
A Parallel Offline Data Structure for Searching

Cory Fraser
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6

cfraser3@connect.carleton.ca

December 10, 2012

Abstract

Searching has always been a prominent problem in Computer Science. Many data
structures exist to help with this problem each having its own strengths and weaknesses.
A Parallel Buffer Tree delays answering queries on the tree in order to execute all
operations in bulk. A Parallel Buffer Tree can process any N sequence of insert, remove,
and find operations in O(sortP (N)) parallel I/Os. sortP (N) represents the number of
parallel I/Os it takes to sort N elements with P processors. Its I/O complexity is better
than that of an equivalent parallel B-tree because of its batching nature.

This report provides experimental results for the parallel buffer tree. It shows that
parallism speedup is high and that performance can be competitive with the C++
standard set. The report also shows that in order for the parallel buffer tree to be
practical, a good solution to keeping track of, and maintaining find operation results
must be devised. The method used in this report’s implementation requires an object
shared by all nodes of the tree which must be synchronized upon access.

1 Introduction

Searching has always been a prominent problem in Computer Science. Data structures to
assist with searching, such as a binary search trees and B-Trees, have been created and
continually improved over time. In recent years much work has been done on creating
concurrent and parallel versions of these data structures that can take advantage of the
multi-core nature of today’s computers. One approach to speed up searching is to batch up
multiple operations to perform on a data structure and perform them all at once with opti-
mizations. A particular example of this sort of structure is described in a paper published
in 2012, A Parallel Buffer Tree [6].

In the I/O memory model, a Buffer Tree can reduce the number of I/O operations
required as compared to the popular B-Tree data structure. A Buffer Tree accomplishes this
by removing the restriction that queries on the structure have to be answered immediately.
Without this restriction, the tree is able to buffer operations and later perform them all
once enough have been built up.

This project provides experiments to help verify some of the claims of the parallel
buffer tree data structure described in [6]. An implementation of the basic version of this
structure has been created which has been used to measure its performance in a variety
conditions and inputs. The parallelism speedup of the parallel buffer tree is measured using

1

the implementation. Also, the tree’s performance is compared against the C++ standard
set to give a measure of its practicality.

In Section 2, we will review the relevant literature. In particular, sequential buffer
trees, other external memory data structures and various parallel algorithms will be looked
at. Section 3 will present the details of the parallel buffer tree algorithm, major design
decisions used in the implementation, and then the experimental results obtained using the
implementation. Section 4 concludes the paper with a summary of the results and possible
future improvements.

2 Literature Review

The papers described in this review all fall into one of three categories. The first category
will deal with papers that describe Buffer Trees and their history throughout the history of
Computer Science. The second category will discuss other popular data structures that are
used to reduce I/O operations in the I/O memory model. The last section will show where
work on concurrent data structures and parallel algorithms is at.

2.1 Buffer Trees

Buffer Trees were first introduced in 1995 along with a few different variations of them [1].
Most search data structures made for the I/O model, would require O(logB N) I/Os. Buffer
Trees require only O((logM/B N)/B) where M is the number of elements that fit in main
memory and B is the number of elements per block [1, 3]. The Buffer Tree accomplishes this
by removing the restriction that queries issued to the tree need to be answered immediately.
In other words, the Buffer Tree is an offline data structure and may delay answering queries.

A Buffer Tree can be used to solve many different types of problems such as: sorting,
list ranking and range searches, which can be used to solve geometry problems [1, 3]. The
basic buffer tree supports insert, delete and find operations. A Priority Queue variant of
the Buffer Tree exists which provides a deletemin operation. A Segment Tree variant also
exists which can be used to solve stabbing queries. It should be noted that all these variants
are external memory data structures and thus minimize I/O operations.

Shortly after Buffer Trees were introduced, a paper titled, Early Experiences in Im-
plementing the Buffer Tree, implemented some of the Buffer Tree variants and recorded
experimental results [4]. This paper used Buffer Trees to perform sorting and compared
its performance to the Quicksort algorithm provided by C++. The Buffer Tree performed
slightly slower than the quick sort for small input sizes, but as the input size increased, the
Buffer Tree began to outperform quicksort. Many experiments with different block sizes
were performed and it was found that a lower block size performed better. The experimen-
tal results showed that as input size increased, time increased only slightly above linear.
Overall, this paper showed that the sequential Buffer Tree was quite viable for practical use
which indicates that the parallel version may also be practically viable.

In the same way that the sequential Buffer tree works to minimize I/O operations
in the I/O model, the parallel Buffer tree also works to minimize I/Os but in the Parallel
External Memory (PEM) model instead [6]. In the PEM model, the shared memory between
processors is considered the slow memory and each processor’s local cache is considered the
fast memory. Thus the number of I/Os from the shared memory to local cache is what is
being minimized.

2

2.2 External Memory Data Structures

Since Buffer Trees focus on reducing the number of I/O operations required, it is a good
idea to look into some other data structures that focus on this as well. The most popular
of these data structures is probably the B-Tree. A B-Tree is a tree where each node stores
multiple elements within an array. This means that all the elements within a particular
node are all close together within memory and so only a single I/O operation is required to
load all these elements. Insert, delete, and find operations in a B-Tree can be answered in
O(logB N) I/Os [2].

B-Trees also have many variants such as: weight-balances B-Trees, persistent B-trees,
and string B-trees. String B-trees are interesting because they must deal with a problem
created when trying to store elements in fixed sized arrays. Since strings can be of variable
length a data structure called a blind trie is used in conjuntion with the B-tree. Each node
of the B-tree stores the suffix of inserted strings and contain a blind trie which can be used
to match on the rest of the query string.

Another external memory data structures is the R-tree. An R-tree is similar to a B-
tree however there is no I/O guarantee of O(logB N) for delete operations [2]. R-trees
constructed by repeated insertion have a problem that resulting tree shape may not be
optimal for querying. This problem is not easily solved making R-trees not as popular as
B-trees.

2.3 Parallel/Concurrent Algorithms

When looking at parallel data structures, it is helpful to know what other parallel/concurrent
data structures and algorithms exist as well as the problems they face. The parallel Buffer
tree makes extensive use of parallel sorting to sort its operation buffers. The paper, Funda-
mental Parallel Algorithms for Private-Cache Chip Multiprocessors, provides algorithms for
parallel sorting and prefix search all of which aim to reduce the number of I/O operations
when considering the Parallel External Memory (PEM) model [5].

Two sorting algorithms, Distribution Sort and Mergesort are shown both of which have
the an optimal I/O bound of O(N

PB logM/B
N
B) where P is the number of processors used.

The Distribution sort is a simpler algorithm but the mergesort has optimal work complexity
speedup and scales better as P approaches N [5]. The mergesort makes use of recursion
which works well for multicore usage.

As for recent concurrent data structures, current work appears to be aimed at reducing
the degree of locking required when many operations are performed on a structure at the
same time. The article, Data structures in the Multicore age, describes algorithms for
creating both lock based, and lock-free stacks [7]. Other parallel data structures are also
focusing on reducing or eliminating locking but all these other structures have the restriction
that queries must return immediately. The parallel Buffer tree appears to be unique among
these other structures in this regard.

3 Project Report

This section of the report will now describe in detail what work was done and why. Major
design decisions for accomplishing the goals of this report will be addressed as well as the
consequences of them. Once all the details are clear, the experimental results obtained will
be shown and analyzed.

3

3.1 Parallel Buffer Trees

There are two main variations of Parallel Buffer Trees that are described in [6]. There is
the basic Parallel Buffer Tree which supports Insert, Find, and Remove operations. The
other more advanced variation supports another operation which is range querying. This
section will now take a more detailed look at both of these variations.

3.1.1 Basic Version

The basic Parallel Buffer Tree which supports Insert, Find and Remove operations can pro-
cess any N sequence of these operations in O(sortP (N)) parallel I/Os. sortP (N) represents
the number of parallel I/Os it takes to sort N elements with P processors.

The parallel buffer tree is an (a,b)-tree where a = f/4, b = f and f >= PB. B
represents the number of elements stored within a node in the tree also known as the block
size. In (a,b)-trees, all leaves are the same distance from the root, and internal nodes store
routing elements which determine to which child an element should be sent to. In addition,
internal nodes also need to store an operation buffer of capacity θ(fB). Each operation
consists of three data fields: the type of operation (insert, remove, find), the value the
operation affects, and the time that the operation was submitted.

There are two types of internal nodes which the parallel buffer tree algorithm often
makes use of. A fringe node is an internal node whose children are all leaves of the tree.
A non-fringe node is an internal node whose children are not leaves. This differentiation is
important when it comes to emptying the operation buffer of an internal node.

Since the I/O complexity of the parallel buffer tree is based on sorting, it is not difficult
to see that parallel sorting is an important part of the data structure. In fact, every time an
internal node’s operation buffer fills up, a parallel sort is required to sort these operations
based on the value they affect and secondarily by the time the operation was submitted.
This sorting serves two purposes, one being that all operations affecting a certain value
become adjacent to each other meaning that: find operations can possibly be answered,
duplicates can be filtered out, and matching insert/remove operations can cancel out. The
other purpose is that the operation buffer can now be distributed to the children nodes
much more easily since all operations for a specific child are adjacent to each other.

The two main internal operations for a parallel buffer tree are non-fringe node buffer
emptying and fringe node buffer emptying. These operations trigger whenever a node’s
operation buffer fills up and are responsible for updating the structure of the tree. A node’s
operation buffer is considered full when it reaches a size of fB. To empty a non-fringe
node’s buffer, first sort the operations in the buffer, then filter out duplicate operations,
answer find queries, and cancel out matching insert/remove operations. With the remaining
operations, distribute them to the node’s children using the routing elements. The final step
of the non-fringe node buffer emptying process is to recursively empty the buffers of any
children nodes which have now become full.

When a fringe node’s operation buffer fills up, the first step is to take all the data
elements stored within this node’s children, convert them into insert operations with a −∞
timestamp and add them to the operation buffer. With this done, sort the operations based
on the values they affect and secondarily by their timestamp. At this point, all remove
operations can be cancelled out, all find queries can be answered, and duplicate insert
operations can be removed. With the remaining insert operations, depending on how many
are left, one of two main cases should be performed. If the number of operations remaining

4

is O <= fB then all the operations can be made into the new leaves of this fringe node.
If the number of operations remaining is O > fB then the operations should be split into
groups of size fB/2 elements. The first group becomes the children of this fringe node.
Each remaining group becomes a sibling of this fringe node. Since creating new siblings
means that this fringe node’s parent could have more than the maximum number of children
f the tree may need to be rebalanced.

Rebalancing a node consists of splitting the node into two nodes. Each node has half
the original node’s children. If the node that needs to be split is the root of the tree, then
a new root needs to be created. Also, since this node splitting adds another child to the
split node’s parent, that parent node may also need rebalancing so the parent node should
be recursively checked.

3.1.2 Range Query Extension

The basic parallel buffer tree described in 3.1.1 can be extended to support the additional
operation RangeQuery. The RangeQuery operation takes two values as parameters and will
report all elements that fall within the range created by these values. The I/O complexity
of this extended tree becomes O(sortP (N) + K/PB) where K is the size of the output
generated by the N operations. All the properties described in the basic parallel buffer tree
algorithm still apply here. A new restriction must be placed on the operations sent to the
tree however, which is that they are well-formed. This means that every insert operation
must insert an element that doesn’t already exist and that all remove operations must
remove an element that is already in the tree.

Each node must keep track of another piece of information in this variation. The range
of values that is stored within the node and all its children. For the root node, its range
is (−∞,+∞). Using these ranges, a range query in a node’s operation buffer can be
propagated down to all children whose range contains at least some of the range query.

In order for range queries to work correctly, a time order representation relating remove,
range, and insert operations needs to be created. This representation requires that all re-
move operations have an older timestamp than range operations, and that range operations
have an older timestamp than insert operations. The representation works only if the well
formed restriction stated earlier is met. The operations stored in a node’s buffer is still
sorted as normal, but subsequences of that buffer will sometimes also be sorted using this
time order representation.

Applying the time order representation when emptying a node’s operation buffer is a
complicated process and is not the focus of this report. Thus, no further detail for range
queries will be looked at here. The full details can be found in [6].

3.2 Implementation Design Decisions

This section will now detail the major design decisions made when creating an implemen-
tation of the Parallel Buffer Tree. The first major decision is that only the basic variation
of the parallel buffer tree has been implemented. This means that the Insert, Remove, and
Find operations are supported.

To measure parallelism of the algorithm, the parallel buffer tree results are to be com-
pared against the results of a parallel buffer tree with reduced worker threads. This method
works well to measure parallelism because in the sequential buffer tree, it’s I/O complexity
is also given by the sort algorithm used. A parallel merge sort is used in this implementation

5

of the parallel buffer tree, and a regular merge sort has optimal complexity so reducing the
worker count to one effectively produces a sequential merge sort.

To measure the performance of a parallel buffer tree against the equivalent sequential
data structure, a C++ std::set data structure will be used. The C++ set is very highly
optimized and also provides the same operations: insert, remove and find. Both the parallel
buffer tree and set maintain the ordering of elements stored within it allowing for iterating
in sorted order. If the parallel buffer tree results can even come close to the std::set’s results,
then it is likely that with performance tuning the buffer tree could match or beat the set
for some cases.

This implementation of the parallel buffer tree has made two configurable parameters
available. These parameters are block size and maximum branch size. It could be the case
certain values for the parameters perform better than others. Thus, different values for
these parameters will be used to try and find improved performance results.

Part of the buffer tree’s batching nature means that it will not answer queries right away.
This means that some way to retrieve these results at a later time needs to be devised. This
implementation creates a query ID for every find operation submitted, stores the ID within
an operation’s type field and returns the ID to the submitter. The submitter can then use
this ID to poll for the results of the query to see if it has been calculated yet.

The next two sub-sections will describe two pieces of software that were used in the
implementation to help with certain aspects of it.

3.2.1 Cilk++

The compiler used to compile the code of this implementation was the Intel Cilk Plus
implemented in the GCC compiler. Cilk provides mechanisms to make taking advantage of
parallelism much easier. Recursive algorithms are especially easy to parallelize. Since the
parallel merge sort is recursive, it makes sense to use Cilk for this implementation.

There are some non-evident drawbacks to using Intel Cilk Plus. A major one being that
the newest free version of it is no longer supported by Intel which means that features of
it start to break down as newer versions of operating systems and programming libraries
become available. One such example of this encountered while implementing the parallel
buffer tree is that the cilkview tool that comes with Cilk Plus doesn’t work with a Linux
kernel of version 3.6.

Another problem that was continually encountered while creating an implementation
was that mixing Cilk Plus with the C++ libraries installed on a current Linux operating
system did not always provide the expected results. For example, Posix mutexes used for
thread synchronization did not perform locking as expected. Also, when freeing memory
allocated to the heap space via the C++ delete or free keywords, the program process
would have a small chance to crash instantly printing out a Cilk error message. This
implementation was able to get around the delete and free problem by simply not releasing
allocated memory and allowing memory leaks to build up. This works for this report since
results could be gathered while running the program for only short lengths of time but if a
parallel buffer tree were ever to be used in practice, these memory leaks would absolutely
need to be fixed.

Other than the problems listed above, Cilk made it much easier to parallelize pieces of
the algorithm. If an implementation of Cilk were ever part of an official GCC release then
one wouldn’t have to worry about these problems.

6

3.2.2 Boost Library

Boost is a platform independent C++ library which provides many common features that
the standard template library (STL) does not. Boost aims to establish ”existing practice”
and provide reference implementations so that Boost libraries are suitable for eventual
standardization. Those who are familiar with some of the features of the Java program-
ming languages Application Programming Interface (API) will notice that much of what is
provided by Boost is very similar to what is provided by Java.

One feature of Boost that was used extensively by the implementation was its thread
synchronization. The thread synchronization provided by Boost is very similar to Javas
style of synchronization. A mutex object can be used to make certain critical sections of
code only allow for one thread to execute upon it at any given time. The mutex object can
be used in the same way the synchronized keyword in Java is used.

It can be seen that the use of Boost in this project provided significant benefits, all
of which are platform independent. If in the future, running the algorithm on a Windows
operating system becomes a requirement, changes to the Boost parts of the code will be
minimal if any at all. Also, since Boost follows common programming practices, any ex-
perienced programmer who hasnt used Boost before should be able to recognize familiar
patterns and quickly figure everything out.

3.3 Experimental Results

This section will now show and discuss the results of three different types of measurements.
The first set of results will show the parallelism speedup gained by using the parallel buffer
tree over the sequential version. The second set of results compares the parallel buffer tree’s
performance to the performance of the standard C++ set. The last set of results attempts
to find optimal values for the maximum branches and block size parameters.

All the following results were collected on an Intel Quad core 2.4GHz CPU running
the Fedora 16 Linux operating system. The system is configured with 12 GB of random
access memory (RAM). All time measurements were taken multiple times and averaged to
minimize outlier results.

3.3.1 Parallism Speedup

The parallism results obtained can be seen in Figure 1. What is shown is the run times for
each type of operation with a four worker Parallel Buffer Tree and a two worker parallel
buffer tree. This section will now look at each operation type’s results individually.

When looking at the insert operation times it looks like the parallism speed up is almost
close to two. To get a better idea, the actual measured values can be used. For an input
size of 10000, the two core insert took 315ms and the four core insert took 221 which comes
out to a speedup of 1.43. This isn’t very good but if a higher input size like 1600000 is
looked at instead the speedup comes to 9798/5354 = 1.83 which is much better.

When looking at the remove operation times, these also look close to two. The remove
operation is also the fastest operation which is unusual. For an input size of 100000, the
speedup is 396/207 = 1.91 which is very high. Oddly though for an input size of 1600000,
the speedup is 7411/4329 = 1.72 which is lower than the smaller input size’s speedup. This
can be explained if both results were supposed to be around 1.8 usually and were just a
little off. The high speedup for a small input which goes against the insertion results can
be explained by the fact that when the remove operations are executed, insertions have

7

Figure 1: Measured Running Times of a 2 vs 4 core Buffer Tree

already been previously done which means the tree already has a sufficient number of nodes
to provide parallelism.

The find operation results are surprising in two ways when looking at Figure 1. Find is
the slowest operation and its parallelism speedup looks very low. This large slowdown can
be accounted to the fact that Find operations need a way to report results once they are
calculated. This requires that the tree keep track of query IDs and their associated results.
Whenever a find operation can be answered, it has to be reported to an object shared by all
nodes in the tree which requires synchronization. This synchronization reduces parallelism
and has a significant effect on find performance.

Overall, except for the find operation, parallelism of the parallel buffer tree is very good
with a decent amount of input. These results do indicate that something needs to be done
with the implementation of the find operation to make this data structure practical.

3.3.2 Comparison vs Efficient Sequential Algorithm

The performance comparison of the Parallel Buffer Tree against the C++ standard set
can be seen in Figure 2. It is abundantly clear that the C++ set greatly outperforms the
parallel buffer tree. This alone is not enough to invalidate the parallel buffer tree however.
The insert and remove operations are only about a factor of 2.5 times slower than the same
operation’s times for the C++ set. This time difference could be remedied with about
another 10 CPU cores based on the good parallelism speed seen in Section 3.3.1. Also,
since the parallel buffer tree operates in an external memory model, it can theoretically be
modified to work well using hard disk space as well as RAM. This would raise its size limit
to a number much higher than the C++ set.

The results of Figure 2 do show one troubling piece of information. The fetch operation
for the parallel buffer tree is the slowest operation of all. In the C++ set’s case, the find
operation is much faster than the insert and remove operations. The reason for the poor
performance of the find operation is the same as discussed in Section 3.3.1, the delayed
answering of find operations requires that answers later be reported to a shared object
which requires synchronization.

Overall, the insert and remove operations for the parallel buffer tree are competitive

8

Figure 2: Measured Running Times of the std::set and the Parallel Buffer Tree

enough with the performance of the C++ set in that with some performance tuning or a
few more cores the tree would surpass the set. A big problem still needs to be solved with
the performance of the tree’s find operations. An alternate method of reporting the results
of a find query needs to be devised which doesn’t require as much synchronization to make
the parallel buffer tree practical.

3.3.3 Effect of Branch and Block Size

Figure 3: Measured Running Times of various branch and block sizes

The performance comparison of the Parallel Buffer Tree with varying maximum branch
and block sizes can be seen in Figure 3. It can be seen that the effect of these two parameters
is minimal. It can also be seen that a very low branch size and block size does perform

9

slightly worse than higher values for these parameters.
The two best performance configurations for the large input size was the highest branch

and block sizes. The 400 branch size, 100 block size configuration performed the same as the
800 branch size, 200 block size configuration at the highest input size. What is interesting
is that the largest configuration values performed faster at small inputs than the other
configuration did. This can be explained because the larger the branch and block sizes, the
more operations it takes to fill an operation buffer and cause the tree to actually do work.
So in the case of the largest branch and block configuration, its buffer never actually flushes
at the low input sizes.

Overall the effect of branch size and block size on the parallel buffer tree’s performance
is minimal. Too small a value yields some performance slow downs. Increasing these values
beyond the optimal values doesn’t appear to have any penalty which makes it easier to
optimally configure.

4 Conclusion

From the results shown in this report, it can be seen that the Parallel Buffer Tree provides
a good parallelism speedup over its sequential counterpart. Also, it was shown that the
insert and remove operations can perform competitively against the C++ standard set
given enough cores or some performance tuning.

This report also shows that a significant problem still exists which is how to keep track of
and report find operation results in a performant and high parallelism way. The obtained
results show that find operations perform much too slow relative to insert and remove
operations with low parallelism. This problem currently prevents the parallel buffer tree
from being practical.

The implementation produced along with this report is far from perfect. Since an
unsupported version of Cilk was used, many problems occurred during implementation
which prevented it from running optimally, such as the memory releasing crash. If Cilk is
ever included in an official GCC release, it would be worth it to update the implementation
to run with this newer version of Cilk and see how the results change.

A future extension to this work could be to compare the parallel buffer tree to a parallel
or sequential B-tree implementation. A comparison of two external memory based data
structures would provide a more equivalent comparsion than the C++ set provided. Also,
the parallel buffer tree range query extension could be implemented and compared with the
basic version to determine any tradeoffs of the extension.

References

[1] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms. Proceedings of the
4th International Workshop on Algorithms and Data Structures, pages 334–345, 1995.

[2] L. Arge. External memory data structures. ACM Computing Surveys, 33(2):209–271,
2001.

[3] L. Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 2003.

10

[4] J. Sack R. Velicescu D. Hutchinson, A. Maheshwari. Early experiences in implementing
the buffer tree. Citeseer, 1997.

[5] M. Nelson L. Arge, M. Goodrich. Fundamental parallel algorithms for private-cache
chip multiprocessors. Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures, pages 197–206, 2008.

[6] N. Zeh N. Sitchinava. A parallel buffer tree. Proceedings of the 24th ACM symposium
on Parallelism in algorithms and architectures, pages 214–223, 2012.

[7] N. Shavit. Data structures in the multicore age. Communications of the ACM, 54(3):76–
84, 2011.

11

