LITERATURE REVIEW: Parallel Offline Data Structures for

Searching

Cory Fraser
School of Computer Science
Carleton University
Ottawa, Canada K1S 5B6

cfraser3@connect.carleton.ca

October 16, 2012

1 Introduction

Searching has always been a prominent problem in Computer Science. Data structures to
assist with searching, such as a binary search trees and B-Trees, have been created and
continually improved over time. In recent years much work has been done on creating
concurrent and parallel versions of these data structures that can take advantage of the
multi-core nature of today’s computers. One approach to speed up searching is to batch up
multiple operations to perform on a data structure and perform them all at once with opti-
mizations. A particular example of this sort of structure is described in a paper published
in 2012, A Parallel Buffer Tree [6].

In the I/O memory model, a Buffer Tree can reduce the number of I/O operations
required as compared to the popular B-Tree data structure. A Buffer Tree accomplishes this
by removing the restriction that queries on the structure have to be answered immediately.
Without this restriction, the tree is able to buffer operations and later perform them all
once enough have been built up.

This project will attempt to verify the claims of the parallel buffer tree data structure
described in [6]. An implementation of the basic version of this structure will be created
which can be used to measure its performance in a variety conditions and inputs. If time
permits, the extension to the buffer tree that enables range searching could be implemented
as well.

2 Literature Review

The papers described in this review all fall into one of three categories. The first category
will deal with papers that describe Buffer Trees and their history throughout the history of
Computer Science. The second category will discuss other popular data structures that are
used to reduce I/O operations in the I/O memory model. The last section will show where
work on concurrent data structures and parallel algorithms is at.



2.1 Buffer Trees

Buffer Trees were first introduced in 1995 along with a few different variations of them [1].
Most search data structures made for the I/O model, would require O(logg N) I/Os. Buffer
Trees require only O((logy/p IV)/B) where M is the number of elements that fit in main
memory and B is the number of elements per block [1, 3]. The Buffer Tree accomplishes this
by removing the restriction that queries issued to the tree need to be answered immediately.
In other words, the Buffer Tree is an offline data structure and may delay answering queries.

A Buffer Tree can be used to solve many different types of problems such as: sorting,
list ranking and range searches, which can be used to solve geometry problems [1, 3]. The
basic buffer tree supports insert, delete and find operations. A Priority Queue variant of
the Buffer Tree exists which provides a deletemin operation. A Segment Tree variant also
exists which can be used to solve stabbing queries. It should be noted that all these variants
are external memory data structures and thus minimize I/O operations.

Shortly after Buffer Trees were introduced, a paper titled, Early Experiences in Im-
plementing the Buffer Tree, implemented some of the Buffer Tree variants and recorded
experimental results [4]. This paper used Buffer Trees to perform sorting and compared
its performance to the Quicksort algorithm provided by C++. The Buffer Tree performed
slightly slower than the quick sort for small input sizes, but as the input size increased, the
Buffer Tree began to outperform quicksort. Many experiments with different block sizes
were performed and it was found that a lower block size performed better. The experimen-
tal results showed that as input size increased, time increased only slightly above linear.
Overall, this paper showed that the sequential Buffer Tree was quite viable for practical use
which indicates that the parallel version may also be practically viable.

In the same way that the sequential Buffer tree works to minimize I/O operations
in the I/O model, the parallel Buffer tree also works to minimize I/Os but in the Parallel
External Memory (PEM) model instead [6]. In the PEM model, the shared memory between
processors is considered the slow memory and each processor’s local cache is considered the
fast memory. Thus the number of I/Os from the shared memory to local cache is what is
being minimized.

2.2 External Memory Data Structures

Since Buffer Trees focus on reducing the number of 1/O operations required, it is a good
idea to look into some other data structures that focus on this as well. The most popular
of these data structures is probably the B-Tree. A B-Tree is a tree where each node stores
multiple elements within an array. This means that all the elements within a particular
node are all close together within memory and so only a single I/O operation is required to
load all these elements. Insert, delete, and find operations in a B-Tree can be answered in
O(logg N) I/Os [2].

B-Trees also have many variants such as: weight-balances B-Trees, persistent B-trees,
and string B-trees. String B-trees are interesting because they must deal with a problem
created when trying to store elements in fixed sized arrays. Since strings can be of variable
length a data structure called a blind trie is used in conjuntion with the B-tree. Each node
of the B-tree stores the suffix of inserted strings and contain a blind trie which can be used
to match on the rest of the query string.

Another external memory data structures is the R-tree. An R-tree is similar to a B-
tree however there is no I/O guarantee of O(logy N) for delete operations [2]. R-trees



constructed by repeated insertion have a problem that resulting tree shape may not be
optimal for querying. This problem is not easily solved making R-trees not as popular as
B-trees.

2.3 Parallel/Concurrent Algorithms

When looking at parallel data structures, it is helpful to know what other parallel /concurrent
data structures and algorithms exist as well as the problems they face. The parallel Buffer
tree makes extensive use of parallel sorting to sort its operation buffers. The paper, Funda-
mental Parallel Algorithms for Private-Cache Chip Multiprocessors, provides algorithms for
parallel sorting and prefix search all of which aim to reduce the number of I/O operations
when considering the Parallel External Memory (PEM) model [5].

Two sorting algorithms, Distribution Sort and Mergesort are shown both of which have
the an optimal I/O bound of O(P—]\]fg logar/ %) where P is the number of processors used.
The Distribution sort is a simpler algorithm but the mergesort has optimal work complexity
speedup and scales better as P approaches N [5]. The mergesort makes use of recursion
which works well for multicore usage.

As for recent concurrent data structures, current work appears to be aimed at reducing
the degree of locking required when many operations are performed on a structure at the
same time. The article, Data structures in the Multicore age, describes algorithms for
creating both lock based, and lock-free stacks [7]. Other parallel data structures are also
focusing on reducing or eliminating locking but all these other structures have the restriction
that queries must return immediately. The parallel Buffer tree appears to be unique among
these other structures in this regard.

References

[1] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms. Proceedings of the
4th International Workshop on Algorithms and Data Structures, pages 334-345, 1995.

[2] L. Arge. External memory data structures. ACM Computing Surveys, 33(2):209-271,
2001.

[3] L. Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 2003.

[4] J. Sack R. Velicescu D. Hutchinson, A. Maheshwari. Early experiences in implementing
the buffer tree. Citeseer, 1997.

[5] M. Nelson L. Arge, M. Goodrich. Fundamental parallel algorithms for private-cache
chip multiprocessors. Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures, pages 197-206, 2008.

[6] N. Zeh N. Sitchinava. A parallel buffer tree. Proceedings of the 24th ACM symposium
on Parallelism in algorithms and architectures, pages 214-223, 2012.

[7] N. Shavit. Data structures in the multicore age. Communications of the ACM, 54(3):76—
84, 2011.



