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Abstract

We present an approach to robustly track the geometry
of an object that deforms over time from a set of input point
clouds captured from a single viewpoint. The deformations
we consider are caused by applying forces to known loca-
tions on the object’s surface. Our method combines the use
of prior information on the geometry of the object modeled
by a smooth template and the use of a linear finite element
method to predict the deformation. This allows the accu-
rate reconstruction of both the observed and the unobserved
sides of the object. We present tracking results for noisy
low-quality point clouds acquired by a stereo camera and a
Kinect sensor, and simulations with point clouds corrupted
by different error terms. We show that our method is also
applicable to large non-linear deformations.

1. Introduction
The accurate acquisition of physical objects has numer-

ous applications in the entertainment industry and in inspec-
tion systems. While there exist commercial systems for dig-
itizing rigid objects, the acquisition of deforming objects re-
mains a challenge due to the complex changes in geometry
over time. A rigid object can be scanned sequentially from
multiple viewpoints to accurately capture the complete sur-
face, whereas scanning the entire surface of a deforming ob-
ject would require a complex and expensive physical setup
involving multiple synchronized sensors, which may still be
subject to occlusions.

Recently, several techniques were proposed that solve
this problem by using a template shape as a geometric and
topological prior for the reconstruction and by deforming
the template to fit to the observed data [7, 25, 11, 5]. In
some of these methods, the observed data comes from a set
of single-view scans. The assumption of input from a sin-
gle viewpoint is useful due to the simplicity of acquiring
this type of data. Template-based tracking approaches are
shown to lead to visually pleasing results for numerous ex-
amples. However, the deformation of the unobserved side
of the object is generally only guided by a smoothness cost.

Figure 1. Influence of FEM step after 26 frames. The left shows
the input data and the right shows the results. The result using
only the tracking step is visualized in green, and the result using
tracking and FEM is visualized in blue.

We combine a tracking-based approach with fitting a vol-
umetric elastic model to improve the estimation of the unob-
served side of the object. We employ a linear finite element
method (FEM) to solve for physical deformations when a
given force is applied. Our method proceeds in two steps:
First, we use a tracking approach to deform the template
model. Second, we use the offsets of the observed vertices
of the template mesh found using the tracking step in a FEM
to predict the offsets of the unobserved vertices. Hence,
rather than smoothly deforming the unobserved side of the
model, we deform the unobserved side by taking into ac-
count volumetric information. We repeatedly linearize the
deformation in the FEM at its current deformation state.
Note that our method allows for tracking data acquired us-
ing single, multiple, or moving viewpoints.

While deformable models have been introduced to com-
puter vision and computer graphics 30 years ago [21], we
combine modern non-rigid template-based tracking with a
volumetric elastic model for completion of the deforma-
tion at the unobserved side only. Our major contributions
are therefore: (a) the use of a FEM-based model to deform
the unseen side leading to more physically plausible results
than by using a smoothness cost in the template-based track-
ing, and (b) tracking linear and non-linear deformations by
repeatedly linearizing the FEM model at its current defor-
mation state.

2. Related Work
We review relevant work related to tracking surfaces and

predicting shape deformations using finite element models.
Tracking. Computing the correspondence between de-
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formed shapes has received considerable attention in recent
years [24]. This review focuses on techniques that do not
employ a priori skeletal models or marker positions, as we
aim to minimize assumptions about the structure of the sur-
face. None of the following approaches combine physics-
based models with tracking approaches.

Template-based approaches. The following techniques
solve the tracking problem using a template as shape prior.
De Aguiar et al. [7] and Vlasic et al. [25] tracked multi-view
stereo data of a human subject that is acquired using a set
of cameras. Tung and Marsuyama [23] extended this type
of approach by using 3D shape features to aid the track-
ing. Li et al. [11] proposed a generic data-driven technique
for mesh tracking, where a template is deformed to each
observed frame. A deformation graph is used to derive a
coarse-to-fine strategy that decouples the complexity of the
original mesh geometry from the representation of the de-
formation. Cagniart et al. [5] proposed an alternative where
the template is decomposed into a set of patches. The tem-
plate is then deformed to each observed frame using a data
term that encourages inter-patch rigidity. We however com-
bine a template with a FEM step.

Template-free approaches. The following techniques
solve the tracking problem using prior information on the
deformation of the object. Mitra et al. [15] modeled the
surface tracking problem as a problem of finding a smooth
space-time surface in four-dimensional space. Sharf et
al. [19] used a similar concept to find a volumetric space-
time solid. Wand et al. [26] used a probabilistic model
based on Bayesian statistics to track a deformable model.
Tevs et al. [22] extended this approach by first tracking
a few stable landmarks and by subsequently computing a
dense matching. Furukawa and Ponce [8] proposed a tech-
nique to track data from a multi-camera setup by computing
the polyhedral mesh that captures the first frame and by de-
forming this mesh to the data in subsequent frames. Liao et
al. [13] take images acquired using a single depth camera
from different viewpoints while the object deforms and as-
semble them into a complete deformable model over time.
Popa et al. [17] used a similar approach that is tailored to
allow for topological consistency across the motion. Li et
al. [12] avoid the use of a template model by initializing the
tracking procedure with the visual hull of the object. Zheng
et al. [27] track a deformable model using a skeleton-based
approach, where the skeleton is computed using the data.

Predicting Shape Deformations Using FEM. Several
authors suggested learning the parameters of linear finite
element models from a set of observations. We use such
a method in combination with a tracking method to find
an accurate tracking result of the observed and the unob-
served side of the model. For a summary of linear finite el-
ement methods, refer to Bro-Nielsen [4]. Lang and Pai [10]
used a surface displacement and contact force at one point

along with range-flow data to estimate elastic constants of
homogeneous isotropic materials. Becker and Teschner [2]
presented an approach to estimate the elasticity parameters
for isotropic materials using a linear finite element method.
Syllebranque and Boivin [20] estimate the parameters of a
quasi-static finite element simulation of a deformable solid
object from a video sequence. Schnabel et al. [18] used fi-
nite element models to validate the non-rigid image registra-
tion of magnetic resonance images. Nguyen and Boyce [16]
presented an approach to estimate the anisotropic mate-
rial properties of the cornea. Bickel et al. [3] proposed a
physics-based approach to predict shape deformations. Re-
cently, Choi and Szymczak [6] used FEM to predict a con-
sistent set of deformations from a sequence of coarse water-
tight meshes but their method does not apply to single-view
tracking, which is the focus of our method.

3. Overview
The input to our method consists of a closed template

T , a contact point on T and a force direction that leads to
the deformation of the model, and a set of 3D video frames
(point clouds) capturing the deformation. We assume that
the template has roughly the shape of the object before the
deformation, and is approximately aligned to the first frame.

We aim to track the deformation of the object by com-
puting a deformed template shape for each of the captured
frames. Let pi denote the vertices of T , let ~pi denote their
position vectors, and let p̃i denote their homogeneous coor-
dinates. We deform T by applying a 4 × 4 transformation
matrix Ai to each p̃i of T . The transformation matrix Ai
depends on six parameters: three parameters ~ti describing
a translation, two parameters ~ri describing a rotation axis,
and one parameter φi describing a rotation angle. That is,
Ai describes a rigid transformation as

Ai = Atrans(~pi)Arot(~ri, φi)Atrans(~ti)Atrans(−~pi), (1)

whereAtrans(−~pi) expresses a point in a coordinate frame
centered at pi andArot(~ri,−φi) expresses a point in a coor-
dinate frame rotated by angle φi around axis ~ri. Expressing
the transformation in a coordinate system centered at pi has
the advantage that differences between the transformations
of neighboring vertices can be measured directly.

The main idea of the approach is to combine tracking
the point cloud data and predicting the deformation on the
unseen side of the model using a FEM. To track the data,
we use an energy optimization approach that aims to find
parameters ~ti, ~ri, and φi that lead to a smooth, intersection-
free mesh that is close to the observed data. Afterwards,
we displace the vertices of T that are not observed in the
data using a linear FEM with the given contact point and
force direction. Finally, we readjust the parameters ~ti, ~ri,
and φi to take this displacement into account. When multi-
ple frames F1, F2 . . . , Fn are recorded, we use the result of
Fj to update the vertex positions of the template for Fj+1.



4. Tracking of Point Cloud Data

This section presents our energy optimization approach
to find the transformation parameters ~ti, ~ri, and φi that lead
to a mesh that is close to the point cloud data.

We aim to deform the template T to the observed data.
When fitting T to the first frame, we start by deforming
T using a global rigid transformation A to fit the observed
data as much as possible. We consider all vertices pi of T
and compute the nearest neighbor N(pi) of the deformed
point Ap̃i in the point cloud data. In the following, N(pi)
is represented in homogeneous coordinates.

To rigidly align T to F , we find A by minimizing

Einitial =
∑
i

ωi ‖Ap̃i −N(pi)‖22 (2)

with respect to seven degrees of freedom (one for scaling,
three for rotation, three for translation), where ωi is a weight
term. The scaling term accommodates slight errors in the
calibration of the 3D scanner used to acquire the template
shape and/or the calibration of the camera system used to
acquire the frames. The weight ωi is one if the angle be-
tween the normal of the deformed template T at pi and the
normal of F at N(pi) is less than a threshold α and if the
distance between Ap̃i and N(pi) is at most dr, otherwise
it is zero. Here, r is the average edge length of the unde-
formed template T and d and α are parameters.

To fit T to any frame, we deform T in a non-rigid fashion
by changing ~ti, ~ri, and φi to minimize the energy

Etrack = wdataEdata + wsmEsm + wmdEmd with
Edata =

∑
i ωi ‖Aip̃i −N (pi)‖22

Esm =
∑

i
1

|Rsm(pi)|
∑

j∈Rsm(pi)

(
1− ‖

pi−pj‖22
(ssmr)2

)
(∥∥~ti − ~tj∥∥22 + ‖~ri − ~rj‖22 + (φi − φj)

2
)

Emd =
∑

i
1

|Rmd(pi)|
∑

j∈Rmd(pi)

(
1− ‖

Aip̃i−Aj p̃j‖22
(smdr)

2

)
(

1

‖Aip̃i−Aj p̃j‖22

)2

(3)
where wdata, wsm and wmd are weights for the individual

energy terms, Rsm(pi) is the set of indices corresponding
to points Aj p̃j that have geodesic distance at most ssmr of
Aip̃i, Rmd(pi) is the set of indices corresponding to points
Aj p̃j that have Euclidean distance at most smdr from Aip̃i
and that have geodesic distance at least smdr from Aip̃i,
and |.| denotes the cardinality of a set. As before, r is the
average edge length of T and ssm and smd are parameters.
We associate the vertex pi with the nearest neighbor N(pi)
of the deformed point Aip̃i in the point cloud data. The
weight ωi is set according to the angle between the normal
vectors and the distance to the nearest neighbor as above.
The transformation matrices Ai are computed according to
Equation 1.

The data term of the energy drives the template mesh to
the observed data. Using only this term results in an ill-
posed problem as it defines at most three constrains per ver-
tex to estimate the six parameters per vertex. We therefore
add the smoothness term to act as a regularization term that
encourages smooth transformations. A similar term was
previously used by Allen et al. [1]. The last term, Emd,
discourages self-intersections by penalizing close-by ver-
tices that are far in the geodesic sense. Note that while
this energy term does not guarantee that self-intersections
are avoided, it acts as a repelling term between close-by
vertices. Unlike previous tracking approaches, we use this
energy term since self-intersections might cause problems
in the FEM step.

We start by encouraging smooth transformations by set-
ting wsm = 1000. Similar to Li et al. [11], whenever
the energy does not change by much, we relax the smooth-
ness weight as wsm = wsm/2 to give more weight to the
data term. We stop when the relative change in energy(
E

(i−1)
track − E

(i)
track

)
/E

(i−1)
track , where i is the iteration num-

ber, is less than 0.0001 or when wsm is smaller than 100.
Throughout the optimization, we fix wmd = 0.1. For a
fixed set of weights, we do not update the respective associ-
ated point N (pi) for any vertex pi.

Recall that the distance to the nearest neighbor used in
Edata is limited by the template resolution. To allow for
larger deformations, we use a multi-resolution approach
as follows. We compute a multi-resolution hierarchy of
T by collapsing edges of the mesh according to Garland
and Heckbert’s geometry criterion [9]. We do not collapse
edges if this would lead to a self-intersecting mesh. We
perform the test whether an edge collapse leads to self-
intersections greedily by performing the collapse and test-
ing if self-intersections occur. In each resolution step, we
halve the number of vertices. We stop the collapse when the
base mesh contains about 1000 vertices or when no more
valid edges can be found for the edge collapse operation.
For the base mesh, we initialize all of the transformation
parameters to either identity (i.e. ~ti is the null vector and φi
is zero) or to the result of the previous frame and minimize
Etrack. Once the energy is minimized for resolution level
l, we consider the mesh of the next higher resolution level
l+ 1. For the vertices of level l+ 1 that are present in level
l, we initialize the transformation parameters to the result
of the previous resolution. For the remaining vertices, we
initialize the transformation parameters by minimizing the
energy Esm with respect to the indices i that are not present
in resolution level l. After the transformations are initial-
ized, we compute the resolution r of the current level and
minimize Etrack.

This optimization scheme leads to a set of transformation
parameters ~ti, ~ri, and φi that align T with F while aiming
to maintain a smooth and intersection-free mesh.



5. Displacing Unobserved Vertices Using FEM
Consider the situation after T was deformed to frame

Fj using the approach outlined in the previous section, and
denote the deformation of T by TFj

. We call the vertices
pi in TFj

that were deformed using valid data observations
observed vertices, and we call the remaining vertices unob-
served vertices. Unobserved vertices were deformed using
smoothness assumptions and possibly unreliable data ob-
servations. This section describes how to displace the un-
observed vertices using a linear FEM.

First, we discuss how to find the observed vertices. An
easy way is to consider all vertices as observed whose as-
sociated points N(pi) in the point cloud data have a corre-
sponding weight ωi equal to one. However, this approach
has the problem that many vertices corresponding to points
in a hole of the data may pick the same associated point,
which leads to some observed vertices with poor assign-
ments. To remedy this problem, we wish to only consider
an observation as valid if few vertices of the template share
the same associated point. Note that it is not straight for-
ward to define ”few”, since the number of template vertices
that share the same associated data point depends on both
the data and the template resolution. We use the following
heuristic to make the approach independent of global reso-
lution changes. For each data point the number of vertices
on the template that chose it as nearest neighbor is counted,
and this count is averaged over all data points that were cho-
sen by at least one vertex of the template. A template vertex
pi is considered an observed vertex if ωi is equal to one and
if the count corresponding to N(pi) does not exceed twice
the average count.

We aim to reposition the unobserved vertices of TFj
us-

ing a finite element model. We use TFj−1
with TF0

= T as
start position for the FEM step and an offset vector from the
start position TFj−1 to the current frame TFj . A tetrahedral
mesh is used to compute the FEM. The initial tetrahedral
mesh of T is obtained by tetrahedralizing a simplified ver-
sion of T . This simplification is necessary to make the algo-
rithm more time and space efficient. The tetrahedral mesh
of TFj

is obtained by simply updating the vertex positions
of TFj−1 using the deformed mesh TFj and the FEM defor-
mation from frame Fj−1 to frame Fj . Let T tetFj−1

denote the
tetrahedral mesh.

The FEM linearly relates the offsets of the vertices and
the forces applied to the tetrahedral mesh using a stiffness
matrix K(E, ν) that depends on the geometry of the tetra-
hedral mesh and on two elasticity parameters, the Young’s
modulus E and the Poisson ratio ν. Let ~f denote the vector
of forces applied to the vertices of the tetrahedral mesh and
let ~u denote the vector of offsets of the vertices of the tetra-
hedral mesh. Both ~f and ~u have dimension 3m, where m is
the number of vertices of the tetrahedral mesh. Then,

K(E, ν)~u = ~f. (4)

Recall that we know reliable offsets for the observed, but
not for the unobserved vertices. Furthermore, we know the
contact point and the direction of the force at the contact
point and we know that the force at all of the remaining
vertices is zero. We can normalize the length of the force
direction at the contact point, since changing the length of
~f only scales E. If the elasticity parameters are known, it
is possible to use this information to compute the missing
offsets and force vectors by rearranging the linear system of
equations [4]. The mapping between the tetrahedral mesh
and the surface mesh can then be used to modify the unob-
served vertices of T tetFj−1

according to the FEM prediction.
We use the approach of Becker and Teschner [2] to find

the elasticity parameters. We aim to minimize the energy
F = (K(E, ν)~u − ~f)2 with respect to E and ν, where we
only consider the points with known offsets and forces. We
achieve this by initializing E to 1e6 and ν to 0.45 and by
solving the optimization problem.

Once the FEM step is completed for frame Fj , it remains
to adjust the transformation parameters ~ti, ~ri, and φi to cap-
ture the new deformation. We achieve this by minimizing

Edef = wdataEtarget + wsmEsm + wmdEmd with
Etarget =

∑
i ‖Aip̃i − TP (pi)‖22 ,

(5)
where TP (pi) (in homogeneous coordinates) is the posi-

tion of the point corresponding to vertex pi on the deformed
tetrahedral mesh T tetFj−1

. Note that we only optimize the en-
ergy with respect to parameters that influence unobserved
vertices of TFj

. We set wsm = 100 and wmd = 0.1.

6. Implementation Details
The implementation of the algorithm is in C++ and uses

a quasi-Newton method [14] for all of the optimization
steps. For each optimization step, at most 1000 iterations
are used. The tetrahedralization is computed using tetgen
(http://tetgen.berlios.de). When tetrahedralizing the model,
we find a high quality tetrahedralization by restricting the
radius-edge ratio of each tetrahedron to be at most two.

This section discusses implementation details. First, we
discuss the parameter settings used in the experiments. Sec-
ond, we analyze the influence of the different energy terms
used in the tracking energy.

6.1. Discussion of Parameters

The parameters wdata, wsm, and wmd used during track-
ing give the relative weights between the different energy
terms, the parameters d and α control which data points
influence the data term, and the parameters ssm and smd
influence the neighborhoods considered for the smoothing
and repelling terms, respectively.

To make the relative influence of the weights
wdata, wsm, and wmd invariant with respect to scaling, we
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Figure 2. Influence of energy terms. From top to bottom: data, result using E∗track, result using E∗∗track, result using Etrack.

pre-scale all of the input models, such that the length of the
diagonal of the bounding box of the template model is one.
This allows to set most of the parameters to one constant
value for all experiments. The weight schedules used for
wsm and wmd are discussed in Sections 4 and 5. Further-
more, we set wdata = 1, d = 5, α = 60◦, and smd = 0.1.

The parameter ssm is the only parameter that is varied.
This parameter gives the smoothing radius with respect to
the resolution of the template mesh. It needs to be adjusted
depending on the ratio between the mesh resolution and the
mesh size. If the mesh resolution (measured as average edge
length) is high compared to the size of the model, then ssm
can be set relatively low. If the mesh resolution is low com-
pared to the size of the model, then ssm needs to be set to
a higher value. In our experiments, we set ssm = 3 for
synthetic data and ssm = 5 for the dinosaur model.

6.2. Influence of Energy Terms

Figure 2 shows the results of the tracking step with
different energy terms with the back side shown in blue.
Specifically, results are shown for E∗

track = wdataEdata,
E∗∗
track = wdataEdata + wsmEsm, and Etrack. For these

experiments, the weights are initialized and relaxed as dis-
cussed in Section 4. Note that when using E∗

track, the
mesh already contains self-intersections after the first frame
and the shape of the model is altered significantly after ten
frames. The reason is that only using the data term results
in an under-determined optimization problem. When using
E∗∗
track, the overall shape of the model is preserved. How-

ever, after ten frames, the model contains self-intersections

at the flaps on the tail of the model. With Etrack, these
problems are reduced.

7. Evaluation
This section discusses the datasets used in the experi-

ments and shows a synthetic evaluation of the method as
well as experiments based on real data. For all the experi-
ments, the input models are pre-scaled, such that the length
of the bounding box diagonal of the template model is one.
This information on the scale of the models serves as refer-
ence for the numerical evaluations below.

7.1. Input Data

Synthetic Data. The synthetic datasets, shown in Fig. 3,
are created using the buste and duck models from the
AIM@Shape repository (http://shapes.aimatshape.net). We
create synthetic deformations of the models by applying dif-
ferent finite element deformations to the models with Get-
FEM (http://download.gna.org/getfem/). The shapes are de-
formed using a linear FEM and using the incompressible
non-linear Saint Venant-Kirchhoff model (StVK). The back
sides of the deformed models are removed and the remain-
ing front sides are used as input to the algorithm. The com-
plete undeformed model is used as template. In our simu-
lations, the head of the buste is pushed to the left and the
base of the neck of the duck is pushed down and forward.
Table 1 shows the deformation parameters.

Stereo Data. We acquire the stereo observations of each
frame using a commercial machine vision stereo camera
(Point Grey Bumblebee 2) and its matching library. Fig. 4



Model Number Number λ µ Lagrange
Vertices Frames ( N/mm2) ( N/mm2) Multiplier

Buste 7470 10 5.185e4 2.222e4 1e4
Duck 1246 25 5.000e4 1.000e3 1e4

Table 1. Information about the synthetic models.

Figure 3. Buste and duck models: model and front side.

shows the template mesh along with a typical data frame
containing noise that is typical for passive stereo, such as
noise along the viewing direction and missing data due to
occlusions. Occlusions are especially visible in the areas
of the flaps. Furthermore, the input data contains points lo-
cated on a tag at the tail of the model, which is not part of
the template. We track a dinosaur plush toy based on stereo
data while the head is pushed towards the floor.

Range Data. We acquire range data using a Kinect sen-
sor and the point cloud library. With this setup, we acquire a
similar deformation of the same dinosaur plush toy as with
the stereo camera. The resolution of this type of data is low
compared to our stereo data, as shown in Fig. 4.

Figure 4. Left to right: noisy stereo frame, Kinect frame, template.

7.2. Evaluation of Robustness

Our first set of experiments aims to show that our ap-
proach is robust with respect to noise. The synthetic buste
data generated with a linear FEM is used in this experi-
ment. We consider three types of noise. First, we aim to
model outliers in a way that simulates the outliers com-
monly present in stereo data. To model these outliers, we
pick a viewpoint for the model. A vertex pi is perturbed as
pi + x~vi, where ~vi is the unit vector pointing from pi to the
viewpoint and x is a uniformly distributed random number
in the range [−r, 4r], and r is the resolution of the model.
Each vertex of the model is perturbed with probability 1/50.
Second, we perturb the vertices of the input data by adding
Gaussian noise in the vertices normal direction. The vari-
ance of the Gaussian is 75% of the bounding ball radius of
the model. Third, we evaluate the influence of the resolu-
tion of the input data on the results by subdividing the input
data using one step of Loop subdivision.

As the complete ground truth model is known, the per-
vertex distance for a frame can be computed as the distance
between the vertex position in the tracking result and its

corresponding point in the ground truth model. The error
for a frame can then be computed as the average or max-
imum over all per-vertex distances of this frame. The re-
sulting errors are given in Fig. 5. The average distances are
small compared to the size of the model and the increase in
the distances caused by the presence of outliers, Gaussian
noise, and an increase in resolution is insignificant.

Figure 5. Error measured as average and maximum distance over
all vertices. X-axis: frame number. Y-axis: distances (for refer-
ence: normalized mesh diagonal of length one).

7.3. Evaluation of FEM Correction

Our second set of experiments shows that the FEM step
improves the shape of the unseen side of the model. We
show that displacing the unobserved vertices using a linear
FEM in every deformation step yields satisfactory results
even for synthetic deformations that were generated using a
non-linear FEM. We consider deformation sequences gen-
erated using linear FEM and the StVK model. For each
deformation sequence, tracking is computed with and with-
out FEM. We then evaluate the errors as above. However,
instead of considering all vertices of the model for the error
computation, we only consider vertices on the unseen side.

The first experiment uses the buste data. This dataset
exhibits a deformation that affects the global shape of the
model. We found that the FEM step yields an improve-
ment of the average and maximum errors over the approach
without the FEM step in most frames. Fig. 6 visualizes
the distances to the ground truth for the two deformation
sequences. The result without FEM has a large error in
the back of the head, which is almost completely flattened,
while the result with FEM has a significantly lower error in
this area. Linear and non-linear deformations are tracked
equally well. A similar experiment for a hand dataset is
shown in the supplementary material.

The second experiment uses the duck data and is shown
in Figure 7. The figure shows the result of applying a linear
FEM deformation to the duck model and our result. The
global linear FEM aims to linearize the global deformation
that is observed when applying a non-linear FEM to the
model. Observe that applying a linear FEM leads to unreal-
istic artifacts at the back of the head of the duck because the
applied forces cause a rotation of the head. Recall that our



Figure 6. Left: linear FEM dataset. Right: StVK dataset. Left
to right: ground truth start and end positions, result without FEM,
and result with FEM. Color coding shows distance to ground truth.

Volume Area
Ground Truth 0.060784 1.027610
Global FEM 0.075405 1.267665
Our Method 0.056388 0.988828

Figure 7. Duck results (end position). Left to right: ground truth,
result computed using a global linear FEM, our result (with FEM).
Volume and area are measured on the model with normalized size.

method uses a linear FEM to predict the unobserved side
of the model. However, since our method linearizes the
deformation locally at each frame, no unrealistic artifacts
occur. Furthermore, our approach is significantly closer to
the ground truth than using a global linear FEM in terms of
mesh volume and area.

7.4. Evaluation on Stereo and Range Data

In the following two experiments, we aim to track the
dinosaur plush toy based on either stereo data or range data
while the head of the toy is being pushed towards the floor.
Fig. 8 shows the observed side of the deformed toy. The
figure shows the data, the deformed template, and the signed
distance between the deformed template and the data. In
the visualization of the signed distance, points that do not
have a valid nearest neighbor in the data are shown in red.
Note that results of similar quality are obtained for data with
significantly different resolution and noise levels.

Second, for the stereo dataset, we analyze the influence
of the FEM step on the final result. Recall that by design,
the FEM step influences the unobserved side of the model
in each frame. Fig. 9 shows the unobserved side at the tail
of the deformed model after 11 frames with and without the
FEM step. Note that the FEM step reduces the amount of
crumpling at the tail. This results in a better initialization
for the next frame. Fig. 1 shows the results with and with-
out the FEM step after 26 frames. Note that the result with
FEM undergoes a larger overall deformation than the result
without FEM. This discrepancy is due to the improved ini-
tialization caused by FEM in each frame.

7.5. Limitations

Our algorithm has some limitations. We employ a non-
rigid iterative closest point algorithm to fit the template to
the data. Hence, if the initial alignment is poor or if there
are large occluded areas in the data, the algorithm cannot
deform the template accurately. Fig. 10 illustrates an exam-
ple, where one flap of the dino model is pushed towards the

Figure 9. Result color-coded with Gaussian curvature. Left: result
using tracking only. Right: result with FEM. Note the improve-
ments along the spine.

spine. The initial alignment of the template and the data is
poor and large parts of the flap are occluded. Due to these
issues, our algorithm does not correctly track the movement
of the flap towards the spine.

Figure 10. Problems occur in areas with occlusion.

While our method discourages self-intersections of the
mesh using energy terms, it does not guarantee that self-
intersections are avoided. If self-intersections occur, the
quality of the updated FEM mesh may be low. Finally,
our tracking method requires a number of input parameters,
however, for all our examples, we use a fixed set of parame-
ters except for ssm, which we set based on mesh resolution.

8. Conclusions
We proposed an approach to track the geometry of a sur-

face over time from a set of input point clouds captured from
a single viewpoint. We combine the use of a template and
the use of a linear finite element method to track the model.
By linearizing the deformation at each frame, we show that
we can accurately track surfaces that deform in a non-linear
fashion. We demonstrate the robustness of our approach
with respect to noise using a synthetic evaluation and using
real data captured with a stereo setup and with a Kinect.
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