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We propose a novel approach to automatically fill holes in triangulated models. Each hole is filled
using a minimum energy surface that is obtained in three steps. First, we unfold the hole boundary
onto a plane using energy minimization. Second, we triangulate the unfolded hole using a constrained
Delaunay triangulation. Third, we embed the triangular mesh as a minimum energy surface in R3.
When embedding the triangular mesh, any energy function can be used to estimate the missing data.
We use a variational multi-view approach to estimate the missing data. The running time of the method
depends primarily on the size of the hole boundary and not on the size of the model, thereby making

∗Partial results of this work appeared in the 3-D Digital Imaging and Modeling Conference 2007 [A. Brunton,
S. Wuhrer, C. Shu, Image-Based Model Completion, 3DIM 2007] and in the IEEE International Conference on
Shape Modeling and Applications 2009 [A. Brunton, S. Wuhrer, C. Shu, P. Bose, E. D. Demaine, Filling Holes
in Triangular Meshes by Curve Unfolding, SMI 2009].
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the method applicable to large models. Our experiments demonstrate the applicability of the algorithm
to the problem of filling holes bounded by highly curved boundaries in large models.

Keywords: Hole Filling, Multi-view Stereo, Space Curve Unfolding.

1. Introduction

The wide use of laser range sensors and other types of 3D sensing devices has produced
increasingly detailed 3D models. However, holes, due to a variety of reasons, are usually
present in models built from range scans. Some holes are caused by the intrinsic limitations
of the sensors. Others are the result of object self-occlusion, insufficient view coverage, and
shallow grazing angles. Davis et al. 10 give an account of holes and their causes in different
situations.

For many computer-aided design applications such as reverse engineering, holes are
unacceptable. The reason is that holes may lead to unexpected results in numerical simu-
lations such as finite element simulations. It is therefore crucial to fill these holes.

Many methods have been proposed for hole filling. The majority of them fill holes
by interpolating the nearby geometry 10. This method is only effective when the holes
are small. Manual, interactive tools are often used to fix large holes. To keep the surface
smoothness the same as the nearby areas, interactive methods were proposed in a way that
imitates image touch-up tools such as those found in Adobe Photoshop where users “cut
and paste” surface geometry from nearby areas 36.

We propose a novel approach to automatically fill holes in triangulated models. We as-
sume that the holes are bounded by a simply connected loop that is an unknot. That is, it can
be continuously deformed to a circle without introducing self-intersections. The hole can
be large and the boundary loop can be highly curved. We fill the hole with an approximate
minimum energy surface. A mimimum energy surface (MES) is a surface that minimizes a
given energy functional over all surfaces with fixed boundary b. For the examples shown
in this paper we use three energy functions: two simple Laplace based energies 39,24, and a
stereo-based energy that aims to fill the hole by optimally matching the surface to a given
set of input images 33. However, other energy functionals, for example a discrete Will-
more energy 5 or an energy to preserve smooth change in surface normal, could be used
instead. The complexity of our algorithm depends primarily on the complexity of the hole
boundary instead of on the complexity of the triangular mesh. Note that this is a significant
improvement over algorithms that operate on the full mesh because the complexity of the
boundary is often small even for large models.

To fill a hole bounded by a loop of boundary edges, the proposed approach proceeds as
follows. First, the boundary loop is gradually unfolded to a simple planar polygon. During
this unfolding, we constrain the motion such that the loop does not self-intersect. Sec-
ond, the simple planar polygon is triangulated using a constrained Delaunay triangulation
algorithm. The resulting triangulation contains all of the edges of the unfolded polygon,
does not add any Steiner points, and maximizes the minimum angle over all triangulations
that have the first two properties. Third, the triangulated patch is embedded in R3 using
the known boundary positions. As the ordering of the vertices is maintained during the
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unfolding, the resulting patch closes the hole. We refine the patch to have the same res-
olution as the surrounding surface. The interior vertices are positioned to approximate a
MES. Note that any energy function can be used to position the interior vertices. In this
paper we implement three types of MES. The first two minimize Laplace-based energies:
an efficient formulation of Laplacian smoothing as an optimization problem also known as
least-squares mesh 39, and discrete fairing using a second-order Laplacian energy 24.

For the third type of MES, we further propose a new image-based method for position-
ing the interior vertices. Given a set of calibrated input images showing the area of the hole,
the initial filling surface is deformed to fit the image data using a surface-oriented multi-
view stereo approach. This problem has a variational formulation – deforming a surface
such that it minimizes a photoconsistency energy function 16. It has been solved previously
by PDE-based method using either the level-set method 16,33 or mesh deformation 13,19.
In both cases, an initial, closed surface that encloses the object to be modeled is assumed
and the algorithm evolves until it converges to a minimal energy solution. We use a global
image-matching energy that decouples the energy itself from the surface, while still allow-
ing the energy gradient to be written in terms of the surface vertex positions. However,
the problem is an ill-posed one and often the algorithm is trapped in local minima. We
make use of the known boundary of the surface and solve a boundary-value problem. This
eliminates many spurious local minima because the boundary imposes strong constraints.
Furthermore, as we smooth the surface, occlusion and specularity, the two most prominent
problems for stereo, are alleviated.

2. Related Work

Geometric methods for filling holes in a mesh model interpolate the hole boundary or
extrapolate the surface geometry from the surrounding areas. Two types of representations
are used: volumetric representations and triangular meshes.

The volumetric representation discretizes the surface mesh into regular 3D grids or an
octree structure either locally or globally. Davis et al. 10 diffuse the geometry from the
hole boundary to the interior until the fronts meet. This method handles complex topolog-
ical configurations such as holes with islands. However, it may change the existing mesh.
Podolak and Rusinkiewicz 32 embed the incomplete mesh in an octree and use a graph cut
method to decide the connections between pairs of the hole boundaries. It resolves difficult
boundary topologies globally. Ju 21 constructs a volume using an octree grid and recon-
structs the surface using contours. Volumetric approaches work well for complex holes.
However, they are time consuming. Furthermore, the topology of the generated result may
be incorrect in case of large holes.

The triangle-based approaches to hole filling work directly on the surface mesh. The
advantage of working directly with the surface mesh is that the rest of the surface is un-
changed when the holes are filled. Let the mesh contain n vertices and let the mesh bound-
ary contain m vertices. This class of algorithms usually only deal with holes bounded by a
simple loop that is unknot. That is, holes with islands can usually not be filled using these
algorithms.
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Barequet and Sharir 4 give an O(n + m3) algorithm for triangulating a 3D polygonal
boundary which represents the boundary of a hole. When triangulating the hole boundary,
a divide and conquer technique is used. No new vertices are added to the mesh. Liepa 28

extends this method to include a surface fairing step. The high complexity of the algorithm
limits the use of this method to small meshes. Jun 22 proposes another method based on
subdividing the hole into simple regions. Each simple hole is filled with a planar triangu-
lation. This algorithm is not guaranteed to find a result. Li et al. 27 extend the method to
achieve higher efficiency and stability. However, the algorithm is not guaranteed to find a
result for arbitrary holes.

Dey and Goswami 11 use a Delaunay triangulation-based method, called Tight Cocone,
in which tetrahedrons are labeled as in or out. In this method, no extra vertices are added
to the mesh. The method is shown to perform well to fill small holes. However, the method
is inappropriate to fill large holes because the geometry is extrapolated from the nearby
boundary.

Carr et al. 7 use radial basis functions (RBF) to compute an implicit surface covering
the hole. One RBF is computed for the full surface. Hence, the complexity of the algorithm
is a function of n. That is, in cases where the surface is large and the hole boundary is small,
the algorithm is inefficient. To overcome this problem, Branch et al. 6 extend this approach
to use local RBF for each hole. Chen et al. 8 use an RBF-based approach to fill holes and
recover sharp features in the hole area.

Tekumalla and Cohen 40 propose an approach that fills the hole by repeatedly using
moving least squares projection. The approach iteratively adds layers of triangles onto the
boundary until the hole is filled. Zhao et al. 43 fill holes in a similar way. After finding an
initial triangulation by iteratively adding layers to the boundary, the position of the vertices
is optimized by solving a Poisson equation. The goal of the optimization is to achieve
smooth normal changes across the mesh.

Pernot et al. 31 propose a non-iterative approach that proceeds in three steps. First, the
hole contour is cleaned by removing triangles with large aspect ratio. Second, the hole is
filled with a triangulated ellipse deformed to touch the boundary. Third, the interior ver-
tices of the triangulated ellipse are deformed to minimize an approximate curvature varia-
tion with the surrounding mesh. The main disadvantage of this method is that degenerate
triangles may occur if the shape of the hole is far from elliptical.

Lévy 26 proposes a general technique for surface editing based on global parameteri-
zation. The method can fill holes in a surface by parameterizing the surface in the plane,
filling the hole in the parameter domain, and placing the added vertex coordinates in three
dimensions to approximate a MES. Unlike the previously discussed approaches, this ap-
proach can fill holes with arbitrary boundaries. However, the complexity of the algorithm is
a function of n. That is, in cases where the surface is large and the hole boundary is small,
the algorithm is inefficient. Furthermore, it is hard to ensure that no global overlap occurs
during the parameterization of an incomplete mesh. If the parameterization overlaps, then
the holes cannot be filled.

In this paper, we propose a novel approach to fill holes in triangular meshes. Our ap-
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proach is similar to the approach by Lévy 26 in that we construct a planar parameteriza-
tion. However, unlike Lévy, we do not parameterize the full mesh in the plane, but only the
boundary of the hole. Note that this restricts our algorithm to operate on holes bounded by
simple loops. However, if the triangular mesh and the boundaries of the holes are given,
our algorithm is independent of the complexity n of the mesh and depends primarily on
the complexity m of the hole boundary. If the boundaries of the holes are not given, our
algorithm can extract the boundaries in O(n) time. Furthermore, if our algorithm finds a
solution, then the parameterization of the boundary is not self-intersecting.

This parameterization step decouples the topology of the filled hole from its geometry.
After the parameterization is found, we embed the triangular path filling the hole using
a minimal energy surface. One of the energy minimizations demonstrated in this paper
is based on multi-view stereo. That is, we demonstrate that 2D images can be used as
geometry recording data complementary to the range data. Since we can take digital images
with much more flexible viewpoint selections, we can record those areas of the object that
are difficult for the range sensors to reach.

A number of authors have used 2D images to enhance the quality of the 3D models gen-
erated from range scans. Dias et al. 12 fuse stereo reconstruction with 3D points obtained
from range sensors. Abdelhafiz et al. 1 and El-Hakim et al. 14 combine range image with
photogrammetric reconstructions. The vision-based approach of Dias et al. needs points
from range images to be close to the reconstructed stereo points. Therefore it does not
work well with large holes. The photogrammetric approach needs a lot of manual interac-
tions. Two techniques based on shape-from-shading have been proposed. Xu et al. 42 use
2D images captured for textures to fill holes in a shape-from-shading scheme. They learn
the surface normal from the existing mesh geometry. Recently, Panchetti et al. 30 propose
an extension of the approach by Pernot et al. 31 that uses a shape-from-shading method
based on a single photograph of the area covering the hole to position the interior vertices
of the triangulated ellipse found by Pernot et al. 31. However, the single-view approach
to reconstruction has intrinsic limitations in handling non-Lambertian surface and difficult
lighting conditions. To overcome these problems, we propose the use of multi-view stereo
to infer the geometry of the missing surface.

There is an extensive literature for multi-view stereo. Seitz et al. 35 give a recent survey.
Our work is closely related to the surface-based approaches such as in 13,15,16. We use a
deformation energy very similar to the one used for the surface deformation step of the
recent work by Hiep et al. 19. Unlike previous multi-view stereo approaches, we explicitly
use boundary conditions.

3. Overview

Given a triangular manifold S with n vertices with partially missing data, we aim to fill the
holes of S by triangular manifold meshes of minimum energy.

We first identify the boundaries of holes of S. Since S is a manifold, we can find the
edges of S bounding a hole as edges that touch exactly one triangle. We fill each hole
separately. Filling a hole bounded by m edges with a triangulation that does not have self-
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intersections may require an exponential number of Steiner points in m 18. Furthermore,
the problem of deciding whether such a triangulation exists is an NP -complete problem 3.
Hence, we do not require that the mesh avoids self-intersection. However, unlike the ap-
proach by Barequet and Sharir 4, we add Steiner points to the mesh to reduce the occur-
rence of self-intersections.

Our approach proceeds in three steps. First, the boundary loop is gradually unfolded
to a simple planar polygon. During this unfolding, the loop does not self-intersect. Sec-
ond, the simple planar polygon is triangulated using a constrained Delaunay triangulation
algorithm. Third, the triangulated patch is embedded in R3 using the known positions of
the boundary vertices, refined to match the resolution of the surrounding mesh, and the
interior deformed to approximate a MES. During this step, any suitable energy function
can be used.

We demonstrate three examples of suitable energy functions. Two smoothly interpolate
the geometry around the hole boundary. We also demonstrate the use of side information
with a stereo-matching energy, aiming to embed the triangulated patch to optimally match
a given set of calibrated input images. The following sections give a detailed description
of these steps.

4. Unfolding the Boundary

We aim to unfold a boundary loop in R3 into a simple planar polygon with similar curvature
as the boundary loop by gradually moving the vertices of the loop without causing any self-
intersections of the loop. This is only possible if the original loop is an unknot. Hence, in
the following, we assume that an unknot boundary loop is given.

The aim is to unfold the loop to a planar polygon. Minimizing an energy that encour-
ages all sets of four vertices on the loop to be planar is computationally expensive because
it takes O(m4) time to evaluate the energy. Hence, we minimize an energy that encourages
all sets of four consecutive vertices on the loop to be planar. This energy can be evaluated
in O(m) time. As we unfold the curve gradually, we expect that the resulting planar curve
has similar curvature as the boundary loop. In particular, we expect that concavities of the
curve are preserved. Maintaining concavities helps to obtain a triangulation that does not
self-intersect.

Let p0, p1, . . . , pm−1 denote them vertices of the boundary loop. To unfold the bound-
ary loop, we aim to minimize EPE =

∑m−1
i=0 dPE(pi) subject to the constraint dMD > ε

for an arbitrary threshold ε. We specify these terms below:

dPE(pi) = ∠(ni, n(i+1)mod m), where

ni = (pi − p(i+1)mod m)× (p(i+2)mod m − p(i+1)mod m)

and ∠(a, b) denotes the angle between the two vectors a and b. An illustration of dPE(pi) is
shown in Figure 1. Here, dMD denotes the minimum distance between any two segments
on the boundary loop, which can be computed in O(m2) time. The minimum distance
between two segments can be computed using dot products 25.
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Fig. 1. Illustration of the distance dPE(pi). In the illustration, we assume that i + 3 < m. Otherwise, all
subscripts need to be taken modulo m.

Note that we can compute the gradient of EPE analytically, which allows to minimize
EPE using a gradient descent approach. However, experimental evidence suggests that
such an approach is likely to get trapped in a local minimum.

Therefore, we solve the minimization problem using simulated annealing 23, which
proceeds by trying random steps. If the new solution achieves lower energy than the previ-
ous one, the step is always accepted. Otherwise, the step is accepted according to a prob-
ability distribution that depends on the time that elapsed since the algorithm was started.
In the beginning of the algorithm, steps that increase the energy are more likely to be ac-
cepted than in the later stages of the algorithm. This is analogous to the way liquids cool
and crystallize. We use the approach outlined by Press et al. 34 that uses the Boltzmann
distribution to decide whether a step is accepted or rejected. This approach accepts a new

step with probability exp(−(Et+1
P E −Et

P E

kT ), where Et
PE is the energy in the last step, Et+1

PE

is the energy in the current step, k < 1 is a constant that describes the rate of cooling, and
T is the start temperature. We enforce the constraint dMD > ε by restricting the maximum
step size of the algorithm to max(ε, dMD).

As outlined above, a solution that achieves lower energy than the previous one is always
accepted. In this case, we choose the next random step close to the current one. Namely,
we move each point along a direction within 10 degrees of the previous random direction.

After the simulated annealing step, we force the boundary loop to be planar by project-
ing it to its best-fitting plane. If it is possible to move the boundary loop to the projection
by linear motions of the vertices without introducing self-intersections, we accept the un-
folding. Otherwise, we restart the simulated annealing process. If we cannot find a solution
after starting the simulated annealing process 100 times, we consider the algorithm inap-
propriate to fill the hole.

5. Triangulating the Planar Patch

After unfolding the boundary as outlined in the previous section, we aim to triangulate the
simple planar polygon. We use the method and available code by Shewchuck 37 to com-
plete this step. The algorithm computes a constrained Delaunay triangulation of the input
polygon. A constrained triangulation of a polygon is a triangulation that is constrained
to contain each of the edges of the polygon. That is, no Steiner points are added along
the edges of the polygon. The constrained Delaunay triangulation of a polygon has the
property that it maximizes the minimum angle over all constrained triangulations of the
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polygon. During the triangulation, we do not add Steiner points.

6. Embedding the Triangular Mesh in R3

The previous section constructs a planar triangular mesh. This section outlines how we
move this mesh to the boundary of the hole to obtain a watertight model.

First, we embed the mesh in R3 by moving the vertices of the mesh to their correspond-
ing vertices on the hole boundary. As the order of the vertices along the boundary polygon
is maintained during unfolding, this yields a watertight model, and, as we expect concavi-
ties to be preserved during the gradual unfolding, we expect to obtain a triangulation that
does not self-intersect. For the non-pathological examples shown in our experiments, no
self-intersections occur.

The result of this step is similar to the result by Barequet and Sharir 4. Our approach
takesO(m2cd) time to compute this result, where c is the number of unfolding steps during
each SA run and d is the number of SA runs required to find the result, while the approach
by Barequet and Sharir takesO(m3) time. The number of simulated annealing steps counts
how often we need to restart the simulated annealing process while the number of unfolding
steps counts the number of random steps taken in one simulated annealing step.

The resolution of the filling mesh may be different from the resolution of the surround-
ing mesh, so we refine the mesh using the approach by Chew 9. Steiner points are added
such that the Delaunay triangulation of the added points is guaranteed to have all the angles
between 30◦ and 120◦ and where the edge lengths are at most twice as long as the edges of
the mesh surrounding the hole. The running time of the algorithm is linear in the number
of generated triangles.

Finally, we embed the interior vertices PInt of the mesh, such that PInt minimize an
energy function. In this paper, we use three energy functions: a Laplacian energy to obtain
a least-squares mesh 39, a discrete fairing energy 24, and a photoconsistency energy based
on images of the objects. We first review the two simple Laplace based energies and then
turn our attention to the newly proposed stereo-based energy. Note that these energies can
be replaced by any desired energy function. For example, different boundary conditions
can be used, as could different smoothing energies such as the Willmore energy 5.

6.1. Laplacian Energy

To obtain a MES using the Laplacian energy, the newly added interior vertices of the mesh
filling the hole are repositioned to minimize the area of the triangular mesh subject to
the boundary constraints provided by the positions of the boundary vertices. This can
be achieved by repeatedly applying Laplacian smoothing because Laplacian smoothing
is equivalent to minimizing the surface area 20.

To improve the efficiency of the algorithm, we formulate Laplacian smoothing as an
optimization problem. For each vertex p of the mesh, define

U(p) =
1

|N1(p)|
∑

q∈N1(p)

q − p,
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whereN1(p) is the 1-ring neighborhood of p and |N1(p)| is the cardinality of the setN1(p).
We aim to minimize

EL =
∑

p∈PInt

(U(p))2
,

where PInt denotes the set of interior vertices of the mesh.
We can write EL as a matrix product and compute the gradient of EL with respect to

all of the interior vertices explicitly. Let S denote a k × k matrix with entries

Si,j =


−1 if i = j,

1
|N1(p)| if (i, j) ∈ E,
0 otherwise,

where k denotes the number of vertices in PInt andE denotes the edge set of the triangular
patch. Let X = [p0p1 . . . pk−1]T denote the k × 3 matrix containing the coordinates of
PINT . Then, EL = tr((SX)(SX)T ), where tr(X) denotes the trace of the matrix X .
Hence, the gradient of EL with respect to X is ∇EL = 2STSX . This allows us to solve
the optimization problem using a quasi-Newton method 29.

Note that minimizing EL is equivalent to computing a least-squares mesh 39.

6.2. Discrete Fairing

To obtain a MES using discrete fairing, we minimize a second-order Laplacian energy. For
each vertex p of the mesh, we compute U(p) as before. Next, compute for each interior
vertex of the mesh

U2(p) =
1

|N1(p)|
∑

q∈N1(p)

U(q)− U(p).

We aim to minimize the energy

EDF =
∑

p∈PInt

(
U2(p)

)2
.

As before, we can express EDF in matrix form as EDF = tr((SSX)(SSX)T ) and
compute the gradient∇EDF = 2(SS)T (SS)X . Note that in this case, the matrices S and
X contain information about all the points in PINT and about all neighbors of PINT in
the original mesh. Hence, the dimensions of the matrices are greater than k. We minimize
this energy using a quasi-Newton method 29.

6.3. Photoconsistency

This section describes how we reposition the interior vertices PInt using a multi-view
stereo method. The main contribution of this section is using the hole boundary information
given by the laser range data to formulate the multi-view stereo problem as a boundary
value problem for constrained surface deformation under photoconsistency energy terms.
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The input to the deformation algorithm is a watertight surface consisting of the scan
S with the holes filled using the initial mesh P as described above and a set of k input
images I1, . . . , Ik viewing the region in which S is incomplete. We further assume that the
calibrations of I1, . . . , Ik are known. The surface P is deformed with the goal to minimize
the matching cost over all of the images viewing P .

We take our matching cost from Pons et al. 33. The matching term for images Ii and
Ij is computed by reprojecting the matching image Ij into camera i and measuring the
dissimilarity of the two. That is, for the surface P

Mij (P ) = M |Ωi∩Πi(Pj)

(
Ii, Ij ◦Πj ◦Π−1

i,P

)
where M is a dissimilarity measure, Ωi is the domain of Ii, Pj is the portion of P that
is visible in Ij , Πi is the perspective projection calibrated for camera i, and Π−1

i,P is the
reprojection from camera i onto P . The final term, Ij ◦ Πj ◦ Π−1

i,P , is the image predicted
by reprojecting Ij into camera i via the surface P . Henceforth, we will denote the predicted
reprojection of the matching image by Ĩ . We use as dissimilarity measure the sum of the
squared differences over a small window surrounding each pixel location. Pons et al. derive
the gradient ∇Mij (P ) (p) of the matching term for a location p on P as

∇Mij = −δPi∩Pj (p)
[
∂2M (pi)DIj (pj)DΠj (p)

di

z3
i

]
n

where ∂2M (pi) is the derivative of the dissimilarity measure with respect to its second
argument, DIj and DΠj indicate the Jacobian matrices of the respective functions, di and
zi are the displacement and depth relative to camera i, and n is the outward surface normal.
The Kronecker delta δPi∩Pj maintains that the gradient is zero in regions not visible from
both cameras.

The matching cost of P over all images viewing P is EPC =
∑

i

∑
jMij (P ), where

the indices 1 ≤ i, j ≤ k. Hence, ∇EPC =
∑

i

∑
j ∇Mij (P ) (p).

During the minimization, we restrict the boundary vertices of P not to move. Since
we know the derivative of the cost function in closed form, we can formulate the problem
as a boundary value problem and solve it using a quasi-Newton method. The method we
use to minimize the is the cost function is the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LSBFGS) scheme 29.

We efficiently implemented the calculation of the predicted image, the matching cost,
and the matching gradient using GPU programming. In our implementation, we use nearly
minimal data transfer between GPU and CPU to implement an efficient interface between
computing the matching cost and using a FORTRAN LBFGS solver 44.

To avoid noise in the result, we perform 100 diffusion steps after the algorithm termi-
nates.

7. Experiments

This section presents experiments using the algorithm presented in this paper. The ex-
periments were conducted using an implementation in C++ using OpenMP on an Intel
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Duo-Core 2.4GHz with 3GB of RAM and an NVIDIA GeForce 7300LE GPU. We set
k = 0.9, T = 0.5, and ε = 10−5 in all of our experiments. In all of the figures showing
holes in the models, back faces are shown in blue.

Although the results vary due to the random component in the unfolding step, we found
the variation to be small. The reason is that the energy minimization converges to the same
minimum if started from similar starting positions.

First, we demonstrate the applicability of the curve unfolding technique to highly
curved boundaries. Second, we demonstrate the advantages of embedding the triangular
patch to optimally match a given set of calibrated input images.

7.1. Unfolding Technique

This section focuses on the applicability of the unfolding technique for hole filling applica-
tions. When embedding the meshes in R3, we only use the simple Laplace based energies
discussed above.

We first apply the algorithm to holes arising from the limitations of range scanners.
The first experiment fills the holes present in the scan of a chicken model. The model was
scanned using a ShapeGrabber laser range scanner. The scanned model contains 135233
vertices. The algorithm filled eight holes with a total of 666 vertices on the boundaries.
The model along with the filled holes is shown in Figure 2. The model is grey and the filled
holes are colored. Figures 2 (a) and (b) show the front and back of the chicken with five
and three holes respectively. The most complex of the five holes on the front is located
underneath the little chicken and shown in detail in Figure 2 (c). Another complex hole
on the front of the chicken is located under the eye and shown in detail in Figure 2(d).
Figures 2 (e) and (f) show large complex holes at the back base of the chicken model. Our
algorithm took the longest to fill the two highly curved holes shown in Figure 2 (f). We can
see that the proposed algorithm fills all of the holes present in the scan with approximate
MES of similar resolution as the surrounding mesh.

The second experiment fills the holes present in a scanned model of a kitten available
at the Aim@Shape data base a. The model has genus one and contains 135276 vertices.
The algorithm filled 11 holes with a total of 856 vertices on the boundaries. The model
along with the filled holes in shown in Figure 3. As before, the model is shown in grey and
the filled holes are colored. Note that the proposed algorithm is independent of the genus
of the model and can be used to fill holes in models of arbitrary genus.

ahttp://shapes.aimatshape.net/releases.php
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Chicken model filled by minimizing EL. (a): Front view of the chicken with five filled holes. (b): Back view
of the chicken with three filled holes. (c): Detail view of the filled hole under the little chicken. (d): Detail view of
the filled hole under the eye. (e): Detail view of a filled large hole at the base of the model. (f): Detail views of
two filled complex holes at the base of the model.
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Fig. 3. Kitten model filled by minimizing EDF .

The third experiment based on laser range scans fills the well-known holes present in
the Stanford bunny 41. There are 5 holes and they contain 79 vertices total. We fill the holes
while minimizing EL. Four of the holes before and after filling are shown in Figure 4.

(a) (b)

Fig. 4. Stanford bunny model filled by minimizing EL. (a): Four of the holes in the bunny model. (b): Filled holes.

We next apply the algorithm to a number of artificial holes. We created holes of large
curvature in complete models to show the applicability of our algorithm in this case. The
first experiment fills the hole present in the armpit of a human model. The hole boundary
has high curvature. The initial hole as well as the result of our algorithm are shown in
Figure 5.

The following three experiments fill holes present in the head of a human model. The
first hole is shown in Figure 6. The hole is large and the hole boundary is highly curved.
Nonetheless, our algorithm finds a visually pleasing solution.

The second hole is shown in Figure 7. The hole is large. The hole boundary is highly
curved and highly twisted. Nonetheless, our algorithm finds a visually pleasing solution.

The third hole is shown in Figure 8. The hole is large. The hole boundary is curved in
all three dimensions. Nonetheless, our algorithm finds a visually pleasing solution.

Finally, we fill an artificial hole in the head of an alien model from the Princeton Shape
Benchmark 38 shown in Figure 9. The hole covers an area where the original model con-
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5. Armpit model. (a): Hole in the armpit of a human model. (b): Unfolded mesh. (c)-(e): Final embedded
mesh obtained by minimizing EL. (f)-(h): Final embedded mesh obtained by minimizing EDF .

(c) (d) (e)

(a) (b) (f) (g) (h)

Fig. 6. Head model 1. (a): Hole in the head of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh
obtained by minimizing EL. (f)-(h): Final embedded mesh obtained by minimizing EDF .

tains a crease. Note that the crease is recovered by the hole filling algorithm if EDF is
used.
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(c) (d) (e)

(a) (b) (f) (g) (h)

Fig. 7. Head model 2. (a): Hole in the head of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh
obtained by minimizing EL. (f)-(h): Final embedded mesh obtained by minimizing EDF .

(a) (b) (c) (d) (e)

Fig. 8. Head model 3 filled by minimizing EDF . (a): Hole in the head of a human model. (b): Unfolded mesh.
(c): Final embedded mesh. (d): Filled hole. (e): Detail view of the filled hole.

Fig. 9. Alien model filled by minimizing EDF .

7.2. Stereo-based Embedding Energy

This section focuses on using the stereo-based embedding energy detailed in Section 6.3
to reconstruct the geometry of the missing surface.

We first apply the algorithm to an artificial hole in the Armadillo data set. The original
model is from the AIM@SHAPE repository b. The mesh contains 171011 vertices and
the artificial hole contains 190 vertices on the boundary. We applied a striped texture to
the model and captured six synthetic images of the complete model before cutting the
hole. One of the images is shown in Figure 10. The model with filled holes is shown in

bhttp://shapes.aimatshape.net/releases.php
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Figure 11. The figure shows the model in grey and the filled holes minimizing EPC , EL,

and EDF , respectively, both in grey and using a color coding. For each point on the filled
hole, we compute the signed Euclidean distance to the nearest vertex on the ground truth
model. A distance of zero is shown in green. For points outside the ground truth surface,
the color is linearly interpolated from green to red as the distance increases. For points
inside the ground truth surface, the color is linearly interpolated from green to blue as the
distance increases. Table 1 gives statistics of the unsigned error. From both the figure and
the table, we can see that the filled hole minimizingEPC is the most accurate when texture
is used. When no texture is used when creating the images, EL outperforms EPC . This
shows that meaningful texture information is crucial for this method.

Fig. 10. An input image for the armadillo experiment.

Fig. 11. Armadillo model. Top shows geometry of the models and bottom shows errors using color coding. Ground
truth is shown on the left. The three images on the right show the filled hole using EPC (striped texture), EL,

and EDF (from left to right).

Second, we tested the algorithm using the scanned surface of the chicken shown in Fig-
ure 2. The model was scanned using a ShapeGrabber laser range scanner. We obtained 11
images of the model using a Canon Powershot A520 4 mega-pixel camera. We calibrated
the images by manually selecting features on the model and in the images and computing
the projection matrix using the direct linear transform (DLT) algorithm 17 . The result is
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Embedding Min squared error Max squared error Mean squared error
EPC 0.0 1.51 0.31
with striped texture
EPC 0.0 2.06 0.60
without texture
EL 0.0 1.83 0.52
EDF 0.0 1.99 0.89

Table 1. Error statistics for the armadillo model.

shown in Figure 12. The detail view on the right of Figure 12 shows ridges recovered from
the information provided by multi-view stereo.

Fig. 12. Chicken model filled by minimizing EPC .

7.3. Running times

This section gives the running times of the newly presented algorithm. The running times
of the experiments are given in Table 2. We average the running time over 10 runs. Note that
due to the random component in simulated annealing, the running times of the unfolding
step during the 10 runs vary significantly. The running time of the unfolding step depends
on the number of times simulated annealing is restarted and on the number of steps required
to unfold the boundary. The running time of the embedding step depends on the number
of Steiner points added to the triangular mesh that fills the hole. When EPC is minimized,
the running time of the embedding step also depends on the number and dimensions of the
input images.

The efficiency of the unfolding step may be improved by using a more sophisticated
simulated annealing technique than the one described by Press et al. 34 .

7.4. Comparison to ReMESH

This section compares the results obtained using our approach to the results obtained using
ReMESH 2. ReMESH implements the algorithm proposed by Liepa 28, which first trian-
gulates the polygonal hole boundary and then performs a surface fairing step. Figure 13
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Model n h m d U T (EL) T (EDF ) k T (EPC)

Armpit 9951 1 35 4.8 3 < 1 < 1 - -
Head 1 1177 1 33 2.0 1 < 1 < 1 - -
Head 2 1189 1 53 2.9 2 < 1 < 1 - -
Head 3 1157 1 63 16.4 2 1 1 - -
Bunny 1494 4 79 1.0 1 1 1 - -
Alien 6815 1 26 1.0 1 < 1 < 1 - -
Armadillo 171011 1 190 1.0 6 20 73 6 86
Chicken 135233 8 666 8.4 344 6 156 11 4648

Table 2. Running times in seconds. The number of vertices in the model is denoted by n, the number of holes in
the model is denoted by h, the number of vertices on the hole boundary is denoted by m, the number of simulated
annealing steps is denoted by d, and the number of input images is denoted by k. The running times are denoted
as follows: U denotes the total time required to unfold the holes, T (EL) denotes the embedding time when EL is
minimized, T (EDF ) denotes the embedding time when EDF is minimized, and T (EPC) denotes the embedding
time when EPC is minimized. The times for the armadillo model are achieved when the striped texture is used.
All unfolding times are averaged over 10 runs. For models with multiple holes, d is averaged over all holes.

shows the results of using ReMESH to fill the holes in the chicken model. The mesh is
shown in grey and the filled holes are shown in green. Note that the results are of similar
quality as the ones obtained by our method shown in Figure 2. For most models presented
in this paper, ReMESH obtains similar results as our method when EDF is minimized.
ReMESH fails for the kitten model. ReMESH is currently faster than our method, since
our implementation of the unfolding step is not optimized. However, our method has lower
asymptotic complexity.

Furthermore, unlike our method, ReMESH is purely geometry-based and cannot ac-
commodate energy functions that take side information, such as images, into account.

Fig. 13. Holes in chicken scan filled by ReMESH.
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8. Conclusion

We presented a novel approach to automatically fill holes in triangulated models. The ap-
proach fills the hole using a minimum energy surface that is obtained by unfolding the hole
boundary into the plane using an energy minimization approach. The planar curve is then
triangulated and embedded to the three-dimensional position of the boundary loop. In this
paper, we embed the triangular patch as a minimal surface. We propose a new stereo-based
energy that aims to optimally match the triangular patch to a given set of input images.
Note that this could be replaced by a prior distribution of the surface’s geometry to embed
the triangular patch. We leave this for future work.

The energy used to unfold the boundary loop encourages all sets of four consecutive
vertices on the loop to be planar. This energy can be evaluated efficiently in O(m) time.
We use simulated annealing to minimize this energy. We leave applying more sophisticated
SA variants to this problem for future work.

Finally, we summarize some limitations of our approach:

• The approach can only fill holes bounded by a simple unknot boundary. That
is, holes with islands and holes that touch in a point cannot be filled using this
approach.

• The approach unfolds the hole boundary using simulated annealing. This method
is not guaranteed to find a solution and fails for highly twisted curves. This type
of curve is unusual in practical applications.
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