
IC-AI’99
502SA

Patterns as a Means for Intelligent Software
Engineering

Patterns as a Means for Intelligent Software
Engineering

D. Deugo, F. Oppacher, J. Kuester*, I. Von Otte*

School of Computer Science,
Carleton University

1125 Colonel By Drive,
Ottawa, Ontario, Canada, K1S 5B6

* Originally from the University of Paderborn, funded by DAAD, the German Academic Exchange Service, while at
Carleton.

Abstract - In this paper, we make a case for the
development of intelligent software engineering
patterns. Patterns have proven extremely useful
to the object-oriented programming community.
However, of the large amount of pattern
research, little effort has been devoted to
developing intelligent software engineering
patterns. We wish to correct this situation. We
believe, for example, that the ongoing success of
agent systems depends on the development of
sound software engineering principles for them.
Patterns are a recognized means to this end, and
one that we wish to promote.

Keywords: Communication, Agent, Pattern

1 Introduction
The objective of software engineering is to

produce software products [11] which are
systems delivered to customers with
documentation that describes how to install and
use them. Therefore, the objective of intelligent
software engineering must be to produce complex
and intelligent software products. We can use
Artificial Intelligence (AI) techniques to help
build these systems, but intelligent software
engineering is mainly concerned with how to
incorporate these techniques into the resulting
systems.

As research progresses in an area, certain
research elements (e.g., principles, facts,
fundamental concepts, techniques, algorithms and
architectures) become well understood. As an
indicator of this, take for example the call for
papers for the workshop on Mobile Agents in the
Context of Competition and Cooperation [10].
We find comments such as, “… gaining more

widespread acceptance and recognition as a
useful abstraction and technology” and “we are
uninterested in papers that describe yet another
mobile agent system.” Since many mobile agent
systems now exist, we believe the program
committee felt that there was no need to see
others describing similar approaches. The
question to answer at this point is, what should
the research community do next with the
knowledge it has gained?

We propose the use of patterns as the principal
tools for intelligent software engineering. This is
not a matter of only documenting the solution and
problem surrounding each research element; this
material already exists in many papers. One must
go further and deeper with their explanations,
identifying the forces and the contexts of the
problems that give rise to the proposed solutions.
These are the undocumented and often
misunderstood features of the research elements,
and we believe they must be exposed before the
corresponding software engineering principles
can be incorporated into business applications.
For example, we have lost track of how many
times we have read a paper that indicated that it
used KQML [6] for the communication between
agents and not been able to understand why it
was used? There may have been an obvious
advantage to using it, or maybe it did not matter.
What we wanted to understand was which forces
and context lead to this decision, because if we
need to make a similar decision in the future we
need this information.

Our objective in this paper is to introduce the
notion of intelligent software engineering
patterns. Since not many are familiar with

software patterns, and those that are often think
of them as only problem and solution pairs, we
begin with an introduction to patterns and pattern
languages. Next, we strengthen our argument for
the importance of patterns for intelligent software
engineering. Finally, as an example of intelligent
software engineering patterns, we provide several
of them dealing with mobile agent
communication. Although we describe only
abbreviated patterns due to space limitations, our
goal is to provide the reader with enough
information to apply them immediately and to
convince the reader to build their own intelligent
software engineering patterns in the future.

2 Patterns and Pattern Languages
Software patterns have their roots in

Christopher Alexander’s work in the field of
building architecture. After reading his work, it
was clear to software engineers that, like building
designs, there are many recurring problems and
solutions used in the design of software systems.
Unfortunately, they noted that many of these
combinations were hard to find except for in the
minds of the most experienced developers, for if
they were, projects would have been built on
time, within budget and without bugs! Moreover,
knowing the problem and solution were not
enough. Software engineers needed to know
when the solutions were appropriate for the given
problems.

In Alexander’s book, “The Timeless Way of
Building” [1], we find the following definition
for a pattern:

• A pattern is a three-part rule that expresses
a relation between a certain context, a
problem, and a solution.

• Each pattern is a relationship between a
certain context, a certain system of forces
that occurs repeatedly in that context, and
a certain spatial configuration that allows
these forces to resolve themselves.

• A pattern is an instruction, which shows
how the spatial configuration can be used,
repeatedly, to resolve the given system of
forces, wherever the context makes it
relevant.

• The pattern is, in short, at the same time a
thing, which happens in the world, and the
rule which tells us how to create that

thing, and when we should create it. It is
both a process and a thing; both a
description of a thing which is alive, and a
description of the process which will
generate the thing

Although there are many formats for patterns,
the minimal format contains the following, or
essentially similar, headings.

• Name: As the saying goes in the object-
oriented community, a good variable
name is worth a thousand words and a
good pattern name, although just a short
phrase, should contain more information
than just the number of words would
suggest. Would the word ‘agent’ be a
good pattern name? The answer is no.
Although it means a lot more than just the
single word would suggest, it has too
many meanings! One should strive for a
short phrase that still says it all.

• Problem: A precise statement of the
problem to be solved. Think of the
perspective of a software engineer asking
himself, how do I … .? A good problem
for a pattern is one that software engineers
will ask themselves often.

• Context: A description of a situation
when the pattern might apply. However,
in itself the context is not the only factor
determining the situations in which the
pattern should be applied. Every pattern
will have a number of forces that must be
balanced before applying it. The context
helps one determine the impact of the
forces.

• Forces: A description of an item that
influences or constrains the decision as to
when to apply the pattern in a context.
Forces reveal the intricacies of a problem
and can be thought of as items that push or
pull the problem towards different
solutions or indicate trade-offs that might
be made [5]. A good pattern description
should fully encapsulate all the forces that
have an impact upon it.

• Solution: A description of the solution in
the context that balances the forces.

Other sections such as rationale, resulting
context, implementation, sample code, known

uses and related patterns are included to help with
the description.

A good pattern provides more than just the
details of these sections; it should also be
generative. Patterns are not solutions; Patterns
generate solutions. You take your 'design
problem' and look for a pattern to apply in order
to create the solution. The greater the potential
for application of a pattern, the more generative it
is. Although specific patterns are useful, a great
pattern has many different applications. For this
to happen, pattern writers spend considerable
time and effort attempting to understand all
aspects of their patterns and the relationships
between those aspects. This generative quality is
so difficult to describe that Alexander calls it "the
quality without a name", but you will know a
pattern that has it once you read it. It is often a
matter of simplicity in the face of complexity.

Although useful at solving specific design
problems, you can enhance the generative quality
of patterns by assembling related ones to form a
pattern language, enabling you to build software
frameworks or families of related systems. A
pattern language’s collection of patterns forms a
vocabulary for understanding and communicating
a "whole", revealing the structures and
relationships of its parts that fulfill a shared
objective.

For example, individual patterns might help
you design a specific aspect of a mobile agent,
such as how it models beliefs, but a pattern
language might be able to help you build all types
of agents.

Intelligent software engineering pattern
languages are very important for the patterns to
be successful. Forcing each pattern to identify its
position within the space of existing patterns is
not only good practice, it is also good research. In
other words, all intelligent software engineering
patterns should be part of an intelligent software
engineering pattern language. It is not only
helpful to you, but to all other software engineers
who will use the patterns to develop their systems
in the future.

3 Patterns are Important for
Intelligent Software Engineering
For any software system to be successful and

run safely, it must be constructed using sound
software engineering principles, and not

constructed in an ad-hoc fashion. Unfortunately,
much of intelligent software development to date,
especially involving agents, has been done ad hoc
[4], creating many problems – the first three
noted by [8]:

1. Lack of agreed definitions
2. Duplicated effort
3. Inability to satisfy industrial strength

requirements
4. Difficulty identifying and specifying

common abstractions above the level of
single agents

5. Lack of common vocabulary
6. Complexity
7. Only goals and solutions presented

These problems limit the extent to which
“industrial applications” can be built using AI
technology, as the building blocks have yet to be
exposed or defined for the software engineers.
Objects and their associated patterns have
provided an important shift in the way we
develop applications today, since the level of
abstraction is greater than procedural or data
abstraction. We find it essential to begin an effort
to document AI’s abstractions so that others can
share in the vision. Patterns provide a good
means of documenting these building blocks in a
format already accepted by the software
engineering community. Patterns also have the
added benefit that no unusual skills, language
features, or other tricks are needed to benefit
from them [9].

4 Communication Patterns for
Mobile Agents
A mobile agent framework consists of places

and agents. A place is a location on node in a
network and provides an environment for agents
to execute. Several agents can be located at the
same place.

You can classify agents as static, service
agents or as mobile agents. Service agents live in
the same environment as mobile agents, but do
not change places. Mobile agents move to
different places to accomplish their tasks. The
mobility of agents can vary from few to many
changes in location. Agents can pursue their own
goals or can work together and collaborate with
other agents.

The differences in mobility have created the
need for several patterns to manage the
communication between agents.

4.1 Direct Coupling Pattern
Problem: How do mobile agents communicate
directly with others in a mobile agent system to
accomplish a task?

Context: You are developing an application
incorporating mobile agents.

Forces:
• Mobile agents change their locations

frequently.
• Agent communication takes place

between agents on a peer-to-peer basis.
• A robust and efficient communication

mechanism is needed that allows
communication between static and mobile
agents.

• A simple solution where each agent is
assigned an address is obviously not
applicable because this address becomes
invalid as soon as the agent moves to
another place. A more sophisticated
approach is needed that allows agents to
change their places and maintain
communication with their communication
partners.

Solution: Since every agent needs to know the
positions of its colleagues, establish and maintain
a tight coupling between communicating agents
using a modified Observer Pattern [7]. Have
each agent register with the others it wants to
communicate with and when those agents change
their positions have them notify the registered
agent of the change. Therefore, the registered
agent becomes the observer of the others. If the
communication is bidirectional, each agent is an
observer as well as observed agent. In contrast to
the original Observer pattern, the observed agent
sends its new position in addition to a general
notification event.

Resulting Context: By applying this pattern,
there is a tight coupling between agents, enabling
them to communicate directly with one other.
IBM’s Aglets [9] environment, for example,
supports this mobility notification by default in
every agent. The Aglet environment does not

support automatic bookkeeping of agent
locations, and therefore provides less
functionality than the pattern. For small systems,
this technique works well, especially when agents
do not have many communication partners or do
not change their locations frequently. However,
in a system where one agent has many potential
communication partners and moves frequently,
Direct Coupling results in an increase in network
message traffic. This increase creates a potential
bottleneck because an agent will need to send
notification messages every time it changes its
position.

4.2 Proxy Agent Pattern
Problem: If the agent sending a message does
not expect the receiving agent to move or the
Directly Coupling pattern is not applicable for
performance reasons, how do mobile agents
communicate with others?

Context: You tried applying the Direct Coupling
Pattern, but found that it resulted in a bottleneck
due to the increased network message traffic. In
addition, there are now situations when agents
must always be reachable at the same address.
You have also made a design decision to separate
the task of handling agent mobility from the
service provider agent in the mobile agent’s home
place.

Forces:
• Mobile agents change their positions

frequently but each has a home place.
• Agent communication takes place

between many agents on a peer-to-peer
basis.

• A robust and efficient communication
mechanism is needed that allows
communication between static and mobile
agents. Static agents are easy to find,
because they always ‘live’ at the same
place.

• Communication occurs arbitrarily between
many agents.

Solution: Use a modified Proxy Pattern [5].
When an agent moves away from one place, it
creates a Proxy Agent at its home location to hide
its change of position. When this Proxy Agent
receives a message, it can either forward the
message to the corresponding agent, or store the

message and deliver it later on request. The
former can be called an Active Proxy Agent, the
latter a Passive Proxy Agent. You can view an
Active Proxy Agent as message forwarding
whereas the Passive Proxy Agent resembles a
mailbox concept.

Resulting Context: If the Proxy Agent is active,
it needs to keep track of the location of the
original agent. Therefore it has to become the
observer of the original agent and the original
agent needs to notify the Proxy Agent when it
changes location. An advantage of the active
solution is that it ensures prompt message
delivery. A disadvantage is the need for
registering and deregistering the original agent. If
messages arrive infrequently and the original
agent is highly mobile, the overhead of the
registering and deregistering outweighs the
advantage of prompt message delivery.

If the Proxy Agent is passive, it does not need
to keep track of the location of the original agent,
but it must be able to store the messages. Since
message delivery takes place only on request of
the original agent, this particular solution is not
applicable if message delivery has to be
synchronous. However, in some cases a Passive
Proxy Agent might be better than an active one,
especially if messages are sent regularly and the
original agent changes its location often.

By applying the Proxy Agent Pattern, you
decouple the original agent from its
communication partners. This results in less
message overhead because only the Proxy Agent
has to be notified of a move by the original agent.

One major advantage of the Proxy Agent
Pattern is transparency: the communicating
agents do not know whether they are
communicating with a Proxy Agent or the ‘real’
agent. This results in code that is more flexible
because agents are not dependent on agent types.
The main disadvantage is the extra level of
message indirection, which can cause additional
message traffic.

4.3 Communication Sessions Pattern
Problem: How do mobile (or service) agents
manage complex communication with others in
an easy and efficient way?

Context: You are developing a mobile agent
system in which mobile agents interact with

either mobile or static agents in complex
conversations occurring over a period of time.
The typical scenario is that two agents agree to
communicate, interact by exchanging messages,
and finally stop their conversation.

Forces:
• Mobile agents change their position

frequently.
• Messages of different conversations arrive

interleaved in a random order.
• Complex interactions involve many

messages.
• The design should be simple and easy to

use
• The design should restrict the agents as

little as possible.
• The communication should be as efficient

as possible.
• You need to make it possible for agents to

have simultaneously conversations and
manage these conversations in a simple
and efficient way.

Solution: Introduce the concept of a session. A
session is an open communication link between
two agents that is represented by a session object
in each agent [3]. Examples of this type of
communication include message passing, RMI or
sockets.

The use of sessions allows agents to manage
several concerns. First, conversations are
separate. Agents receive messages from a specific
session object and can assign a handler to each.
In this handler, the current state of the
conversation can be encapsulated. Moreover, an
open session indicates an ongoing interaction
with a corresponding agent.

Second, it is possible to separate session
management from the mobility problem. We can
force an agent not to change its location in a
session, or that such a change implicitly closes all
open sessions. This allows a direct and simple
communication between agents, which results in
less overhead and higher performance. If mobility
during ongoing conversations is required, a proxy
object can be used.

Resulting Context: You can establish sessions in
either an active or passive manner. An active
setup blocks the calling agent until the
communication link is established. This is useful

in peer to peer communication. If an agent is
offering a service and may accept a large number
of communicating agents, a passive setup can be
used. This results in a client-server interaction.
Every time, an agent performs an active setup, a
new session and a new thread, handling the
session, is created.

If conversations become very complex, it
might be useful to define a formal conversation
plan [2]. A conversation plan is a finite
automaton. Automata states represent states of
the conversation, and transitions correspond to
incoming messages. The purpose of a
conversation plan is to make the structure of a
conversation explicit and therefore easy to
maintain and understand. The structure is similar
to the State pattern [7].

4.4 Badges Pattern
Problem: How can an agent find a suitable
communicating agent without specifying a
concrete agent?

Context: A group of agents that satisfy certain
properties needs to collaborate and communicate
with others in the same place. For example, a
network mapping agent needs to exchange data
with other mapping agents at its current place and
needs to find the addresses of the mapping agents
currently located at the same place.

Forces:
• Communicating agents are not known in

advance and can change.
• Partner selection is permitted based on a

specific agent type.
• The design should be flexible, and as

general as possible.
• Communication should be direct after

communicating agents have been
identified.

Solution: Attach badges to agents. Give every
badge a unique id, and have every agent carry a
set of badges. Badges can be pinned on and off an
agent. A place provides a service to find a local
agent carrying a certain badge.
Agents belonging to the same group can carry the
same badge. If an agent wants to search for
another in its group at the current place, it uses
the place’s badge service and requests an agent
carrying a specified badge. If no agent exists, the

request fails, otherwise the id of a random agent
from the set of suitable agents is returned. After
given a badge, an agent can establish
communication with another directly.

Resulting Context: We can generalize this
concept, if we allow logical expressions as
queries to the place’s badge service. It is then
possible to express queries like
SEARCH_AGENT AND
HASVALIDSOLUTION. With this mechanism it
is easy to request agents in a specific state, or to
search for agents of a specific subgroup. The
badge service is easy to implement because a
place is notified when an agent enters or leaves
the place. The service can request the badges
from every incoming agent, and maintain a
directory that maps from badges to sets of agents
carrying the badge. If an agent leaves, its badge is
removed from these sets. The structure of this
pattern is an extension of the Broker pattern,
specialized to the specific needs of the agent
context.

4.5 Event Dispatcher Pattern
Problem: In a mobile agent framework there is
often the need for efficient communication
between an agent and a group of other agents.
Usually communication is unidirectional, like
“fire and forget” messages. How do agents
achieve this form of communication in a mobile
agent framework?

Context: You are developing an application
where agents need to communicate with groups
of other agents without knowing the actual
members of the groups. Communication is
unidirectional and is therefore considered an
event or notification. An example for this kind of
communication is a dynamically changing group
of agents working on the same problem and when
one has found a solution, it wants to send a
terminate notification to all other agents.

Forces:
• Agents are mobile.
• The members of a group might change

over time.
• A simple solution is desired.

Solution: Introduce an intermediate event
dispatcher object between the sending and

receiving agents. This concept is known and used
in the Observer Pattern. Every agent interested in
a type of event, registers itself as an observer at
the event dispatcher object. An agent originating
an event sends the message to the event
dispatcher. The dispatcher then sends the
message to all registered agents.

Resulting Context: Although the dispatcher has
to cope with the mobility of the receiving agents,
it can require that agents are static to simplify the
implementation. If an agent wants to move while
expecting events, they can use either an active or
passive proxy agent.

Instead of simple multicasting an event to all
receiving agents, it is possible to build more
complex coordination objects applying the same
principle. One example is an AND-Group.
Incoming events are boolean values. The result of
the operation is TRUE, if all events (the number
has to be fixed) are TRUE, and FALSE
otherwise. If one agent sends a FALSE event, the
coordination object can send a FALSE message
to every receiver immediately. If all agents send a
TRUE event, then it can send a TRUE event to all
receivers.

5 Conclusion
Although not presented as a pattern language,

the next step for us is to reveal the structures and
relationships of our patterns for the shared
objective of agent communication.

What is in the future of intelligent software
engineering pattern research? First, we must
develop an initial set of pattern classifications to
help focus pattern writers on the targets that are
of the greatest importance to those developing
‘real’ intelligent software systems. Second,
within each classification, we must identify
pattern languages for pattern writers to develop
and extend, and force them to position their new
patterns within the space of existing patterns.
Third, we must constantly remind those involved
with artificial intelligence research to not only
describe their solutions, but to also think, discuss,
and write about the problems their solutions are
intended to address and what context and forces
led them to a particular solution. Fourth, we must
write the patterns.

In short, we believe that following this
approach, we will not have to read about “yet
another intelligent system framework” anymore.

Rather, we will be able to read and understand
what problems an intelligent system or
framework solves for us and when we should
consider using the approach!

6 References
[1] C. Alexander. The Timeless Way of

Building. New York: Oxford University
Press, 1977.

[2] M. Barbuceanum and M. Fox. Integrating
Communicative Action, Conversations and
Decision Theory to Coordinate Agents. In
K. Rothermel and R. Popescu-Zeletin
(eds.), 1st Int. Workshop on Mobile
Agents (MA'97) LNCS 1219, Springer-
Verlag, 1977.

[3] J. Baumann, F. Hohl, N. Radouniklis, M.
Strasser, K. Rothermel. Communication
Concepts for Mobile Agent Systems. In K.
Rothermel and R. Popescu-Zeletin (eds.),
1st Int. Workshop on Mobile Agents
(MA'97) LNCS 1219, Springer-Verlag,
123-135, 1977.

[4] J. Bradshaw, S. Dutfield, P. Benoit, J.D.
Woolley. KaoS: Towards and Industrial-
Strength Open Distributed Agent
Architecture. In J.M. Bradshaw (Ed.),
Software Agents, AAAI/MIT Press, 1997.

[5] J.O. Coplien. Software Patterns. SIGS
Management Briefings Series, SIGS Books
& Multimedia, 1996.

[6] T. Finin, Y. Labrou, J. Mayfield. KQML as
an Agent Communication Language. In
J.M. Bradshaw (ed.) Software Agents,
AAAI Press/MIT Press, 291-316, 1997.

[7] E. Gamma, R. Helm, R. Johnson, J.
Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[8] E. Kendall, P.V. Murali Krishna, Chirag V.
Pathak, C.B. Suresh. Patterns of Intelligent
and Mobile Agents. Autonomous Agents
'98 (Agents '98), 1998.

[9] D.B. Lange, and M. Oshima. Programming
and Deploying Java Mobile Agents with
Aglets. Addison Wesley, 1998.

[10] MAC3. Mobile Agents in the Context of
Competition and Cooperation. Autonomous
Agents ’99,
http://mobility.lboro.ac.uk/MAC3, 1999.

[11] I. Sommerville. Software Engineering.
Addison-Wesley, 1996.

