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Abstract—When reconstructing a specific type or class of
object using stereo, we can leverage prior knowledge of the
shape of that type of object. A popular class of object to
reconstruct is the human face. In this paper we learn a
statistical wavelet prior of the shape of the human face and
use it to constrain stereo reconstruction within a Bayesian
framework. We initialize our algorithm with a, typically noisy,
point cloud from a standard stereo algorithm, and search our
parameter space for the shape that best fits the point cloud. Due
to the wavelet basis, our shape parameters can be optimized
independently, thus simplifying and accelerating the search. We
follow this by optimizing for a secondary prior and observation:
smoothing and photoconsistency. Our method is fast, and is
robust to noise and outliers. Additionally, we obtain a shape
in an parameterized and corresponded shape space, making it
ready for further processing such as tracking, recognition or
statistical analysis.

Keywords-model-based stereo, wavelet prior, Bayesian frame-
work, graphics processing unit (GPU)

I. INTRODUCTION

Stereo reconstruction of class-specific objects, eg. human
faces, may benefit from prior knowledge of the shape of the
objects to be reconstructed. The prior models, learned from
statistical analysis of 3D shapes, constrain the reconstruc-
tion, alleviating some of the most difficult problems in stereo
such as occlusion and specularity. In practice, it is necessary
to build the prior models in a compact representation so that
they can be used efficiently to infer 3D shapes from images.
Principal component analysis (PCA) has been widely used
for this purpose. For example, Amberg et al. [1] learn a
PCA model from 3D scans and vary the model to best fit
the input images. However, PCA is a global model, which
means every parameter affects the whole shape. For stereo,
it is desirable to have a prior model that only influences
the shape variations locally. We propose a statistical wavelet
model for representing the shape variations and use it in a
Bayesian framework to reconstruct human faces from two
or more images.

Statistical shape priors have been used within single-view
reconstruction techniques, eg. Blanz and Vetter [2]. Using
multiple views gives us an observation that expresses the
likelihood of a shape based on 3D geometric constraints,
i.e. perspective correspondence between the views, as well

as surface appearance.
Stereo reconstruction can be broken into binocular stereo

and multi-view stereo. Although we only use two images,
our approach is more along the lines of multi-view ap-
proaches and could straightforwardly be extended to more
views. Scharstein and Szeliski [3] provided a survey of the
binocular case, and Seitz et al. [4] surveyed and classified
the multi-view techniques.

Amberg et al. [1] used model-based stereo to reconstruct
human faces. They used a 3D morphable model (3DMM) [2]
based on PCA of a training set of faces. In such a frame-
work, shapes are modeled as the mean shape plus a linear
combination of eigenvectors which represent eigen shape
variation modes, computed from the training set. The mean
shape was computed as the mean points’ coordinates. PCA
is a transform with global support; each shape parameter
depends on each vertex position, and vice versa. This means
that all parameters have to be optimized together, typically
in a complex gradient descent fashion, which may get stuck
in a local minimum. In contrast, we use a wavelet basis
that has localized support in both space and frequency.
This makes the transform computationally efficient, both in
terms of time and space, and allows us to use a simple
global optimization algorithm. The wavelet basis also affords
us greater variability; because the model parameters are
independent, we can generate shapes not found in the linear
subspace spanned by the training set.

Recently several methods for high-quality stereo capture
of human faces have been proposed [5], [6], [7]. While
we do not reconstruct with the same precision as some of
those methods, we do not require special face-paint, or near-
optimal lighting conditions or high-accuracy calibration. Our
approach is computationally efficient and can be orders of
magnitude faster than these methods. Our approach can
incorporate any range information, i.e. our method is not
restricted to stereo data. Additionally, we obtain a face mesh
that is in a common, corresponded shape space, making our
approach ideal for tracking and recognition.

When optimizing a model to best fit a set of observations,
it is desirable that the representation be compact, meaning
that most of the energy resides in a few coefficients. Thus
only those relatively few parameters need to be manipulated



to fit the model. PCA, Fourier and spherical harmonic
representations are compact, but the basis functions are not
localized in space, hence the coefficients in one scale have
to be optimized together, making the optimization problem
complex. By using a wavelet basis we are able to solve the
optimization in a simple divide-and-conquer approach. Li
et al. [8], performed segmentation of 3D Neuroradiological
data using a statistical wavelet prior similar to the one we
use here. In both cases the model is a generalized B-spline
subdivision wavelet [9].

Sun et al. [10] used strong shape priors for stereo. They
used an object-specific Markov random field (MRF) to inte-
grate shape priors seamlessly with a weak prior on surface
smoothness for articulated and deformable objects. Romeiro
and Zickler [11] coupled a 3DMM with an occlusion map
defined on the model shape to reconstruct faces in the
presence of occluding objects. While we do not handle
occluding objects, we can extend our method to incorporate
additional objects, and account for the occlusions with
little effort. Tonko and Nagel [12] used model-based stereo
of non-polyhedral objects for automatic disassembly tasks.
Zhao et al. [13] performed stereo reconstruction by first
fitting an approximate global parametric and then refining
the model using local correspondence processes. Koterba et
al. [14] studied the relationship between multi-view Active
Appearance Model (AAM) fitting and camera calibration.

Wavelets and other multi-resolution techniques have pre-
viously been used for stereo for over a decade, but most
often [15], [16], [17], [18], [19], [20] a wavelet transform
is applied to the images and then the resulting wavelet
coefficients are matched in a coarse-to-fine manner, which
allows for larger displacements between corresponding pix-
els. Miled et al. [21] used a wavelet domain representation
of the disparity map to regularize stereo reconstruction, but
their prior is an edge-preserving smoothing prior, as opposed
to a statistical shape prior.

Wavelet shape priors, have been used previously for
medical image segmentation [8], [22], and for single-view
reconstruction [23], [24].

In this paper we make the following contributions: the use
of a statistical wavelet shape prior for fast, robust model-
based stereo reconstruction of human faces; a sampling-
based Bayesian framework that can incorporate arbitrarily
many priors and observations; the re-parameterization of
human face scans with a subdivision sampling compatible
with the wavelet model. Our approach is robust with respect
to noisy observations and works under sub-optimal lighting
conditions. While we demonstrate our technique for faces,
we emphasize that we can generalize it to any shape that
is topologically equivalent to a sphere. The reconstructed
shape is captured in a common, registered shape space
making it immediately ready for other processing, such as
tracking and recognition. Additionally, we leverage a GPU-
based implementation that accelerates the bottlenecks in our

pipeline.

II. OVERVIEW

We begin by learning a statistical wavelet model of the
human face, and then use it to robustly fit the model to
noisy stereo data followed by stereo matching refinement.
Given a database of corresponded triangular meshes of laser
scans of human faces, for each face we resample it into a
subdivision surface, and then decompose the surface using
a wavelet basis [9] into independent components that are
localized in space and frequency. We then learn statistics on
the distributions of the resulting wavelet coefficients over a
training set, and then use them as a statistical prior to guide
stereo reconstruction within a Bayesian framework.

Formally, we parameterize the shape of the human face
by a high-dimensional vector space S, and learn a model
for the prior probability P (s) of a shape parameter vector
s ∈ S. We then model the observational likelihood of a set
of input images I and a point cloud from a general-purpose
stereo algorithm Y = {yi : i = 0, . . . , Ny − 1}, and we
solve for the maximum a posteriori (MAP) configuration of
s given I and Y ,

ŝ = arg max
s
P (s|I,Y) (1)

where I = {IL, IR} for the purposes of this chapter. By
Bayes’ Theorem we have the posterior

P (s|I,Y) =
P (s)P (Y|s)P (I|s,Y)

P (Y)P (I|Y)
(2)

which, because I and Y are constant, simplifies to

P (s|I,Y) = cobsP (s)P (Y|s)P (I|s,Y) (3)

where cobs is a constant of proportionality. We further
factor the prior into a component based on the statistics
of the training set and a smoothing component: P (s) =
Pst(s)Psm(s). More details of the model are given in Section
III. We compute the MAP configuration through energy
minimization as described in Section IV. Our straightforard
optimization technique, which is a combination of Monte
Carlo sampling or particle filtering methods and iterative
partial maximization, is made feasible by the properties
of the wavelet basis. We implement our technique using
GPU programming and standard image processing tools
in a framework that allows the incorporation additional
observations and priors as described in Section V, where
we also present results on stereo data and low-resolution,
relatively noisy laser range scans.

III. THE MODEL

We model the surface we wish to reconstruct as a wavelet
decomposition of a subdivision surface. Although we map
the face to a plane, we use a second-generation subdivision
wavelet scheme [9] that allows our model to be extended to
any surface that can be mapped onto the unit sphere.



In the learning phase of our method, we start with a
database or training set of triangular meshes of laser-scanned
faces. However, these meshes are not subdivision surfaces,
which prevents the use of a wavelet model, so we resample
them onto a Catmull-Clark subdivision grid by stereographic
projection of a template face. Corresponding vertices of all
faces are mapped to the same point on the plane, that of the
template, to preserve correspondence. We then decompose
the surface into its wavelet coefficients. This, in turn, allows
us to compute a statistical model of the wavelet coefficients
generated from a database of such scans, and use it as a
strong statistical prior to guide surface estimation.

Before we can proceed we must rigidly align the shapes
in the training set, i.e. put them all in the same coordinate
system, so that the variation in the 3D coordinates of the
vertices is due only to the change in the shape, and not to
any rotation, translation or scaling. Hence, we first align
the triangular meshes with each other using generalized
Procrustes alignment (GPA) [25], which iteratively aligns
each shape in the set to the average shape of the set. After
each iteration the average shape is recomputed using the
realigned shapes. We then rigidly align the resulting mean
face to the template mesh.

A. Subdivision Resampling

The triangular meshes are resampled onto a quadrilateral
Catmull-Clark subdivision surface configured as a regular
2D grid as follows. We stereographically project the template
mesh onto a plane aligned with the front of the face and
passing through its centroid, saving the mapping as 2D
coordinates in the plane. Let this plane be at z = 1.
Stereographic projection maps the entire surface of a sphere
to a plane, mapping a 3D point to the point in the plane at
z = 1 that is passed through by the line-segment connecting
the 3D point and the point [0 0 −1]T . Let pn be an arbitrary
vertex in the template triangular mesh. This vertex is mapped
to a point in the plane xn by stereographic projection as
follows,

xn =
[
xn/(zn + 1)
yn/(zn + 1)

]
where pn = [xn yn zn]T . Let pi,n be the same vertex
in triangular mesh i from the training set; pi,n is mapped
to the same position in the plane xn as is the template
vertex pn, for every mesh i in the training set. In this
way, corresponding vertices are always mapped to the same
position in the plane, and because all meshes have the same
connectivity and all their faces are planar, any point in the
plane that is covered by applying this mapping to any one of
the meshes corresponds to the same point on any of the other
meshes under the same mapping. Thus, we can resample
the surfaces while maintaining the correspondence between
surfaces.

The planar coordinates are used as texture coordinates
to resample the triangular mesh using the rasterization

capabilities of the GPU. The locations of grid points are
chosen by defining an orthographic projection of the texture
coordinates using the rectangle bounding the mesh in the
plane. The resolution of the grid is determined by taking
an arbitrary base resolution and subdividing it the desired
number of times.

B. Wavelet Decomposition

Let us denote the surface by f : R2 → R3, and further
by f(x) at grid point x = (x, y). The wavelet model is then
expressed by

f(x) =
∑

n∈V (0)

v0
nφ

0
n(x) +

N∑
j=0

∑
m∈W (j)

wj
mψ

j
m(x) (4)

where the terms are defined as follows. The set of vertices
in the level-j approximation of the surface is denoted by
V (j), and vj

n denotes a specific vertex, hence v0
n denotes a

3D-vector scaling coefficient. The approximation is refined
through subdivision by adding the vertices wj

m ∈ W (j),
thus V (j + 1) = V (j) ∪ W (j). The wavelet coefficients
wj

m are also 3D vectors. The basis function φ0
n(x) de-

notes the lowest-resolution scaling function centered on
the vertex indexed by n, and ψj

m(x) denotes the level-j
wavelet basis function centered on the vertex indexed by m.
The corresponding coefficients v0

n and wj
m form our shape

representation which we wish to best fit to an observation by
minimizing an energy function. Specifically, we concatenate
the coefficients into a shape parameter vector s, with the
lowest resolution coefficients coming first. Let us denote the
(3D) coefficient indexed by k by sk.

Because these basis functions have only local support,
f(x) only depends on a few coefficients, and the coefficients
can be computed in linear time. Both decomposition and
reconstruction are comprised of a series of lifting operations
of O(1) complexity at each node at each resolution level.
Let Nv denote the number of vertices in the full resolution
mesh. Since there are Nv/4N−j nodes in level j, and
Nv +Nv/4+Nv/16+ . . . < 2Nv , the total number of times
the lifting operations must be applied is O(Nv) in either
the decomposition or reconstruction. The lifting operations
effectively predict one coefficient using its neighbors in the
grid, subtract the prediction from the true value leaving the
residual component that is not correlated to the neighbors
according to that prediction model or filter. Because the
transform is biorthogonal, we may assume the coefficients
are fully decorrelated, i.e. independent, and can be optimized
individually.

C. Statistical Prior

We now define the observation and prior components
of our model. We model the prior probability of the
wavelet coefficients as independent Gaussian distributions,
and compute statistics on a database of face shapes. Let si



Figure 1. Left: The surface f̄ reconstructed from the mean shape vector s̄.
Right: false color visualization of the magnitude of the standard deviation
of the model parameters associated with each vertex in the full-resolution
grid mesh, |σk|.

denote the shape parameter vector of face i in the database
F = {fi, si, ri}F1 , where F is the number of faces in our
database and ri will be defined shortly. Our prior model is
defined by three shape quantities. The first is simply the
mean shape parameter vector

s̄k =
1
n

F∑
i=1

sk
i (5)

for k = 0, . . . , C − 1, where C is the number of wavelet
coefficients and each 3D coefficient vector sk in a shape
parameter vector s can be treated independently because of
the decorrelating and localizing properties of the wavelet
basis functions. The face surface f̄ that is reconstructed by
applying (4) to s̄ is shown in Figure 1.

While we can perform statistical analysis on each sk

independently of other values of k, we must consider
their three components together. Each sk is a 3D vector
representing either the scale (absolute value) or the detail
(relative value) of the shape at a particular frequency and
spatial location. However, the coordinate axes in general do
not correspond to the main directions of variation in F of
sk
i , i = 1, . . . , F . Therefore, we perform PCA on each set

of coefficient vectors, to obtain 3D vectors rk
i that represent

position along the directions of greatest variation, and 3× 3
matrices Uk that transform these coordinates to our original
world coordinate system, as in

sk
i = s̄k + Ukrk

i (6)

where we write sk = [xk
s , y

k
s , z

k
s ]T and rk = [xk

r , y
k
r , z

k
r ]T

to denote the components of these vectors, and r =
[r0T , r1T , . . .]T to denote the complete vector of statistical
shape parameters.

Due to the orthogonality of the wavelet basis functions
and the basis of the principal component analysis, we may
justify assuming that rk is independent from rm for m 6= k,
and that the components xk

r , yk
r and zk

r form zero-mean
Gaussian distributions that are independent from each other.
From the training set we can learn the standard deviation of

each component σk = [σk
x, σ

k
y , σ

k
z ]T . The standard deviation

across the surface is show in the right side of Figure 1. This
allows us to write the prior probability of a surface f as

P (f) = P (s) = P (r) (7)

where f relates to s by (4), and s relates to r by (6) and

P (r) =
∏
k

P (rk) (8)

and

P (rk) =

(
1

σk
x

√
2π
e
− (xkr )2

2(σkx)2

)
·

(
1

σk
y

√
2π
e
− (ykr )2

2(σky )2

)

·

(
1

σk
z

√
2π
e
− (zkr )2

2(σkz )2

)
(9)

D. Observations

To model the likelihood of observing the point cloud Y
and the images I, given a shape parameter vector s, we
reconstruct the surface f(x) from s using (4). We assume the
point cloud is a noisy approximation of the surface f, with
approximately zero-mean Gaussian noise. Hence, we model
the probability of observing the point set, given the current
mesh, as an exponential distribution on the sum-of-squared
distances of the model vertices to their nearest neighbors
in the point cloud. In practice, most stereo algorithms have
some systemic error in addition to noise, but we alleviate
this by using a truncation threshold on the nearest neighbor
distance in addition to using a prior.

We further assume the surface is approximately Lam-
bertian, and project the surface into both images and per-
form stereo matching during a refinement stage. Although
human skin can be both quite specular and translucent,
we counteract the effects through the statistical prior and
through matching techniques. We use robust matching costs
to account for outliers due to specularities and we explicitly
take self-occlusion into account. Our framework can be
extended to include additional occluders. We further use an
anisotropic second-order smoothing energy to regularize the
refinement. We define our likelihood as an exponential dis-
tribution, where because they are deterministically related,

P (I|r,Y) = P (I|s,Y) = P (I|f,Y) (10)

and
P (I|f,Y) ∝ exp(−EM (f,Y, IL, IR)) (11)

where EM is a matching cost defined in Section IV. The
matching depends on the point cloud in that the nearest
neighbor distance is used to determine how far to sample
during stereo refinement, when the mesh f is optimized with
respect to 11.

While a smoothness constraint is conceptually a prior,
i.e. the prior knowledge that the face is piecewise smooth,
because it is applied to the mesh vertices and not to the



wavelet coefficients, we treat it as part of the refinement
process, optimized in conjunction with the matching cost.

IV. THE ENERGY FUNCTION AND MINIMIZATION

In this section, we derive an energy or objective function
from our probability model, and describe how we minimize
that function. Our energy function consists of two parts,
again representing observation and prior of our model.

Our first data cost is the sum-of-squared distances of the
model vertices f to their nearest neighbors in the point cloud
Y , obtained as an initial estimate from a conventional stereo
algorithm. On initialization, we find the nearest neighbor of
each vertex in f. The energy is then

ENN =
∑

x

min (‖f(x)− yx‖ , τNN ) (12)

where yx ∈ Y is the nearest neighbor of f(x), and τNN is
a truncation constant to mitigate the effect of outliers, noise
and incomplete data (i.e. holes in the point cloud where the
initial stereo estimate could not reconstruct the surface).

Our matching energy EM is defined over the surface map
and the input images,

EM (f,Y, I) =
∑

i

∑
j 6=i

∑
x

wM (x)D(Ii, Ij , f(x)) (13)

where i, j ∈ [0, |I|−1] denote the each pair of reference and
matching images in the set, D is a point-wise dissimilarity
measure, and wM (x) is a per-vertex weight. The dissimilar-
ity D is defined as

D(Ii, Ij ,p) = 1−NCC(Ii(q), Ij(Hijq)) (14)

where NCC(·, ·) is the normalized cross-correlation (aver-
aged over the red, green and blue channels) of two image
patches containing an equal number of samples, Ii(q) de-
notes the image patch around point q, which is the projection
of p into image Ii, and Hij is the homography mapping a
point in the image plane of Ii to the plane tangent to the
surface at point p with normal n to the image plane of Ij .
This is given by

Hij = Kj

(
Rij −

tijnT

di

)
K−1

i (15)

where Ki and Kj are the intrinsic calibration matrices of Ii
and Ij , the matrix [Rij |tij ] transforms coordinates relative
to Ii to coordinates relative to Ij , and di is the depth of p
with respect to Ii. Thus, Hij projectively maps points in the
image patch surround q in image Ii, to the tangent plane to
the surface at point p, to the correspondging point in Ij .

The per-vertex weight is designed to reflect the reliability
of the dissimilarity or photo-consistency function D. As
described further below, the refinement stage iteratively takes
the current mesh f, and for each vertex f(x) with normal
n(x), samples the smoothing and photoconsistency functions
at points above and below the mesh vertex along the normal

direction. Let these sample points be denoted by pm, and
thus we have matching cost samples D(Ii, Ij ,pm), where
m is an index. Let D̂(x) = minmD(Ii, Ij ,pm) denote the
minimum dissimilarity or matching cost for a given vertex.
Then the matching weight is given by

wM (x) =
∑
m

(
D(Ii, Ij ,pm)− D̂(x)

)
(16)

which is greatest when there is one low miminum of the
matching cost, and the rest of the samples are high. Hence,
the weight is highest when the matching cost gives the most
distinctive information about the surface. We further use
depth-buffering to determine if a point is visible in both
the reference and matching images. If it is not, wM (x) is
set to zero.

For a smoothing energy term we use the distance of a
vertex to an average of the neighboring vertices. We first
compute the smoothed vertex position

f̄(x) =
wx(f(xl) + f(xr)) + wy(f(xu) + f(xd))

2(wx + wy)
(17)

where xl = (x−1, y), xr = (x+1, y), xu and xd are defined
similarly. The horizontal weight is defined as

wx = exp
(
− (‖f(xl)− f(x)‖ − ‖f(xr)− f(x)‖)2

)
and wy is defined similarly. This smoothing is a variation
of the one used by Beeler et al. [6] for disparity map
refinement. Because we have a quadrilateral mesh, we can
apply it to the vertex coordinates. The smoothing energy is
then

Esm(f) =
∑

x

∥∥f(x)− f̄(x)
∥∥ (18)

reflecting how each vertex in f deviates from the anisotropic
average of its neighbors (17).

The prior or regularization term in our energy function is
taken directly as the negative logarithm of the prior P (r).
That is,

Est(r) =
∑

k

(
(xk

r )2

2(σk
x)2

+
(yk

r )2

2(σk
y )2

+
(zk

r )2

2(σk
z )2

)
. (19)

We combine these to get our energy or objective function,

E(s) = wstEst(r) + wNNENN (f) + EM (f) + wsmEsm(f)
(20)

where f and r are related to s as before, and wst, wNN and
wsm are user-controlled parameters.

To minimize (20) we break the optimization into two
parts. We first use sampling methods based on the learned
distributions of our model parameters to minimize Estat

and ENN . As noted by Li et al. [8], we can serialize
the parameter sampling because the orthogonality of the
wavelet basis and the principal components allows us to
assume independence between parameters. This leads to a
complexity of O(PS) for P parameters and S samples



instead of O(PS) without the independence assumption.
We examine two sampling strategies: uniform sampling
and stochastic sampling. In the first case, we sample each
parameter (xk

r ,yk
r or zk

r ) uniformly within three standard
deviations (eg. ±3σk

x). In the second case, values of, for
example, xk

r are chosen at random from the distribution
N (0, σk

x).
After each sample value xk

r , the wavelet coefficient sk is
reconstructed using the PCA eigenvectors Uk and the mean
shape coefficient s̄k, then the face surface f is reconstructed
using (4).

One of the main drawbacks of statistical shape priors,
especially for face reconstruction, is that they produce overly
regularized results that do not deviate sufficiently from the
mean shape. This is particularly a concern for faces, where
much of the identifying detail is contained in finer scales.
Hence, after optimizing the first five levels of coefficients
using the sampling method described above, we follow
with an iterative mesh refinement stage that minimizes EM

and Esmooth together. Following refinement we transform
the surface back into the model parameters. We formulate
this two-stage optimization as iterative partial maximization,
where we optimize the model in terms of one part of the
energy function and then in terms of the other. The first
part is the combined energy of the statistical prior and the
nearest neighbor distance. The second part is the smoothing
and matching energies.

As mentioned above, refinement proceeds by sampling
along the normal directions for each vertex in the mesh.
Thus for mesh vertex f(x) with normal n(x), we have sample
points pm = f(x) +mδxn(x) for m = −Nr, . . . , Nr, where
δx is a user-controlled step size parameter. The sample
that minimizes the combination of smoothing and matching
energies is taken as the new vertex position. That is,

f(x)← arg min
m

Eref (pm)

where Eref is the per-vertex combined smoothing and
matching energy,

Eref (pm) = wsm

∥∥pm − f̄(x)
∥∥+ wM (x)D(Ii, Ij ,pm)

(21)
favoring smooth surfaces where matching information is
missing or unreliable. Refinement is performed by iteratively
sampling in this way for each reference-matching image pair
in succession.

V. EXPERIMENTS

This section documents our experimental validation of
our approach, including the implementation, and the results
obtained.

A. Implementation

Our implementation uses CUDA, OpenGL, OpenCV and
CLAPACK. Our images were captured using a Canon Rebel

EOS XTi 400D, a 10 Mpixel digital SLR camera, and
downsampled by a factor of two. For calibration we used
publicly available structure-from-motion software [26]. For
initial stereo estimates we used PMVS [27] and OpenCV’s
graph cut stereo [28].

We perform registration manually, selecting landmarks
first on the template face model, then selecting the same
points in the same order in the initial stereo/range data.
From this an initial estimate of the similarity transform
between the model space and the initial data is computed
using linear least-squares. While this is a major limitation
of our method in its current instantiation, this step could
be replaced by automatic mutli-view face detection and
localization in the input images, for example by a method
such as that of Koterba et al. [14]. Such an automated
registration method would likely be equally or more accurate
as manually selecting landmarks in noisy point-clouds. This
might also remove the need for the initial stereo estimate,
as the model could be fitted directly to the disparity space
images (DSI) of the input images.

For our wavelet we started with a base mesh of 2×3 and
subdivide eight times to get the full-resolution grid mesh of
129 × 257. We perform the resampling of the training set
using OpenGL and GLSL. Each vertex in the template mesh
is stereographically projected onto a plane aligned with the
front of the face. Then, each corresponding vertex in every
other mesh is mapped to the same position in the plane,
thus preserving correspondence. The initial stereographic
projection is performed on the CPU, but the resampling of
the meshes in the training set is performed on the GPU. This
makes the learning part of the approach very fast. To learn
from a training set of 100 faces takes only a few minutes,
plus the time to first perform the GPA to align the faces.

The (inverse) wavelet transform (4) must be performed
for every sample value of every sampled coefficient. In
our current framework, we optimize the first five levels of
coefficients (P = 561× 3 = 1683 model parameters) using
independent parameter sampling, with S = 50 samples per
parameter. This means the surface must be reconstructed
from the model parameters 84150 times, hence the speed of
the transform is crucial to the speed of the overall apprach.
In practice, some parameters have very small variation in
the database (eg. σk

x < 10−12) and we do not sample
those parameters, so the total number of inverse wavelet
transforms that must be performed is 60750 in our current
setup. Each transform takes 0.202ms using our CUDA-
based GPU implementation, for a total of 12.272s spent
reconstructing the surface. This is compared to slightly
over 1 ms per transform using a highly optimized CPU
implementation. (Note that with the dimensions we are
using, the entire wavelet data fits in the CPU cache, making
this virtually optimal CPU performance.) The GPU wavelet
transform splits the computation into blocks that overlap by
two vertices/coefficients on all sides, reads the coefficients



Figure 2. Left to right: input image, initial point cloud, reconstruction
before refinement (level 4), after refinement.

Figure 3. Left to right: input image, initial point cloud, reconstruction,
mean face for comparison. Note that the face is reconstructed in spite of
the fact that the subject is wearing glasses which causes severe problems
for the initial stereo estimate.

into shared memory, and performs the lifting operations in
shared memory. If the number of blocks required is less
than the number of multi-processors on the GPU then the
transform can be performed in-place, writing to the same
global memory it reads from. One evaluation of ENN takes
0.671ms, for a total of 41.550s over the entire algorithm. In
total, the parameter sampling takes just over 67s.

The refinement stage takes 0.794s for 200 iterations (per
reference-matching image pair), three samples per vertex per
iteration, and two images. It also breaks the computation
into overlapping blocks. For each vertex in each block, we
use a reference thread and a matching thread, which share
the computation. One thread computes the normal, while
the other computes the anisotropic average, both using the
neighboring vertices in shared memory. The reference thread
then samples the window in the reference image, while
the matching thread samples the window in the matching
image, each thread storing the samples in shared memory.
(We use 3 × 3 windows for NCC.) The remainder of
the NCC computation is divided between the two threads,
and the resulting matching cost for each sample saved for
computation of the per-vertex matching weight.

B. Results

Figure 2 shows the results of our reconstruction algo-
rithm applied to a stereo pair, with an initial point cloud
from a general stereo algorithm [27]. Despite the noise in
the original point cloud, the reconstruction after parameter
sampling (second from right) captures the shape of the
face with some artifacts due to the independence of the
shape parameters, while the post-refinement reconstruction
smooths the artifacts while preserving shape detail. Note
how the reconstruction captures the fact that the mouth is

Figure 4. Fitting the model to a laser scan. Left to right: point cloud,
reconstruction before refinement, after refinement, original mesh.

Figure 5. Fitting the model to a laser scan. Left to right: point cloud,
reconstruction before refinement, after refinement, original mesh.

slightly lower on the left side than on the right side, as in
the input image. Figure 3 shows another result, this time
with the initial point cloud from graph cuts [28]. It is again
quite noisy, and it also exhibits fronto-paralle bias. Note that
the subject is wearing glasses, and predictably the initial
point contains only outliers around the eyes. Nonetheless
our method constructs a plausible surface for the entire
face. The mean face is shown next to the reconstruction for
comparison. Note how the nose is elongated and the cheek
bones are more prominent in the reconstruction as in the
input image.

Figure 4 and 5 show the results of reconstruction by fitting
the prior model to laser-scan data. Since these point clouds
are more reliable than stereo data, we increase the weight
wNN . Note how the shape of the nose in Figure 4 is captured
accurately without the noise that is present in the original
mesh (far right). The reconstruction captures the shape of
the nose and cheek bones in both cases while smoothing the
surface and increasing the resolution. The noise or artifacts
in the reconstructions are along the outside of the face where
the prior is less reliable. Since there are no images to go
with these point clouds, the refinement consists only of
smoothing.

VI. DISCUSSION

We have presented a method for fast and robust model-
based stereo using a statistical wavelet shape prior. We
have demonstrated this approach for human faces using both
stereo and laser-scan data. The most interesting direction for
future work is to introduce a temporal term into the model
and use this framework for stereo tracking. Such an approach
would distinguish between tracking the changes in shape
from tracking the changes in position relative to the cameras.
This could be used to help avoid drift that occurs in optical



flow-based tracking. We currently register the initial stereo
data to the shape template with user selected landmarks, but
to automate this process is a natural avenue for future work.
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