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Abstract

Consider a directed rooted trde= (V, E) of maximal degreel representing a collectioW of web pages connected via
a setE of links all reachable from a source home page, represented by the r@otExdch leaf web page carries a weight
representative of the frequency with which it is visited. By adding hotlinks, shortcuts from a node to one of its descendents, we
are interested in minimizing the expected number of steps needed to visit the leaf pages from the home page. We@ﬁbe an O
time algorithm for assigning hotlinks so that the expected number of steps to reach the leaves from the root of the tree is at
mostH (p)/(log(d + 1) — (d/(d + 1)) logd) + (d + 1) /d, whereH (p) is the entropy of the probability (frequency) distribution
p={p1, P2, ..., pN) On theN leaves of the given tree, i.ep; is the weight on théth leaf. The best known lower bound for
this problem isH (p)/log(d + 1). We also show how to adapt our algorithm to complete trees of a given déguee in this
case we prove it is optimal, asymptoticallydn
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1. Introduction

In an attempt to enhance the experience and re-
duce the latency of the average user, a number of au-
thors have suggested ways of improving the design

A preliminary version of th|_s paper has appeared in the pro- of websites, such as promoting and demoting pages,
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by a setE of links. We assume that all web pages are
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Theorem 1 [2]. Consider an arbitrary rooted tree of

reached starting from the root of the tree, representing maximal degreei. For any pobability distribution

the home page of the site and that users are interestedp =
in accessing information stored at the leaf web pages.

Each leaf carries a weight representative of the fre-
guency with which it is visited, i.e., its popularity. Our
goal in adding hotlinks (directed edges from a node

to one of its descendents) is to minimize the expected

number of pages a user would visit when starting at

(p1, p2,..., pN) on the leaves of the tree and
any assignment of at @st one hdink per node
the expected number of steps to reach a web page
located at a leaf from the root of the tree is at least
H(p)/log(d + 1).

Our main result is the following theorem that gives

the root and attempting to reach a leaf. We assume aan upper bound on the expected number of steps to

user will always follow a hotlinku, v) if after reach-

ing u he or she wishes to reach a leaf that is a descen-

dent ofv. Note that this implies that adding hotlinks

reach a web page.

Theorem 2. Consider an arbitrary rooted tree of

to a tree results in a new tree, not a general directed maximal degreei. There is an algorithm, quadratic
graph. We restrict ourselves to the case where at mostin the number of vertices of the tree, which for any

one hotlink is added per node, but our results can be probability distribution p = (p1, p2, ...

, pN) on the

extended to the case where more than one hotlink canleaves of the tree assigns one hotlink per node in such

be added per node.

Consider arooted directed tréewith N leaves and
of maximal degred. Let T be the tree resulting from
an assignmemt of hotlinks. The expected number of
steps from the root to find a web page on a leaf is given
by the formula

D dalipi,

i is aleaf

whered4 (i) is the distance of the noddrom the root
inTA, andp = (p;: i =1,..., N) is the probability
distribution on the leaves of the original treg.

We are interested in finding an assignmdéntvhich

minimizesE[T4, p].

An lower bound onE[T4, p] was given in [2]
using information theory. Le (p) be the Entropy
(see [1]) of the probability distributiop = (p;:
1,..., N), which is defined by the formuta

4 pl= 1)

i:

N
H(p)=)_ pilogl/pi).
i=1
A tree of maximal degreé can be thought of as the
encoding of the leaves with thé-symbol alphabet
0,1,...,d — 1. Adding a hotlink increments the
alphabet by a single symbol to form an alphabet with
d + 1 symbols. Using this and the theory of prefix
codes the following result can be proved (see [1,2]):

2

2 Throughout this paper log denotes logarithm in base 2 and In
logarithm in base.

a way that the expected number of steps to reach a leaf
of the tree from the root is at most

H(p) d+1
log(d +1) — (d/(d + 1)) logd d

In Section 4 we also indicate how to adapt our
algorithm to complete trees of a given degeeand
show our algorithm is optimal asymptotically dh

The idea of “hotlinks” was suggested by Perkowitz
and Etzioni [12] and studied earlier by Bose et al. [2]
for the special case of a website represented by a com-
plete binary tree. Recently Matichin et al. [11] ana-
lyze the greedy algorithm for this problem on trees and
prove that it has approximation ratio 2 independently
of the degred of the tree. In addition, Gerstel et al. [8]
propose a hotlinks structure allowing a user with lim-
ited a priori knowledge to determine which hotlink to
use at every given point and present a polynomial al-
gorithm for solving the hotlink enhancement problem
for such hotlinks on trees of logarithmic depth. Ex-
perimental results showing the validity of the hotlink
assignment approach are given in [4,5,10].

1.1. Outline of the paper

Section 2 provides the proof of the main theorem
for the case of binary trees. Section 2.1 provides
the proof of a useful lemma concerning entropies.
In Section 3 we extend the proof to arbitrary trees
of maximum degreed. In Section 4 we discuss
an improved analysis of our algorithm on complete
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trees and in Section 5 we conclude with some open
problems.

2. Hotlink assignmentsfor binary trees

In this section we give the hotlink assignment that

achieves the upper bound of the main theorem. For the

sake of simplicity we first consider the case of binary
trees. Later we adapt the result to the case of trees o
maximum degreé.

2.1. A useful lemma on entropies

Before giving the hotlink assignment algorithm and
its analysis we present a useful lemma concerning
entropy.

Consider a probability distributionp = (p1, p2,

.., pn) and a partitiondq, Ao, ..., Ax of the index
set{1, 2,..., N} into k non-empty subsets. Define

Si=Y pj. fori=12. .k (3)
JEA;
Consider the new distributions:

W _ [, ._Pi
= o

S : jeA,->, fori=12,...,k. (4)
i

Lemma 2.1. For any partition A1, Ap, ..., Ay of the
index set of the probabilitgistribution we have the
identity

k k
H(p)=) SiH(p") ) Silogs:.

i=1 i=1

wheres; and p¥) are defined in Eqg3) and (4).

®)

Proof. The proof is a straightforward application of
the definition of the entropy. We have

N

H(p)=Y —pjlogp;
=1
k
=Y "= pjlogp;

i=1 jeA;

k
= Z =S Z Py) logp;
i=1

JEA;
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+1logs;)

k
=25 X Ao
i=1

JEA;

k k
= ZSiH(p(i)) — ZS,’ logs;,
i=1 i=1

which proves the lemma.O

f2.2. Algorithm for binary trees

Before we proceed any further we need to show
how to assign weights to all the nodes of the tree.
In O(N) time we can propagate the original weights
on the leaves of the tree through the entire tree using
a bottom-up process. This is done inductively as
follows. The weight of theith leaf is equal top;.
The weight of a node: is equal to the sum of the
weights of its children. Finally, we define the weight
of a subtree to be equal to the weight of the root of this
subtree. We present the following well-known lemma
for completeness.

Lemma 2.2. Consider a probability distributiorp =

(p1, p2,..., pN) On the N leaves of a binary tree.
Then either there is a tree node whose weight is
betweenl/3 and 2/3 or else there is a leaf whose
weight is> 2/3.

Proof. Assume there is no tree node whose weight is
in the range[1/3, 2/3]. We will show that there is a
leaf whose weight is> 2/3. Start from the root. By
assumption, all its descendants have weight outside
the rangg1/3, 2/3]. Take a descendantof minimal
height that has weight- 2/3 and is not a leaf of
the tree. Node itself must have a descendant whose
weight is> 2/3. By minimality of the height ot this
descendantmust be a leaf and have weigBy 3. This
completes the proof of the lemmar

Theorem 3. Consider a rooted binary tree. There is
an algorithm, quadratic in the number of vertices of
the tree, which for any mbability distribution on the
leaves of the tree assigns a hotlink per node in such
a way that the expected number of steps to reach a
leaf of the tree is at most H(p) + b, wherea =
1/(log3—2/3) andb = 3/2.
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Proof. As mentioned before in V) time we can
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sign which determines the hotlink assignment is de-

propagate the original weights on the leaves of the tree fined as follows.

through the entire tree. Once all these internal node

weights are assigned we use a top-down method to HotlinkAssign(7)

assign hotlinks.

The assignment of hotlinks is done recursively. We
partition the treel” into three subtree®;, 7>, 73. The
partition is determined as follows. Find a nodéhat
determines a subtre® rooted atu such that the
weight of u is bounded from below by/B and from
above by 23. l.e.,

% -weight(T) < weight(u) < g -weight(T). (6)

If u is not a child ofc then do the following. With-
out loss of generality assunig is contained entirely
inside the subtree rooted at the left child of the root.
ThenT; is the tree rooted at the left child of the root
minus the treel» and 73 is the tree rooted at the
right child of the root. The recursive process assigns a
hotlink to the root: of the subtred>. If however, the
only nodeu satisfying inequalities (6) must be a child
of ¢ then we seleat to be the heaviest grandchild af
which must have weight at least4 of the weight of

T (this is because the tree is binary). If no such node
exists then we choose for the heaviest leaf of the
tree which is guaranteed to have weight greater than
2/3. The recursive process assigns a hotlink to this
new nodex. The treesTy, T», T3 are defined exactly
as before, and moreover none of them has weight big-
ger than 23 of the weight ofT’. Then we recursively
assign hotlinks to the subtre@s, 7>, 753. The idea is
illustrated in Fig. 1. The precise algorithm HotlinkAs-

T
c

Fig. 1. Assignment of hotlinks: we assign a hotlink from the root to
a “heavy” node: and iterate the recursive assignment to the subtrees
T1,Tp, T3.

Initialize: ¢ :=root of T, [ := left (r := right)
child of ¢;
if ¢ has grandchildredo;
la.find u descendant of such that
weight(T) /3 < weight(u) < 2weigh{(T)/3
1b. if no such descendant existsdeibe
a max weight leaf;
2a.if distance fronc tou is > 2
then add a hotlink front to u
2b.elselet u be the (any) grandchild af
with heaviest weight;
add a hotlink frome to u;
T, := tree rooted ak;
Letv ancestor of; that is child ofc;
w.l.o.g. assume =/;
T, := tree rooted at left child of minusTx;
T3 := tree rooted at right child of;
HotlinkAssign(77),
HotlinkAssign(72),
HotlinkAssign(73)

how

Nowu

©

9.
end;

We will prove by induction on the depth of the
treeT that there exist constants b such that for the
hotlink assignmend described above

E[T%, pl<aH(p)+b.

It will become apparent from the proof below how to
selecta andb (see inequalities (7) and (8)). (Note that
T andT* have the same leaves and therefpiis also
a probability distribution over the leaves Bf'.)

The initial step, when the depth of the tree is 1,
is trivial because we will choosé so thatb > 1.
Assume the induction hypothesis is valid for the
subtrees ofT. We calculate costs of the resulting
hotlink assignments. According to Lemma 2.2 the
hotlink assigned from the root to a node partitions
the leaves of the tree into three subsdts A», A3
with corresponding weights§z, S2, S3. If Lemma 2.2
chooses a node that has weight betwegd dnd 23
(or if it is the child of the root and a grandchild
is chosen with weight greater than or equal {611
then it is easy to see that all thr&g's have weight
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< 2/3.If Lemma 2.2 chooses a leaf thén> 2/3 and
S1+ S3<1/3.

In the first case, using the notation of Lemma 2.1
we obtain

E[T*, pl= ZSI 1+ E[7 p7])
i=1

(l)

_1+ZS,

<1+ ZS,- (aH(p") +b)
i=1

3

=1+b+a) SH(pPY)
i=1
3
=14+b+aH(p) +aZS,- logS;
i=1

<aH(p)+b.

The last inequality being valid because we will choose
the constant such that

3

l+aZS,-IogS,- <0
i=1

(@)

If Az is a leaf of weight greater thary2 thenT»

is the empty tree and using the notation of Lemma 2.1

we obtain

E[TA pl=S+ Y _ Si(1+E[T", p?))

i=1,3

=1+ Y SE[T p?]
i=13

<1+ ) Si(aH(p?) +b)

i=1,3

=14a Y SiH(p")+ (S1+ Sz)b
i=1,2,3

3
=1+aH(p)+ay_Silogs; + (S1+ Sz)b
i=1
14 aH(p)+ (S1+ S3)b

1+aH(p)+ (1/3)b
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The last inequality being valid because we will choose
the constank such that

1+ (1/3)b < b. (8)

We now consider the value of the constamtand
b. Clearly,b = 3/2 satisfies inequality (8). To choose
a we first prove the following lemma.

Lemma 2.3. The solutions of the optimization problem

maximize f(x,y)=xInx+ylny
+A-x—y)Inl—x—y)
subjectto 0<x,y<2/3,1/3<x+y<1

are such thafx,y,1—x — y} =1{0,1/3,2/3}.

Proof. The partial derivative off with respect tax
is equal to It — In(1 — x — y), which is increasing
as a function ofx. This means that the maximum
values of f (as a function only ofx parametrized
with respect toy) are obtained at the endpoints of the
interval on which it is defined, i.e., mfX 1/3 — y} <
x < min{2/3,1 — y}. This gives rise to two cases
depending on the value of

Casel. y > 1/3. In this case we have that the
endpoints are & x < 1 — y and the value off at the
endpoints is equal to

fO=fL-y,y)=ylny+A-y)In(l—y)
subjectto ¥3< y < 2/3. 9)

Case?2. y < 1/3. In this case we have that the
endpoints are I3 — y < x < 2/3 and the value of at
the endpoints is equal to

FA/3=y,y)=1(2/3y)
=(1/3-y)In(1/3—-y)+ylny
+(2/3)In(2/3)
subjectto 0K y < 1/3. (20)

In particular, the maximum value gfis attained at the
maximum values of cases 1 and 2 above. The functions
in Egs. (9) and (10) depend only on the variable
and their maxima are obtained at the endpoints of
the interval fory on which the function is defined.

In case 1, this is A3 < y < 2/3 and in case 2, this

is 0< y < 1/3. It follows that for case 1 we have
that our function obtains its maximum value when
y =1/3,2/3 and in case 2 whey =0,1/3, i.e,,

y =0,1/3,2/3. Consequently, whem = 0 we have
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x=1/3,2/3, wheny =1/3 we havex =0, 2/3, and
wheny = 2/3 we havex = 0,1/3. This proves the
lemma. O

Lemma 2.3 implies that

3
Z SilogS; < (2/3)log(2/3) + (1/3) log(1/3).
i=1

Hence, inequality (7) is satisfied when=1/(log3—
2/3).

Concerning the running time of the algorithm we
note that in linear time we can assign weights to the
nodes of the tree bottom up. For each recursive call
of the algorithm HotlinkAssign we must update the

E. Kranakis et al. / Information Processing Letters 90 (2004) 121-128

is a descendant of thih child of the root. Thert;
is defined to be the tree rooted at thb child of the
root minus the tred?;. Also T}, for j # i, is defined
to be the tree rooted at thgh child of the root. Now,
T/ and the sequencg, 7z, ..., T;, ... is the desired
partition of the subtrees. As before, if only children of
¢ are the only nodes whose weight is bounded from
below by 1/(d + 1) and from above by /(d + 1) then
we selecty to be the (any) heaviest grandchild af
The recursive process assigns a hotlink frono the
root u of the subtreel’/. Then we recursively assign
hotlinks to the subtre€g;, 1, ..., T,.

Using Lemma 3.1 and an analysis similar to that
of Theorem 3 we obtain the main result. As before
we prove by induction on the depth of the trée

weights. Since the number of recursive calls does not {5t there exist constants b such that for the hotlink
exceed the height of the tree, we see that the running gssignmentt described above

time is worst-case quadratic. The proof of Theorem 3
is now complete. O

3. Treesof maximum degreed

Lemma 2.2 has a natural generalization for the
case of trees with maximum degree Namely the
following result is known.

Lemma 3.1. Consider a probability distributiorp =

(p1, p2, ..., pN) OntheN leaves of a tree of maximum
degreed. Then either there is a tree node whose weight
is betweerl/(d + 1) andd/(d + 1) or else there is a
leaf whose weightis- d/(d + 1).

3.1. Algorithm for trees of maximum degiée

Now we can prove our main result in Theorem 2.
In the sequel we indicate only the necessary changes.

Proof of Theorem 2 (Outling). As with Theorem 3
we assign weights to all nodes of the tree in a
bottom-up fashion. The assignment of hotlinks is done
recursively in a top-down fashion. Letbe the root

of T. Indeed, we partition the tre& into at most

d + 1 subtrees as follows. By Lemma 3.1, find a
nodeu that determines a subtrgg rooted atu such
that the sum of the weights of the leaves Bf is
bounded from below by /&d + 1) and from above by
d/(d + 1). Without loss of generality assume this tree

E[TA, pl<aH(p)+b.

Inequality (7) is transformed into

d+1

1+a) Silogs; <0, (11)
i=1

and inequality (8) into

1+ (1/(d +1)b < b. (12)

Here,a and b are selected so as to satisfy inequali-
ties (11) and (12). The correct value fois (d + 1) /d
and the value of: follows immediately from the fol-
lowing lemma.

Lemma 3.2. The solutions of the optimization problem

d
maximize f (s1, 52, ..., 54) = Zs,- Ins;
i=1

Ll 2)

d

subject to0 < sq, 52, . .. ,
' 152 d+1

,8d <

1 d
— K 5i <1
d+1 ;’

are obtained whemne among ta quantitiessy, ...,
s, 1— Y% 5; attains the valuel/(d + 1), another
the valuel/(d + 1) and all the rest are equal t.
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Proof. The proof is by induction on the number of
variables. For = 2 this is just Lemma 2.3. Assume
the lemma is true fod — 1 > 2. We will prove it
for d. Setx :=s; andy :=s1 + --- + s4—1. The
partial derivative of f with respect tox is equal to
Inx —In(1—x — y), which is increasing as a function
of x. This means that the maximum values ¢f
(as a function only ofx parametrized with respect
to s1,...,54—1) are obtained at the endpoints of the
interval on which itis defined, i.e., m& 1/(d + 1) —
y} < x <min{d/(d+1), 1—y}. This gives rise to two
cases depending on the valueyof

Casel.y > 1/(d +1). In this case we have that the
endpoints are & x < 1 — y and the value off at the
endpoints is equal to

f(s19 e 9sd—la 0)
= f(s1,...,84-1,1—y)
=1-yInl-y)

+s1lns1+---+sg-1Insg_1
subjectto ¥(d+1) <y <1,
S 8d—1<d/(d+1). (13)
Case2.y < 1/(d +1). In this case we have that the
endpointsare Ad + 1) — y < x <d/(d + 1) and the
value of f at the endpoints is equal to
flst,ois0-1,1/d+1) —y)
= f(sl, ceySd—1,d/(d + 1))
=(1/d+D—y)In(1/(d+1) —y)
+s1lns1+---+sgInsg_1
+(d/(d+1D)In(d/d +1))
subjectto <y <1/(d + 1).

andsy, . .

(14)

Thus, we have reduced the original optimization
problem to the two optimization problems described
in problems (13), (14) which have ordy— 1 variables
(i.e., one variable less). It is trivial that in problem (14)
the optimal solution is obtained when = --- =
sq—1=0.Inthiscase; =1/(d+1)orsy=d/(d+1)
and the inductive hypothesis is valid far In case 1
we reduce to the same optimization problemd#n

1 variables. Hence, by the induction hypothesis the
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are equal to 0. Hence the result follows tbvariables
because in this casg =0 ors; =1 — Y " 's;. The
proof of the lemma is now completed

The rest of the details of the proof can now be left
to the reader. The proof of Theorem 2 is completel

4. Analysisfor special treesand distributions

Our present analysis of the hotlink assignment
problem focused on using the entropy of the distribu-
tion in order to bound the expected number of steps. In
fact, our analysis still leaves a gap between the lower
bound of Theorem 1 and the upper bound of Theo-
rem 2. Can we improve the upper bound any further?

In the sequel we indicate that our algorithm still
performs close to the lower bound for the uniform
distribution on complete trees of degrde We also
indicate how to adapt our algorithm HotlinkAssign in
the case of arbitrary distributions on complete trees.

First, consider the uniform distributiop on the
leaves of the completé-ary tree withN ~ d" leaves.
The entropy of this distribution i (p) = nlogd.
Theorem 1 implies that

H(p) _ logd
logd+1) logd+1
is a lower bound, while Theorem 2 implies that

H(p) n d+1
log(d +1) — (d/(d + 1)) logd d
logd d+1

“logd+ 1 —@/@+Dylogd " d
is an upper bound on the expected number of steps.

However, in this case it is easy to see that the
HotlinkAssign algorithm always picks a hotlink that is
a grandchild of the current root. This observation can
be used to give a different analysis of the algorithm.
Using the method employed in [2, Theorem 3] we
can show directly that the expected number of steps
to reach a leaf is at most

(-2)

(15)

(16)

optimal solutions are obtained when one among the plus an additive constant.

quantitiesss, ..., sq—1,1 — Zf;ll s; attains the value
d/(d + 1), another the value/1d + 1) and all the rest

More generally, on a complete tree of deg#iegith
an arbitrary distribution on the leaves we can change
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our algorithm HotlinkAssign so that a hotlink is placed References

always at the heaviest grandchild of the current root,
i.e., we omit step 2a in algorithm HotlinkAssign.
The analysis employed in [2, Theorem 3] as well
as the resulting upper bound given in (16) is still
valid. Moreover, it is easy to see that the lower bound
in (15) and the upper bound in (16) are asymptotically
identical, as/ — oo.

5. Conclusions and open problems

In this paper we have considered the problem of
assigning hotlinks to the nodes of a tree so as to min-
imize the expected number of steps from the root to
the leaves under an arbitrary probability distribution.
Our main result is an approximation algorithm for the
case of bounded degree trees. A significant gap re-
mains between the upper and lower bounds and fur-
ther improvements would be of interest. It is expected
that experimental results like the ones in [4,5,10] will
provide additional insight on this problem. While it is
known that the problem is NP-complete for DAGs, the
complexity of the case of trees is still open. In this
paper, we restricted ourselves to at most one hotlink
added per node. Fuhrmann et al. [7] report results on
the case of adding links per node to @-regular com-

plete tree. Our results can be extended to the case of a

fixed numberk, added per node (using known gen-
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