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Abstract

Consider a directed rooted treeT = (V ,E) of maximal degreed representing a collectionV of web pages connected v
a setE of links all reachable from a source home page, represented by the root ofT . Each leaf web page carries a weig
representative of the frequency with which it is visited. By adding hotlinks, shortcuts from a node to one of its descend
are interested in minimizing the expected number of steps needed to visit the leaf pages from the home page. We give(N2)

time algorithm for assigning hotlinks so that the expected number of steps to reach the leaves from the root of the
mostH(p)/(log(d +1)− (d/(d +1)) logd)+ (d +1)/d, whereH(p) is the entropy of the probability (frequency) distributi
p = 〈p1,p2, . . . , pN 〉 on theN leaves of the given tree, i.e.,pi is the weight on theith leaf. The best known lower bound fo
this problem isH(p)/ log(d + 1). We also show how to adapt our algorithm to complete trees of a given degreed and in this
case we prove it is optimal, asymptotically ind.
 2004 Elsevier B.V. All rights reserved.

Keywords:Algorithms; Hotlink; Probability distribution; Web; Tree

1. Introduction
ro-
m-

NCS,

u

d
the-
s.

re-
au-
ign

ges,
an

terns
ing
the
lev-
es.

ed

erved
✩ A preliminary version of this paper has appeared in the p
ceedings of ISAAC 2001, Christchurch, New Zealand, Dece
ber 19–21, 2001, Peter Eades and Tadeo Takaoka (Eds.), L
Vol. 2223, Springer, Berlin, 2001, pp. 756–767.

* Corresponding author.
E-mail addresses:kranakis@scs.carleton.ca (E. Kranakis),

dkrizanc@wesleyan.edu (D. Krizanc), shende@crab.rutgers.ed
(S. Shende).

1 Research supported in part by NSERC (Natural Sciences an
Engineering Research Council) of Canada and MITACS (Ma
matics of Information Technology and Complex Systems) grant

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.01.012
In an attempt to enhance the experience and
duce the latency of the average user, a number of
thors have suggested ways of improving the des
of websites, such as promoting and demoting pa
highlighting links, and clustering related pages in
adaptive fashion depending on user access pat
[6,12]. In this paper we consider the strategy of add
“hotlinks”, i.e., shortcuts from web pages at or near
home page of a site to popular pages a number of
els down in the (generally directed) network of pag

We model a website as a rooted directed treeT =
(V ,E) whereV is a collection of web pages connect

.
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by a setE of links. We assume that all web pages are
reached starting from the root of the tree, representing
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Theorem 1 [2]. Consider an arbitrary rooted tree of
maximal degreed . For any probability distribution
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the home page of the site and that users are intere
in accessing information stored at the leaf web pa
Each leaf carries a weight representative of the
quency with which it is visited, i.e., its popularity. Ou
goal in adding hotlinks (directed edges from a no
to one of its descendents) is to minimize the expec
number of pages a user would visit when starting
the root and attempting to reach a leaf. We assum
user will always follow a hotlink(u, v) if after reach-
ing u he or she wishes to reach a leaf that is a des
dent ofv. Note that this implies that adding hotlink
to a tree results in a new tree, not a general direc
graph. We restrict ourselves to the case where at m
one hotlink is added per node, but our results can
extended to the case where more than one hotlink
be added per node.

Consider a rooted directed treeT with N leaves and
of maximal degreed . LetT A be the tree resulting from
an assignmentA of hotlinks. The expected number
steps from the root to find a web page on a leaf is gi
by the formula

E[T A,p] =
∑

i is a leaf

dA(i)pi, (1)

wheredA(i) is the distance of the nodei from the root
in T A, andp = 〈pi : i = 1, . . . ,N〉 is the probability
distribution on the leaves of the original treeT .
We are interested in finding an assignmentA which
minimizesE[T A,p].

An lower bound onE[T A,p] was given in [2]
using information theory. LetH(p) be the Entropy
(see [1]) of the probability distributionp = 〈pi : i =
1, . . . ,N〉, which is defined by the formula2

H(p) =
N∑

i=1

pi log(1/pi). (2)

A tree of maximal degreed can be thought of as th
encoding of the leaves with thed-symbol alphabe
0,1, . . . , d − 1. Adding a hotlink increments th
alphabet by a single symbol to form an alphabet w
d + 1 symbols. Using this and the theory of pre
codes the following result can be proved (see [1,2]

2 Throughout this paper log denotes logarithm in base 2 an
logarithm in basee.
p = 〈p1,p2, . . . , pN 〉 on the leaves of the tree an
any assignment of at most one hotlink per node
the expected number of steps to reach a web p
located at a leaf from the root of the tree is at lea
H(p)/ log(d + 1).

Our main result is the following theorem that giv
an upper bound on the expected number of step
reach a web page.

Theorem 2. Consider an arbitrary rooted tree o
maximal degreed . There is an algorithm, quadrati
in the number of vertices of the tree, which for a
probability distributionp = 〈p1,p2, . . . , pN 〉 on the
leaves of the tree assigns one hotlink per node in s
a way that the expected number of steps to reach a
of the tree from the root is at most

H(p)

log(d + 1) − (d/(d + 1)) logd
+ d + 1

d
.

In Section 4 we also indicate how to adapt o
algorithm to complete trees of a given degreed and
show our algorithm is optimal asymptotically ind .

The idea of “hotlinks” was suggested by Perkow
and Etzioni [12] and studied earlier by Bose et al.
for the special case of a website represented by a c
plete binary tree. Recently Matichin et al. [11] an
lyze the greedy algorithm for this problem on trees a
prove that it has approximation ratio 2 independen
of the degreed of the tree. In addition, Gerstel et al. [8
propose a hotlinks structure allowing a user with li
ited a priori knowledge to determine which hotlink
use at every given point and present a polynomia
gorithm for solving the hotlink enhancement proble
for such hotlinks on trees of logarithmic depth. E
perimental results showing the validity of the hotli
assignment approach are given in [4,5,10].

1.1. Outline of the paper

Section 2 provides the proof of the main theor
for the case of binary trees. Section 2.1 provi
the proof of a useful lemma concerning entropi
In Section 3 we extend the proof to arbitrary tre
of maximum degreed . In Section 4 we discus
an improved analysis of our algorithm on comple



E. Kranakis et al. / Information Processing Letters 90 (2004) 121–128 123

trees and in Section 5 we conclude with some open
problems.
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2. Hotlink assignments for binary trees

In this section we give the hotlink assignment th
achieves the upper bound of the main theorem. Fo
sake of simplicity we first consider the case of bina
trees. Later we adapt the result to the case of tree
maximum degreed .

2.1. A useful lemma on entropies

Before giving the hotlink assignment algorithm a
its analysis we present a useful lemma concern
entropy.

Consider a probability distributionp = 〈p1,p2,

. . . , pN 〉 and a partitionA1,A2, . . . ,Ak of the index
set{1,2, . . . ,N} into k non-empty subsets. Define

Si =
∑
j∈Ai

pj , for i = 1,2, . . . , k. (3)

Consider the new distributions:

p(i) =
〈
p

(i)
j := pj

Si

: j ∈ Ai

〉
, for i = 1,2, . . . , k. (4)

Lemma 2.1. For any partitionA1,A2, . . . ,Ak of the
index set of the probabilitydistribution we have the
identity

H(p) =
k∑

i=1

SiH(p(i)) −
k∑

i=1

Si logSi, (5)

whereSi andp(i) are defined in Eqs.(3) and(4).

Proof. The proof is a straightforward application
the definition of the entropy. We have

H(p) =
N∑

j=1

−pj logpj

=
k∑

i=1

−
∑
j∈Ai

pj logpj

=
k∑

i=1

−Si

∑
j∈Ai

p
(i)
j logpj
i=1 j∈Ai

=
k∑

i=1

SiH(p(i)) −
k∑

i=1

Si logSi,

which proves the lemma.�
2.2. Algorithm for binary trees

Before we proceed any further we need to sh
how to assign weights to all the nodes of the tr
In O(N) time we can propagate the original weigh
on the leaves of the tree through the entire tree u
a bottom-up process. This is done inductively
follows. The weight of theith leaf is equal topi .
The weight of a nodeu is equal to the sum of th
weights of its children. Finally, we define the weig
of a subtree to be equal to the weight of the root of t
subtree. We present the following well-known lemm
for completeness.

Lemma 2.2. Consider a probability distributionp =
〈p1,p2, . . . , pN 〉 on the N leaves of a binary tree
Then either there is a tree node whose weigh
between1/3 and 2/3 or else there is a leaf whos
weight is> 2/3.

Proof. Assume there is no tree node whose weigh
in the range[1/3,2/3]. We will show that there is a
leaf whose weight is> 2/3. Start from the root. By
assumption, all its descendants have weight out
the range[1/3,2/3]. Take a descendantc of minimal
height that has weight> 2/3 and is not a leaf o
the tree. Nodec itself must have a descendant who
weight is> 2/3. By minimality of the height ofc this
descendant must be a leaf and have weight> 2/3. This
completes the proof of the lemma.�
Theorem 3. Consider a rooted binary tree. There
an algorithm, quadratic in the number of vertices
the tree, which for any probability distribution on the
leaves of the tree assigns a hotlink per node in s
a way that the expected number of steps to reac
leaf of the tree is at mostaH(p) + b, where a =
1/(log3− 2/3) andb = 3/2.
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Proof. As mentioned before in O(N) time we can
propagate the original weights on the leaves of the tree
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through the entire tree. Once all these internal n
weights are assigned we use a top-down metho
assign hotlinks.

The assignment of hotlinks is done recursively.
partition the treeT into three subtreesT1, T2, T3. The
partition is determined as follows. Find a nodeu that
determines a subtreeT2 rooted atu such that the
weight ofu is bounded from below by 1/3 and from
above by 2/3. I.e.,

1

3
· weight(T ) � weight(u) � 2

3
· weight(T ). (6)

If u is not a child ofc then do the following. With-
out loss of generality assumeT2 is contained entirely
inside the subtree rooted at the left child of the ro
ThenT1 is the tree rooted at the left child of the ro
minus the treeT2 and T3 is the tree rooted at th
right child of the root. The recursive process assign
hotlink to the rootu of the subtreeT2. If however, the
only nodeu satisfying inequalities (6) must be a chi
of c then we selectu to be the heaviest grandchild ofc,
which must have weight at least 1/4 of the weight of
T (this is because the tree is binary). If no such no
exists then we choose foru the heaviest leaf of th
tree which is guaranteed to have weight greater t
2/3. The recursive process assigns a hotlink to
new nodeu. The treesT1, T2, T3 are defined exactly
as before, and moreover none of them has weight
ger than 2/3 of the weight ofT . Then we recursively
assign hotlinks to the subtreesT1, T2, T3. The idea is
illustrated in Fig. 1. The precise algorithm HotlinkA

Fig. 1. Assignment of hotlinks: we assign a hotlink from the roo
a “heavy” nodeu and iterate the recursive assignment to the subt
T1, T2, T3.
HotlinkAssign(T )
Initialize: c := root ofT , l := left (r := right)

child of c;
if c has grandchildrendo;

1a.find u descendant ofc such that
weight(T )/3� weight(u) � 2weight(T )/3

1b. if no such descendant exists letu be
a max weight leaf;

2a.if distance fromc to u is � 2
then add a hotlink fromc to u

2b.else let u be the (any) grandchild ofc
with heaviest weight;
add a hotlink fromc to u;

3. T2 := tree rooted atu;
4. Letv ancestor ofu that is child ofc;

w.l.o.g. assumev = l;
5. T1 := tree rooted at left child ofc minusT2;
6. T3 := tree rooted at right child ofc;
7. HotlinkAssign(T1),
8. HotlinkAssign(T2),
9. HotlinkAssign(T3)

end;

We will prove by induction on the depth of th
treeT that there exist constantsa, b such that for the
hotlink assignmentA described above

E[T A,p] � aH(p) + b.

It will become apparent from the proof below how
selecta andb (see inequalities (7) and (8)). (Note th
T andT A have the same leaves and thereforep is also
a probability distribution over the leaves ofT A.)

The initial step, when the depth of the tree is
is trivial because we will chooseb so that b � 1.
Assume the induction hypothesis is valid for t
subtrees ofT . We calculate costs of the resultin
hotlink assignments. According to Lemma 2.2 t
hotlink assigned from the root to a node partitio
the leaves of the tree into three subsetsA1,A2,A3

with corresponding weightsS1, S2, S3. If Lemma 2.2
chooses a node that has weight between 1/3 and 2/3
(or if it is the child of the root and a grandchi
is chosen with weight greater than or equal to 1/4)
then it is easy to see that all threeSi ’s have weight
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� 2/3. If Lemma 2.2 chooses a leaf thenS2 > 2/3 and
S1 + S3 < 1/3.

2.1
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The last inequality being valid because we will choose
the constantb such that
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In the first case, using the notation of Lemma
we obtain

E[T A,p] =
3∑

i=1

Si

(
1+ E

[
T A

i ,p(i)
])

= 1+
3∑

i=1

SiE
[
T A

i ,p(i)
]

� 1+
3∑

i=1

Si

(
aH(p(i)) + b

)

= 1+ b + a

3∑
i=1

SiH(p(i))

= 1+ b + aH(p) + a

3∑
i=1

Si logSi

� aH(p) + b.

The last inequality being valid because we will choo
the constanta such that

1+ a

3∑
i=1

Si logSi � 0. (7)

If A2 is a leaf of weight greater than 2/3 thenT2
is the empty tree and using the notation of Lemma
we obtain

E[T A,p] = S2 +
∑
i=1,3

Si

(
1+ E

[
T A

i ,p(i)
])

= 1+
∑
i=1,3

SiE
[
T A

i ,p(i)
]

� 1+
∑
i=1,3

Si

(
aH(p(i)) + b

)

= 1+ a
∑

i=1,2,3

SiH(p(i)) + (S1 + S3)b

= 1+ aH(p) + a

3∑
i=1

Si logSi + (S1 + S3)b

� 1+ aH(p) + (S1 + S3)b

� 1+ aH(p) + (1/3)b

� aH(p) + b.
1+ (1/3)b � b. (8)

We now consider the value of the constantsa and
b. Clearly,b = 3/2 satisfies inequality (8). To choos
a we first prove the following lemma.

Lemma 2.3. The solutions of the optimization proble

maximize f (x, y) = x lnx + y lny

+ (1− x − y) ln(1− x − y)

subject to 0 � x, y � 2/3,1/3� x + y � 1

are such that{x, y,1− x − y} = {0,1/3,2/3}.

Proof. The partial derivative off with respect tox
is equal to lnx − ln(1 − x − y), which is increasing
as a function ofx. This means that the maximu
values off (as a function only ofx parametrized
with respect toy) are obtained at the endpoints of t
interval on which it is defined, i.e., max{0,1/3− y} �
x � min{2/3,1 − y}. This gives rise to two case
depending on the value ofy.

Case1. y � 1/3. In this case we have that th
endpoints are 0� x � 1 − y and the value off at the
endpoints is equal to

f (0, y) = f (1− y, y) = y lny + (1− y) ln(1− y)

subject to 1/3 � y � 2/3. (9)

Case2. y � 1/3. In this case we have that th
endpoints are 1/3− y � x � 2/3 and the value off at
the endpoints is equal to

f (1/3− y, y) = f (2/3, y)

= (1/3− y) ln(1/3− y) + y lny

+ (2/3) ln(2/3)

subject to 0� y � 1/3. (10)

In particular, the maximum value off is attained at the
maximum values of cases 1 and 2 above. The funct
in Eqs. (9) and (10) depend only on the variabley

and their maxima are obtained at the endpoints
the interval fory on which the function is defined
In case 1, this is 1/3 � y � 2/3 and in case 2, thi
is 0 � y � 1/3. It follows that for case 1 we hav
that our function obtains its maximum value wh
y = 1/3,2/3 and in case 2 wheny = 0,1/3, i.e.,
y = 0,1/3,2/3. Consequently, wheny = 0 we have
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x = 1/3,2/3, wheny = 1/3 we havex = 0,2/3, and
when y = 2/3 we havex = 0,1/3. This proves the
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Lemma 2.3 implies that

3∑
i=1

Si logSi � (2/3) log(2/3) + (1/3) log(1/3).

Hence, inequality (7) is satisfied whena = 1/(log3−
2/3).

Concerning the running time of the algorithm w
note that in linear time we can assign weights to
nodes of the tree bottom up. For each recursive
of the algorithm HotlinkAssign we must update t
weights. Since the number of recursive calls does
exceed the height of the tree, we see that the run
time is worst-case quadratic. The proof of Theorem
is now complete. �

3. Trees of maximum degree d

Lemma 2.2 has a natural generalization for
case of trees with maximum degreed . Namely the
following result is known.

Lemma 3.1. Consider a probability distributionp =
〈p1,p2, . . . , pN 〉 on theN leaves of a tree of maximu
degreed . Then either there is a tree node whose wei
is between1/(d + 1) andd/(d + 1) or else there is a
leaf whose weight is> d/(d + 1).

3.1. Algorithm for trees of maximum degreed

Now we can prove our main result in Theorem
In the sequel we indicate only the necessary chang

Proof of Theorem 2 (Outline). As with Theorem 3
we assign weights to all nodes of the tree in
bottom-up fashion. The assignment of hotlinks is do
recursively in a top-down fashion. Letc be the root
of T . Indeed, we partition the treeT into at most
d + 1 subtrees as follows. By Lemma 3.1, find
nodeu that determines a subtreeT ′

i rooted atu such
that the sum of the weights of the leaves ofT ′

i is
bounded from below by 1/(d + 1) and from above by
d/(d + 1). Without loss of generality assume this tr
root minus the treeT ′
i . Also Tj , for j �= i, is defined

to be the tree rooted at thej th child of the root. Now,
T ′

i and the sequenceT1, T2, . . . , Ti, . . . is the desired
partition of the subtrees. As before, if only children
c are the only nodes whose weight is bounded fr
below by 1/(d + 1) and from above byd/(d + 1) then
we selectu to be the (any) heaviest grandchild ofc.
The recursive process assigns a hotlink fromc to the
root u of the subtreeT ′

i . Then we recursively assig
hotlinks to the subtreesT1, T2, . . . , Td .

Using Lemma 3.1 and an analysis similar to th
of Theorem 3 we obtain the main result. As befo
we prove by induction on the depth of the treeT

that there exist constantsa, b such that for the hotlink
assignmentA described above

E[T A,p] � aH(p) + b.

Inequality (7) is transformed into

1+ a

d+1∑
i=1

Si logSi � 0, (11)

and inequality (8) into

1+ (
1/(d + 1)

)
b � b. (12)

Here,a and b are selected so as to satisfy inequa
ties (11) and (12). The correct value forb is (d + 1)/d

and the value ofa follows immediately from the fol-
lowing lemma.

Lemma 3.2. The solutions of the optimization proble

maximizef (s1, s2, . . . , sd) =
d∑

i=1

si ln si

+
(

1−
d∑

i=1

si

)
ln

(
1−

d∑
i=1

si

)

subject to0 � s1, s2, . . . , sd � d

d + 1
,

1

d + 1
�

d∑
i=1

si � 1

are obtained whenone among the quantitiess1, . . . ,

sd ,1 − ∑d
i=1 si attains the valued/(d + 1), another

the value1/(d + 1) and all the rest are equal to0.
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Proof. The proof is by induction on the number of
variables. Ford = 2 this is just Lemma 2.3. Assume

n

t
he

e
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4)

the
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are equal to 0. Hence the result follows ford variables
because in this casesd = 0 or sd = 1 − ∑d−1
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the lemma is true ford − 1 � 2. We will prove it
for d . Set x := sd and y := s1 + · · · + sd−1. The
partial derivative off with respect tox is equal to
ln x − ln(1− x − y), which is increasing as a functio
of x. This means that the maximum values off

(as a function only ofx parametrized with respec
to s1, . . . , sd−1) are obtained at the endpoints of t
interval on which it is defined, i.e., max{0,1/(d +1)−
y} � x � min{d/(d +1),1−y}. This gives rise to two
cases depending on the value ofy.

Case1.y � 1/(d +1). In this case we have that th
endpoints are 0� x � 1− y and the value off at the
endpoints is equal to

f (s1, . . . , sd−1,0)

= f (s1, . . . , sd−1,1− y)

= (1− y) ln(1− y)

+ s1 ln s1 + · · · + sd−1 ln sd−1

subject to 1/(d + 1) � y � 1,

ands1, . . . , sd−1 � d/(d + 1). (13)

Case2.y � 1/(d +1). In this case we have that th
endpoints are 1/(d + 1) − y � x � d/(d + 1) and the
value off at the endpoints is equal to

f
(
s1, . . . , sd−1,1/(d + 1) − y

)
= f

(
s1, . . . , sd−1, d/(d + 1)

)
= (

1/(d + 1) − y
)
ln

(
1/(d + 1) − y

)
+ s1 ln s1 + · · · + sd ln sd−1

+ (
d/(d + 1)

)
ln

(
d/(d + 1)

)
subject to 0� y � 1/(d + 1). (14)

Thus, we have reduced the original optimizat
problem to the two optimization problems describ
in problems (13), (14) which have onlyd −1 variables
(i.e., one variable less). It is trivial that in problem (1
the optimal solution is obtained whens1 = · · · =
sd−1 = 0. In this casesd = 1/(d+1) or sd = d/(d+1)

and the inductive hypothesis is valid ford . In case 1
we reduce to the same optimization problem ond −
1 variables. Hence, by the induction hypothesis
optimal solutions are obtained when one among
quantitiess1, . . . , sd−1,1 − ∑d−1

i=1 si attains the value
d/(d + 1), another the value 1/(d + 1) and all the res
i=1
proof of the lemma is now complete.�

The rest of the details of the proof can now be l
to the reader. The proof of Theorem 2 is complete.�

4. Analysis for special trees and distributions

Our present analysis of the hotlink assignm
problem focused on using the entropy of the distri
tion in order to bound the expected number of steps
fact, our analysis still leaves a gap between the lo
bound of Theorem 1 and the upper bound of Th
rem 2. Can we improve the upper bound any furthe

In the sequel we indicate that our algorithm s
performs close to the lower bound for the unifo
distribution on complete trees of degreed . We also
indicate how to adapt our algorithm HotlinkAssign
the case of arbitrary distributions on complete tree

First, consider the uniform distributionp on the
leaves of the completed-ary tree withN ≈ dn leaves.
The entropy of this distribution isH(p) = n logd .
Theorem 1 implies that

H(p)

log(d + 1)
= logd

log(d + 1)
· n (15)

is a lower bound, while Theorem 2 implies that

H(p)

log(d + 1) − (d/(d + 1)) logd
+ d + 1

d

= logd

log(d + 1) − (d/(d + 1)) logd
· n + d + 1

d

is an upper bound on the expected number of step
However, in this case it is easy to see that

HotlinkAssign algorithm always picks a hotlink that
a grandchild of the current root. This observation c
be used to give a different analysis of the algorith
Using the method employed in [2, Theorem 3] w
can show directly that the expected number of st
to reach a leaf is at most(

1− 1

d2

)
· n (16)

plus an additive constant.
More generally, on a complete tree of degreed with

an arbitrary distribution on the leaves we can cha
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our algorithm HotlinkAssign so that a hotlink is placed
always at the heaviest grandchild of the current root,
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i.e., we omit step 2a in algorithm HotlinkAssig
The analysis employed in [2, Theorem 3] as w
as the resulting upper bound given in (16) is s
valid. Moreover, it is easy to see that the lower bou
in (15) and the upper bound in (16) are asymptotica
identical, asd → ∞.

5. Conclusions and open problems

In this paper we have considered the problem
assigning hotlinks to the nodes of a tree so as to m
imize the expected number of steps from the roo
the leaves under an arbitrary probability distributio
Our main result is an approximation algorithm for t
case of bounded degree trees. A significant gap
mains between the upper and lower bounds and
ther improvements would be of interest. It is expec
that experimental results like the ones in [4,5,10] w
provide additional insight on this problem. While it
known that the problem is NP-complete for DAGs, t
complexity of the case of trees is still open. In th
paper, we restricted ourselves to at most one hot
added per node. Fuhrmann et al. [7] report results
the case of addingk links per node to ad-regular com-
plete tree. Our results can be extended to the case
fixed number,k, added per node (using known ge
eralizations of Lemma 2.2 concerning the weights
thek “heaviest” descendants of a given node) and
technique used in Bose et al. [3] but the gap betw
upper and lower bounds increases withk. Perhaps a
new and different approach will not suffer from th
weakness. The variation where the total numbe
hotlinks does not exceed a certain fixed budget co
be explored. Additional interesting problems inclu
finding further improvements for special distribution
such as Zipf’s distribution (e.g., see [13,9]) which
especially relevant to this application.
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