. Triangle Shape Improvement

As we mentioned in Section 1, there are good reasons to make triangles that
are well-shaped. In practice, it is undesirable to have triangles that are 
at
or pointed. These are the triangles that have one small angles or one large
angles. It is well known that Delaunay triangulation for a set of points in
two dimensions is optimal in the sense that it maximizes the minimum angle
[2]. Delaunay triangulation that respect a set of boundary edges can be con-
structed. This kind of triangulation is called constrained Delaunay triangulation

(CDT) [12]. Chew [3] extended the de�nition of CDT to the curved surfaces
by replacing the empty circumcircle condition with the empty minimum cir-
cumsphere condition. Following Chew's approach, we improve the shape of
the triangles by edge 
ipping and inserting new nodes at the circumcenters of
the ill-shaped triangles.

Given a pair of triangles, if they form a convex quadrilateral, there are two
choices of the diagonals, one is better than the other in terms of the shapes
of the triangles. By examining each pair of adjacent triangles and 
ipping
their diagonals if necessary, we can improve the triangulation locally (see top
�gures of Fig. 5). Chew [3] shows that the 
ipping process halts and it leads
to constrained Delaunay triangulation on a surface.

A CDT is the best possible triangulation without introducing new nodes.
To further improve the triangulation, we have to insert new points. Each
time we insert a new point, we do edge 
ipping again to maintain Delaunay
triangulation. New points are inserted at the circumcenters of the triangles
that violate the shape criteria. The reason of this is we could improve the
shape of several triangles by introducing one point. Fig. 5 illustrates the two
basic operations used repeatedly for improving the shape of the triangles.



6 C. Shu and P. Boulanger

Fig. 5. Edge 
ipping and node insertion.

Fig. 6. Example 1.

As we 
ip edges, we want to preserve the error bound for the new trian-
gulation. Given a pair of triangles that are 
ippable, we check the minimum
distance between the current diagonal and the new diagonal. The distance
should be smaller than the speci�ed approximation tolerance ". This does
not guarantee that the resulting triangulation still satis�es the approximation
tolerance. But since we are not moving any nodes on the surface and we in-
sert additional nodes into the triangulation, there are good reasons to assume
that most triangles will satisfy the tolerance. Finally, as a last step, we loop
through all triangles and check their chord heights. For those few triangles
that violate chord height tolerance, we subdivide them by adding points on
their edges. The checking is generally expensive, but we only do this once
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Fig. 7. Example 2.

for each triangle, and the process can be speeded up by making use of the
quadtree data structure.

Figs. 6 and 7 give two results of the algorithm before and after shape
improvements.

x6. Concluding Remarks

The main results of this work are:

1) a surface triangulation algorithm that guarantees correct mesh topology,

2) an e�cient trimming curve insertion scheme, and

3) triangle shape improvement by Delaunay triangulation.

We have only discussed the problem of triangulating a single surface. How-
ever, in real world problems, a model usually consists of many NURBS surface
patches. The triangulation between two neighboring surfaces have to be com-
patible. There should be a post-processing step that stitches the triangulation
of di�erent surfaces. This can be done with a kd-tree data structure, which
facilities locating nearest nodes in 3-space quickly. Therefore, we can propa-
gate a node on the boundary of one surface to the boundary of its neighboring
surface.
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