Stock Trading Strategy Creation Using GP on GPU

Dave McKenney
School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
dmckenne@connect.carleton.ca

December 19, 2010

Abstract

This paper investigates the speed improvements available when using a graphics
processing unit (GPU) for evaluation of individuals in a genetic programming (GP)
environment. An existing GP system is modified to enable parallel evaluation of in-
dividuals on a GPU device. Several issues related to implementing GP on GPU are
discussed, including how to perform tree-based GP on a device without recursion sup-
port, as well as the effect that proper memory layout can have on speed increases when
using CUDA-enabled nVidia GPU devices. The specific GP implementation is designed
to evolve stock trading strategies using technical analysis indicators. The second goal of
this research is to investigate the possible improvement in performance when training
individuals on a larger number of stocks and training days. This increased training size
is enabled due to the speedups realized by GPU evaluation. Several different scenarios
were used to test various speed optimizations of GP evaluation on the GPU device,
with a peak speedup factor of over 600 (when compared to sequential evaluation on a
2.4Ghz CPU). Also, it is found that increasing the number of stocks and the length of
the training period can result in higher out-of-training testing profitability.

1 Introduction

The introduction of general purpose computing on GPU devices has revolutionized the
parallel computing field. Now, anybody with a small amount of initial investment can have
the computing power of a small cluster contained inside their desktop computer. In fact,
many people with powerful home computers already have this power sitting inside their
boxes, without even knowing it is there.

Genetic programming, as developed originally by Koza in [14], lends itself particularly
well to parallelization. Generally, nearly all computing time throughout a genetic program-
ming run is taken by the evaluation of different individuals of the population. The evaluation
of individuals is computationally expensive due to two factors: the number of individuals to
evaluate and the number of fitness cases that must be evaluated for each individual. Using
a parallel approach, these evaluations can be spread across many processors, resulting in
massive speed increases. This speedup allows for more individuals, or more fitness cases, to
be evaluated in the same amount of time, which can lead to better results.

The work reported in this paper aims to apply the benefits offered by a GPU device
to the problem of genetic programming. Specifically, it aims to use genetic programming

(parallelized on a GPU device) to generate stock trading rules. This parallelization will be
achieved by modifying the evaluation method of an already existing genetic programming
package. This work also identifies and elaborates on the major implementation and perfor-
mance issues (such as memory access optimization and recursion on GPU devices) present
when migrating traditional GP to GPU devices. With the evaluations being executed on
the GPU device, varying the number of stocks and length of training periods will be tested
to see which produce the best out-of-training results.

In Section 2 of this paper, related works in both the area of massively parallel GP and
the area of stock strategy creation using GP are presented. Section 3 outlines the trading
model and genetic programming setup, as well as the algorithm used to evaluate the GP
population. Details on implementation of parallel GP on GPU, including a stack-based
interpretation algorithm and GPU memory access optimizations (coalescing), are given in
Section 4. Section 5 compares the running time of the parallel GPU evaluation (and several
optimization experiments) to the speed of a sequential evaluation approach, while Section 6
compares the profitability of varying amounts of training data. Future areas of improvement
are identified and explained in Section 7, and the paper concludes with a summary of the
work completed and results in Section 8.

2 Literature Review

2.1 Evolutionary Stock Trading

Due to the relatively new advances of general purpose computing on GPU devices, there
is little previous work completed on massively parallel GP on GPU devices. Furthermore,
there is no published work on generating stock trading rules using this approach. For these
reasons, previous work on stock trading rule generation will be briefly presented, followed
by a summary of the work on massively parallel GP on GPU devices.

In [5], many applications of evolutionary computation in the financial field are outlined.
There are several sections on trading rule generation and algorithmic trading (the use of
computer programs in the trading of financial assets). Also, background information is
included, describing how technical analysis can be used to generate trading rules. While
there are no practical results presented, it can serve as a useful starting point for those
interested in the field of evolutionary computational finance.

A genetic algorithm approach has been used in [17] and [12] to generate stock trading
strategies. In [17], the profitability of stock trading rules generated by a genetic algorithm
using either a direct or indirect encoding of stock indicators. Using a direct encoding
(where parameter values for functions are encoded within the genome of an individual),
a total profit of 1628 Japanese yen (JPY) was realized throughout experimental trading.
With direct encoding, however, the search space is extremely large. Each parameter value
can range anywhere from the minimum value to the maximum value. For this reason,
[17] proposed the use of indirect encoding, where parameter values are selected from a
short list of possibilities (e.g. 5, 10, 15, 25, 50, and 100). This drastically cuts down on the
search space, since each parameter can have only 6 possible values, instead of 100. With the
decreased search space, a profit of 2370 JPY was realized (nearly 50% higher than with direct
encoding). [12] encoded several Boolean indicators, connected by Boolean operators, into an
individual. Each individual’s chromosome was then evaluated for each day, with the input
(indicators) determining the action for that given day. The evolutionary algorithm trained
individuals over a 2 month period of trading on two foreign exchange markets (GBP/USD

and USD/DEM). A loss of 2% (GBP/USD) and 3.3% (USD/DEM) was realized by the best
individual over the two month training data period. The losses increased further, to 9.3%
(GBP/USD) and 15% (USD/DEM) in the following 3 month testing period.

The main problem with these genetic algorithm approaches for stock trading rule gen-
eration is that the program maintains a fixed length. Genetic programming (or a variable
length genetic algorithm, such as [9]) however, allows programs to grow/shrink as evolu-
tion takes place. Also, using genetic programming, any combination of technical indicators
can be used together to generate trading rules (which is not seen in a genetic algorithm
approach). In [23], genetic programming is used to generate trading rules to be tested on
four foreign exchange markets (CAD/USD, EUR/USD, GBP/USD, and JPY/USD). After
trading on the exchange markets for a total of 1 year, the profitability of the generated
rules were compared to the profitability of a buy-and-hold strategy (buying the currency
at day 1 and selling it on the last day). Several different fitness approaches were tested,
with the best approach resulting in an average of 5% higher return than the buy-and-hold
approach. This approach also had a higher return than the buy-and-hold approach in 3
of the 4 markets, with a maximum difference of +13.14%. In [8] a genetic programming
approach was implemented, created individuals by combining a subset of 6 Boolean trading
rules together using standard Boolean functions. Each individual consists of both a buy
and a sell tree, which are used to determine the action to be taken. The individuals were
trained on 3 months of data from the GBP/USD market, with trades being executed every
minute (while indicator values were updated every 15 minutes or at the end of every day).
While profit was realized during the training interval, losses generally occured on the out
of sample test data. The work presented in [8] was a significant motivation for this work.

2.2 Massively Parallel Genetic Programming

There are several approaches to parallelizing the evaluation stage (the most computationally
expensive phase) of genetic programming implementations. The two most popular methods
for parallelizing the evaluation of a single population are data parallel and population
parallel. In a data parallel approach, a single individual’s fitness cases are evaluated in
parallel. This is easy to accomplish when the fitness cases are independent and easily
separable (for example, symbolic regression and Boolean multiplexer problems, as described
in [14]). A data parallel approach is a poor fit, however, when the fitness cases are dependent
on each other. This problem is present in problems such as stock trading, where past
profits/losses have an effect on future profits/losses. In these cases, it is much easier to
implement a population parallel approach, where the fitness cases of a single individual are
evaluated sequentially, while parallelization is achieved by evaluating several individuals at
a time. In other cases, these two approaches can be combined into a hybrid evaluation
approach, with both individuals and fitness cases being evaluated in parallel. This can be
seen in the BlockGP approach in [21], and is also present in the work presented here.

One of the first and most often cited works on massively parallel genetic programming is
[13]. This work was implemented on a MasPar MP-2 machine which used a single instruction
multiple data (SIMD) architecture. However, a multiple instruction multiple data (MIMD)
architecture was simulated using a stack-based interpreter which accepts genetic program
individuals as data. Using this method, the requirements of single instruction multiple data
architecture are met because each process core is executing the same step of the interpreter,
using the individual programs as input. This allows many different individuals within the
genetic programming population to be evaluated at the same time (in this specific case, 4096

individuals at a time). While the speedup of this approach when compared to a traditional
CPU implementation was not presented, the benchmark tests were capable of evaluating
thousands of individual programs in approximately 1 second.

In one of the original works involving genetic programming on a GPU device, [7] used a
data parallel GP approach to parallelize evaluation of individuals. Instead of implementing
a stack-based interpreter (as above), only one individual was evaluated at a time on the
GPU. This parallelization was achieved by evaluating different fitness cases for the current
individual at the same time. The implementation was tested on several GP problems
(including the classic symbolic regression and 11-way multiplexer problems, as described in
[14]), with a varying number of fitness cases. The length of time required for evaluation on
the GPU was compared to the time needed to evaluate all individuals on a sequential CPU
approach. In the case of 100 fitness cases, the CPU approach executed more than twice
as fast as the GPU approach. With 150 fitness cases however, evaluation time was nearly
equal. When the number of fitness cases increased, to 400, the GPU approach completed
nearly ten times faster. This speedup was further realized by increasing the number of
fitness cases to 2048, where the CPU took nearly 30 times as long as the GPU to evaluate
all individuals. It would seem then, that using a low number of fitness cases does not allow
the computing power of the GPU to be optimally used. In fact, with a small number of
fitness cases, the overhead of GPU evaluation results in the CPU implementation being
faster. For a data parallel approach to be most effective on a GPU then, a high number
of fitness cases are required. Otherwise, some of the processing cores on the device will be
underutilized, resulting in a smaller speed increase.

Another data parallel GP approach was implemented on a GPU device in [10]. Both the
number of fitness cases and the maximum program length were varied, with performance
being compared to that of a CPU implementation. For each test, GP individuals were
randomly generated and evaluated (no genetic operations were performed, as the emphasis
was on evaluation performance). It was found in all tests that speedup factors increased
with both maximum program length and number of fitness cases. Speedup is seen with
increasing number of fitness cases because fitness cases are evaluated in parallel on the GPU
and sequentially on the CPU. Speedup is realized with increasing program length because
the GPU needs to parse the individual tree fewer times (with many fitness cases evaluated
in parallel), while the CPU implementation must parse the large individual trees for each
fitness case. The first test involved individuals consisting of floating point operations (+, -,
*, /) and terminals. Speedup factors (when compared to the CPU implementation) ranged
from 0.04 (for a program length of 10 and 64 fitness cases), to 7351.06 (program length of
10000 and 65536 fitness cases). Similar results were also found when testing on the real GP
problem of symbolic regression. Speedup factors in this case ranged from 0.02 for program
length of 10 and 10 fitness cases, to 95.37 for program length of 10000 with 2000 fitness
cases.

In [21] and [22] a population parallel approach to GP on GPU devices was implemented
using the CUDA development kit from nVidia (similar approaches can also be found in [16]
and [15]). As in [13], individuals are evaluated in parallel using a stack-based interpreter
which accepts individual programs as input. Within [21], two approaches to evaluation
distribution are presented. In the ThreadGP approach, each thread within the GPU is
assigned to evaluate one individual, with each fitness case for the individual being evaluated
on the same thread. The BlockGP method takes advantage of a newer architecture of nVidia
GPU devices, which operate using a single-program-multiple-data (SPMD) architecture
instead of SIMD. Within the newer GPU devices, there are a number of multiprocessors

(MPs), each of which maintains its own instruction pointer. With this architecture, each
MP is capable of being at a different point in the program than the others. The BlockGP
implements a hybrid parallel approach, evaluating each individual on a single MP, with all
threads within the MP being used to evaluate different fitness cases in parallel. Divergence
is avoided using the BlockMP approach, as the multiprocessors are capable of executing
different instructions of the interpreter program and each thread within a multiprocessor
is evaluating the same individual/instruction. Divergence is a major source of inefficiency
when using an approach such as ThreadGP, as many threads will not be executing at a
given time due to the fact that all threads within a multiprocessor must be at the same
instruction within the interpreter. This inefficiency is what caused the BlockGP approach to
perform faster evaluation over all tests carried out. Tests were completed using a symbolic
regression problem with different population sizes and number of fitness cases. The highest
speedup of BlockGP was found with the combination of the smallest number of individuals
(512) and highest number of fitness cases (1024). ThreadGP performs poorly in this case
because 512 is the minimum number of threads required to fill all stream processors on
the GPU, so the GPU scheduler cannot swap out threads that are waiting for threads
that are ready. BlockGP on the other hand involved 512 blocks, each with 32 threads.
When one block is waiting, it can be substituted out for a block that is ready to perform
computations, resulting in speedup. Furthermore, since BlockGP spreads fitness evaluations
of an individual across 32 threads, a higher number of fitness cases allow the block to use
all of its computational resources. With less than 32 fitness cases, it is impossible to fill
all of a block’s threads, resulting in poor performance. This work also found that once
population increases beyond 2500 individuals, speedup remains approximately the same.
This is because with 2500 individuals, there are nearly 5 times as many threads as there
are stream processors, which allows the scheduler to substitute waiting threads efficiently.
BlockGP still performs faster however, due to the lack of divergence.

When implementating parallel GP then, the number of fitness cases plays a key role in
the parallelization scheme. With a high number of independent fitness cases, a data parallel
approach will work well, as the high number of fitness cases will create enough threads to
fully utilize the power of the GPU device. The current rate of GPU growth, however, will
most likely relegate this approach as a massive number of fitness cases will soon be required
to fill the processing cores of a device. When a smaller number of fitness cases are available, a
population or hybrid parallelization approach will produce better results. These approaches
allow the different multi-processors of a GPU device to work on different individuals at the
same time, while fitness cases are evaluated either sequentially (population-parallel) or in
parallel (hybrid approach). When using these approaches, however, care must be taken
to address the problem of divergence. With a number of individuals being evaluated on
the same multiprocessor, as in a population parallel approach, divergent code branches can
greatly decrease the efficiency of the computation. This problem can be addressed using a
hybrid scheme, as a evaluating a single individual on a multi-processor (with fitness cases
in parallel) can eliminate the problem of divergence.

3 Genetic Programming and Stock Trading Model

3.1 Lilgp

To perform the genetic programming operations (population creation, breeding, mutation,
etc.), Lilgp ([19]) was used. Lilgp is a genetic programming tool written in the C program-

ming language with a number of goals including speed and ease of use. The version of Lilgp
used also includes strongly typed GP [18], which allows for typed functions, inputs, and
trees. This cuts down on the manual checking necessary to ensure that a tree is valid, since
only valid inputs will be supplied for each function. The main modification to Lilgp, for
the research reported here, was the removal of the standard sequential population evalua-
tion function, which was replaced with a parallel GPU evaluation function. This parallel
function uses a hybrid parallelization, with individuals and fitness cases evaluated in par-
allel. Since it is difficult to parallelize the fitness evaluations for single stocks, one thread
is allocated for every individual/stock combination. These threads are organized in a way
such that all threads of an individual are contained within the same warp, which decreases
the amount of divergence, since a multi-processor will be evaluating a single individual (and
thus, a single instruction) at any time.

3.2 Functions and Terminals

The stock problem implementation consisted of 31 possible input values (terminals) and
5 Boolean functions (AND, OR, NOT, <, >). The inputs were calculated using formulae
from [4], which has much more information on the calculation and use of these indicators.
Below is a list of all inputs used, with a brief explanation of each.

Floating Point Terminals

e Simple Moving Average: Over a period of either 1 (MA1), 5 (MA5), 10 (MA10),
15 (MA15), 25 (MA25), 50 (MAS50), 75 (MA75), 100 (MA100), 150 (MA150), or
200 (MA200) days.

e Exponential Moving Average: Over a period of either 5 (EMA5), 9 (EMA9), 15
E(MA15), 20 (EMA20), or 25 (EMA25) days.

e Price: The closing price (CP) and the typical price (TP).
Boolean Terminals

e Volume Indices: Whether the NVI (negative volume index) or the PVI (positive
volume index) are above (NVIG/PVIG) or below (NVIL/PVIL) zero.

e Moving Average Convergence/Divergence (MACD): Whether the MACD is above
(MACDGZ) or below (MACDLZ) zero, as well as whether the MACD greater
than (MACDG) or less than (MACDL) the MACD signal line.

e Money Flow Index (MFI): Whether the MFT is above 80 (MFIG), or the MFT is
below 20 (MFIL).

e Ease of Movement (EOM): Whether the ease of movement is greater (EOMG)
than or less than 0 (EOML).

e Commodity Channel Index (CCI): Whether the CCI is greater than 100 (CCIG),
or less than 100 (CCIL).

3.3 Individuals

Each individual in the population consisted of two trees, with each evaluating to either true
or false. The first tree represented a buy signal, while the second represented a sell signal.
On each training day and for each stock, the values of these trees (given input values for
the specific stock/day combination) would be used to determine the trading action for the
day/stock. The decision matrix used to select an action can be seen in Figure 1.

Buy Tree
True False

()]

~ No Action Sell All Shares
|
g
-
o
n]

= | Buy Max. Shares No Action

L

Figure 1: Decision matrix for a single stock/day combination

3.4 Training and Fitness Calculation

A strategy’s (individual’s) fitness is dependent on how much profit that strategy would
make while trading a set of stocks over the set of training days. To begin the evaluation of
an individual, an initial amount of money ($10 000) is allocated for each stock. For every
stock and training day, the individual’s trees are evaluated and the appropriate action is
taken. A pseudocode algorithm for population evaluation is presented below in Algorithm
1.

3.4.1 Buy Action

When an individual i generates a buy signal for a specific stock s on day d (and the individual
does not currently own any shares of s) the following calculations are performed to adjust
the state of that individual:

Money;s = Money; s — CF
Money; s
Vo]
Money;, s = Money; s — (Shares; s x CPs q)

Shares; s = {

Where CF represents the commission fee for trading (set to a constant value of $1/trade)
and CPs 4 is the closing price of stock s on day d. It is easy to see that this model of stock
trading is quite simple (e.g., it does not address slippage, or what effect large quantities of
trading may have on the stock price). The main focus of this work however, was using GPU
devices for GP evaluation. Further enhancements to the stock trading model are proposed
in Section 7.1).

3.4.2 Sell Action

When an individual i generates a sell signal for a specific stock s on day d (and the individual
currently owns a number of shares of s) the following calculations are performed to adjust

the state of that individual:

Money; s = Money; s+ (Shares; s x CPsg4) — CF
Shares;s = 0

These actions are also carried out for each stock s that the individual owns shares in after
the last training day, so the overall profitability of the individual can be measured.

3.5 Fitness Calculation

Initially, once evaluation had completed, the raw fitness of an individual was calculated
solely on ROI (return on investment) using the formula below (where S is the set of all
stocks trained on):

ZseS(Moneyi,S — 10, 000)
|S] x 10,000

Fitness; = ROI; =

This approach, however, biased the population towards stocks which increased in value
over the training period. As an example, if a single stock increased 5000% over the training
data, the entire ROI of an individual could be increased significantly just by buying this
stock on the first day and holding it until the end of training. Also, a high ROI may not
necessarily be indicative of a superior trading strategy. For example, a trading strategy
may achieve an ROI of 100% over the training data, but the set of stocks being trained on
increased 150% in total. While the 100% ROI seems impressive, more profit would have
been made using a buy and hold strategy (buying the stocks on the first day and selling
on the last). Comparing profitability of trading strategies to a buy and hold approach is
common, and can be seen in [16], [8] and [11]. For these reasons, the fitness function was
modified to include both the ROI achieved by the trading strategy and the ROI of a buy
and hold strategy. This improved fitness calculation follows (where ROIgy is the return
on investment when buying all stocks on the first day and selling all stocks on the final day,
and ROI; is calculated as above):

Fitness,' = ROL‘ — ROIBH

4 Genetic Programming on GPU

While GPU devices offer extremely high computational power, they have lacked the ex-
ecution stack necessary to perform straightforward tree-based GP. This problem is being
addressed by nVidia’s Fermi architecture [3], which will implement its own call stack, thus
allowing recursion. This work however, was initially completed without the ability to use
recursion on the GPU device. For this reason, a stack-based interpreter kernel was used on
the device, allowing the tree GP individuals to be evaluated.

4.1 Conversion to RPN

Generally, GP trees are parsed such that the resulting expression is in prefix notation. The
original GP work by Koza in [14] represented programs as Lisp-like S-expressions, which

Input: The GP population, with individuals/trees represented in RPN format
Output: An array Fitness which stores the raw fitness of each individual
foreach Individual i in population (in parallel) do
Fitness; = 0;
foreach Stock s in the set of training stocks (in parallel) do
Money; s = 10000;
Shares; s = 0;
Signal = 0;
foreach Day d in the set of training days do
/* Tree evaluations done using Algorithm 2 */
Signal = eval(buy_tree;, s, d);
Signal = Signal — eval(sell_tree;, s, d);
if Signal > 0 and Shares; ;s = 0 then
Money; s = Money; s — CF;

M .
Shares;,, = | Monesz |,

Money; s = Money; s — (Shares; s x CP; q);

else if Signal < 0 and Shares; s > 0 then
Money; s = Money; s + (Shares; s x CP; q) — CF
Shares; s = 0;

end

end
end
foreach Stock s in the set of training stocks do
Fitness; = Fitness; + (W — ROIpg);
end
end

return Fitness .) .
Algorithm 1: Evaluation of a GP population

are recursive and represented in prefix notation. Using this method, a string representation
of the tree in Figure 2 would be as follows:

(AND (> MA10 MA50) (OR (< EMA9 MA25) NVIG))

To perform recursion using a stack-based interpreter on the GPU, however, individuals
must be represented in postfix (reverse polish) notation, as in [16, 15, 20]. To convert
individuals into this notation, the GP tree is parsed in much the same way. Functions
however, are added to the string only after their input values have been parsed. The same
tree from Figure 2, represented as a RPN string would be:

MA10 MAS0 > EMA9 MA25 < NVIGOR AND

It can be seen, that RPN does not require the use of brackets. Furthermore, it can be
executed in a left to right manner, without the need to store previous function calls. These
strings can then be executed using the stack-based interpreter as described below.

CAECEEOENC

CENC

Figure 2: An Example GP Tree

4.2 Stack-based interpreter kernel

The stack-based interpreter kernel is a relatively simple device which evaluates individuals
supplied in RPN. Each thread on the device is assigned its own stack space, and can
therefore execute in parallel with all other threads with no synchronization/locks required.
Fach thread on the device is assigned an individual and a specific stock number. It will
then loop through all training days, evaluating the individual’s buy/sell trees using the
indicators for the stock it has been assigned to.

Every function and terminal allowed in the GP algorithm is assigned a unique operation
code. For each tree evaluation, the stack-based interpreter parses the string representation
of the tree from left to right, performing a simple case statement on each of the bytes. This
case statement looks at the current byte to decide which operation code it matches. Once
the operation code is determined, the correct action can be taken. If the operation code
belongs to a terminal, the terminal’s value for the current stock/day is retrieved and pushed
onto the stack. If the operation code belongs to a function, the previous values (the number
of values varies depending on the arity of the function) are popped from the stack and taken
as input to the function. The resulting value of the function evaluation is then pushed onto
the stack. When the end of the individual’s tree is reached (represented by a null character
within the string), the value of the first value of the stack is returned as the value of the
tree. The algorithm used to evaluate a specific tree is shown below in Algorithm 2.

10

Input: A stock s, day d, and tree in RPN rpn_string
Output: 0 (false) or 1 (true)
pc = 0;
sp = 0;
while {rue do
op = rpn_string|[pcl;
switch op do
case op = null
return stack|0];
case op = AND /* Similar behaviour for other functions */
argl = stack[sp — 1];
arg2 = stack[sp — 2J;

sp = sp — 2

stack[sp] = argl&&arg2;
sp = sp+1;

break;

case op = M A10 /* Similar behaviour for other terminals */
stack[sp] = M A(s,d,10);

sp = sp+1;
break;
endsw
pc = pc+1;

end
Algorithm 2: Stack-based interpreter algorithm for a single tree represented in RPN

4.3 Important Performance Factors

In many ways, performing GP on GPU devices seems at odds with much of the basic GPU
programming performance guidelines. The stack-based interpretation loop consists of a
large if-else statement. This of course can lead to a high level of divergence as different
threads follow very different execution paths. Global memory accesses are also seen as
something that can decrease performance significantly. Evaluating GP individuals results
in an extremely high number of global memory accesses, as inputs to functions must be read,
stacks must be updated, and results must be written. Fortunately, with a small amount of
analysis/design, the use of CUDA and nVidia devices, combined with the large number of
fitness cases in this particular GP problem, alleviate many of these concerns.

4.3.1 Work layout

As has been mentioned, a CUDA-enabled GPU device consists of a number of multipro-
cessors, each of which has a set of (generally 32) stream processors which at anytime are
executing a warp (a group of 32 threads). These stream processors are only capable of ex-
ecuting a single instruction at a time. For this reason, the large number of execution paths
possible using a large switch statement (as in the stack interpreter) can result in a large
percentage of stream processors being inactive at any given time. When analyzing a large
and varied amount of stock data per individual though, this problem can be overcome easily.
We chose a multiple of 32 as the number of stocks to analyze over the specific training days
(the number of stocks tested is either 32, 64, or 128). Using these numbers, each warp (of

11

32 threads) will be evaluating the same individual on a different stock. This eliminates the
problem of divergence, as each thread in the warp will be evaluating the same individual,
and thus the same instruction, at all times.

In general terms, an effort needs to be made to minimize the amount of divergent
branches occuring with a warp. With GP, if an individual can use 32 (or a multiple of
32) threads, it ensures that any given warp will be evaluating the same individual at all
times. This way, there will be no divergence within the stack interpreter because the same
operation will be executed by all 32 threads. With GP problems where a large number of
independent fitness cases are available, this is an easy problem to deal with, as it will be
easy to assign a subset of fitness cases to each of the 32 threads. In fact, with as little as 32
fitness cases, all threads of a warp will be able to deal with a single individual, eliminating
divergence. It is also possible to use more than 32 threads per individual, however it is
best to keep the number of threads per individual to a multiple of 32. This ensures that
all threads within a warp are evaluating the same individual (this approach is used here,
where 32, 64, or 128 threads are used per individual).

4.3.2 Memory layout

In the case where a large amount of memory accesses are required, coalesced memory
accesses are extremely important for speedup. CUDA-enabled GPU devices access device
memory using 32-, 64-, or 128-byte memory transactions, as explained in [2]. Threads
residing in the same warp, which are accessing consecutive memory locations, can have
what would normally be multiple accesses, coalesced into a single access. The degree of
coalescence then, is determined by the warp-level data locality, which is determined by
both the memory layout and the thread layout. As an example, with each of the 32 threads
in a warp evaluating one of the 32 training stocks, accessing a single-byte Boolean indicator
for each could take 32 memory read operations, with extremely poor data locality, or a
single 32-byte memory read with the data located consecutively in memory. Generally, a
thread and memory layout should be designed such that consecutive threads will access
consecutive memory locations.

One of the most memory-intensive operations in this case, is the reading/writing of the
stack. As was mentioned above, setting the number of stocks being analyzed to a multiple
of 32 ensures that all threads in a warp will be executing the same operation at all times.
For this reason, we know that all threads in a warp will be accessing the same depth of their
stack at all times (will have the same stack pointer). This observation is important when
deciding on a layout for the array, which will store the stacks for all of the threads. Two
possible layouts are shown in Figure 3, one of which performs much better than the other.
In the bottom layout, the stack of each individual is placed consecutively in the array. As
can be seen, the operation PUSH(MA10), which would push the 10 day moving average
onto the stack of each individual in the warp, results in memory writes that are far apart.
These writes will not be coalesced, resulting in 4 write operations being performed. Using
the top layout, elements of the same stack depth of all threads are stored sequentially in
memory. Now, when the threads of a warp wish to write the 10 day moving average, they
are writing to consecutive memory blocks. What took 4 write operations originally, will
now be coalesced into a single memory operation.

The resulting speed increase of improved memory coalescence is shown and explained
further in Section 5.2.

12

PUSH(MA10)

i
i nmummm

< Number of Threads Number of Threads Number of Threads > Number ofThreads>
Stack[0] : j Stack[1] Stack[2] :Il Stack[3]

PUSH(MA10)

i

Stack Size Stack Size Stack Size Stack Size
Thread[0] Thread[1] Thread[2] Thread[3]

Figure 3: Two Possible Layouts for the Stack Array on a GPU Device

5 Running Time Comparisons

5.1 Setup

Fach test was ran with identical parameters: 25000 individuals in the population with 32
stocks evaluated over 768 training days for 50 generations. Each test (aside from the sequen-
tial test, which was run only 3 times due to the time required) was also ran 10 times using
different seed values for the Lilgp random number generator. The values presented here are
averages over the 10 runs for each test. On the GPU, each block contained 512 threads,
with individuals taking 32 threads (one for each stock) consecutively. The number of blocks
was set such that there would be enough threads for all individual/stock combinations.

5.2 GPU vs. GPU Results

Figure 4 shows the running times of the original GPU evaluation (Ind&Stock/Thread), as
well as several modified approaches. Within the chart legend, CI specifies that the individual
RPN strings were stored in constant memory (which is cached) as opposed to global memory
(which is not cached), SMS specifies that the stack was moved into shared memory which
can be accessed much faster than global memory, and CO refers to an improved layout of
the array containing the stock indicators (resulting in much higher coalescence).

From Figure 4, it can be seen that simply moving the RPN strings to constant memory,
or the stack to shared memory, had no real effect on the running times. This is due to the
fact that memory access to this information was already highly coalesced, which allowed
global memory to match the speed of the cached constant memory and the on-chip shared
memory. These two results once again show the importance of coalescing memory accesses,
as the decreased memory accesses combined with the latency hiding of the GPU scheduler
allows the much slower global memory accesses to perform as well as faster/cached memory.

In the initial tests, stock indicators were stored in a flattened 3-dimensional array (in-
dexed by stock/indicator/day). This however led indicators of different stocks to be stored
far apart within the memory on the device. The memory reads then, will not have good data
locality and will not coalesce, resulting in poor performance. In the final two tests, a better
layout was designed where the 3-dimensional array was indexed as day/indicator/stock.
This way, all threads in a warp (who are evaluating the same individual, and thus the same
day/indicator, but consecutive stocks), will be reading consecutive memory blocks. This
modification is much the same as the different stack memory layouts explained in Section

13

40

Ind&Stock/Thread
+Cl

+ Cl + SMS

+ Cl + SMS + CO
+Cl+CO

m>q4080

w
o
1

Evaluation Time (s)
3
—o—%0

*Ooo—
O

1)
o®

; 8

o
3 ' .
oL s @ § e . . .
0 10 20 30 40 50 60
Generation

Figure 4: Average Evaluation Time for Different GPU Evaluations With 1 SD Error Bars

4.3.2 above. The massive increase in memory throughput resulted in an evaluation time
under 20% of the original tests.

5.3 GPU vs. Sequential Results

The time taken to evaluate each generation sequentially can be seen in Figure 5; while
Figure 6 charts the speedup attained using the best GPU approach found (as compared to
the sequential version). At one point (generation 45), the GPU evaluation speedup reaches
a maximum peak of 590.28 times faster than the sequential evaluation. The speedup line,
however, appears to be increasing, so evolution was continued to generation 75 where an
average speedup factor of 667 was attained. This number will most likely continue to
grow slightly, as the average length of individuals in the population tends to increase as
evolution continues. The speedup graph also shows that there is a large amount of variance
in the results. Omne of the main causes of this is the extremely small evaluation times
using the parallel approach. For example, evaluating generation 10 using the fastest GPU
implementation took 0.4050 seconds on average. An evaluation time change of only 0.1
seconds represents a 25% change in running time. This, in turn, transfers to the speedup
calculation, which divides the sequential evaluation time (typically very large) by the parallel
evaluation time (very small), resulting in high variance.

6 ROI Comparison

In much of the previous work on stock trading strategy creation using evolutionary algo-
rithms, one of the biggest problems present was overfitting to training data. This can be
seen in [17] and [8] and is most evident in the divergence of training case profit vs. testing
case profit. Overfitting to the training data occurs when a strategy becomes too special-
ized to a specific data set. Generally, the training data has consisted of a small number

14

4000

3000 -

Evaluation Time (s)
S
o
o

1000 -

® Sequential Evaluation Time

-
L g
e 3
&
-
E 2
L 2
E 2 o o

0 10 20 30 40 50

Generation

60

Figure 5: Evaluation Time Using a Sequential Evaluation Approach With 1 SD Error Bars

700

Speedup (Sequential Time / Parallel Time)

200

600 -

500 A

400 -

300 A

0 10 20 30
Generation

40 50

60

Figure 6: Speedup Factor (Sequential Evaluation Time / Parallel Evaluation Time) With

1 SD Error Bars

of entities (whether it is stocks in the stock market, currencies in the foreign exchange
market, etc), and/or a small time frame. The evolutionary algorithms applied evolve very
effective trading strategies for the training data; however, these strategies generally do not
apply outside of the training area (as can be seen with much different training and testing
profits). The main focus (from a trading strategy generation point of view) of this work
was to investigate the effects that increasing the training data size may have. Using GPU
devices to speedup evaluation allows more training data to be looked at in the same amount

15

of time. So perhaps, if we increase both the number of stocks and the number of training
days, we can reduce this overfitting problem and evolve strategies which are more profitable
outside of the training set.

Figures 7 and 8 plots the average ROI/100 Days above the buy and hold ROI on training
data for 50 generations using different numbers of stocks/training days, while Figures 9 and
10 shows the same values for testing data. Both attempts at training using 32 stocks reach
the highest ROI, with 32 stocks over 768 days of training data managing over 80% more
ROI than the buy and hold strategy. Within Figures 9 and 10 , however, it can be seen
that these two strategies also achieve the lowest ROI on the testing data. This is typical
of overfitting, where the strategy has become too specific to the training data and fails
to generalize to the testing data. In both cases, where 128 stocks are used for training,
the lowest training ROI is generated; however, the strategies generated achieve the first
and third highest testing ROI (the second highest test ROI was generated using the large
number of days and medium number of stocks). It can also be seen in Figures 9 and 10, that
all strategies evolved using 768 days of training data, outperform the same number of stocks
trained over 256 days. It would seem then, that increasing your training data set will more
than likely result in better out-of-training results. It was also found that using a higher
number of stocks (64 or 128) resulted in less variance over the testing data. Individuals
training on a higher number of stocks then, are producing results with less risk (negative
variance), but also less reward (positive variance). It should also be noted though, that
all solutions still show a slight downward trend, which may signify that overfitting is still
happening (although much slower) with larger training sets. Further tests will include an
even larger number of stocks, in hope that the power of GP on GPU devices can generate
even more effective trading strategies that are applicable outside of the training dataset.

101 e 32stacks
O 64 Stocks
v 128 Stocks
0.8 4

ROI - Buy and Hold ROI
&
[@
o
—eo—
—e—
—e—

o o
N S
40 |0
L IoAN |
«0 e
o e
o e
«a a gl
L el
4 HO1
FHFA
FHFOH
FHHOH
-0
4+—0—
—+—0—

0.0 T T T T T T

Generation

Figure 7: Profitability of Different GP Runs on Training Data With 1 SD Error Bars (Using
768 Training Days)

16

10| @ 32 stocks
O 64 Stocks
v 128 Stocks
0.8 -
)
T
k=]
206 -
e]
c
[
>
B0.4 E{{
: preti
4
§§§§£g§g§§§§§§§§
0.2 1 ggggggg¥¥!!!!!!I!!I
gf¥*¥~
OO T T T T T T
0 20 40 60 80 100

Generation

Figure 8: Profitability of Different GP Runs on Training Data With 1 SD Error Bars (Using
256 Training Days)

® 32 Stocks
0.06 O 64 Stocks
v 128 Stocks

0.04 -

0.02 A

ROI - Buy and Hold ROI

fot-0-

-0.02 A

T T T T T T
20 40 60 80 100
Generation

Figure 9: Profitability of Different GP Runs on Testing Data With 1 SD Error Bars (Using
768 Training Days)

7 Future Work

7.1 Stock Trading Strategy Creation Using GP

There are many ways in which the stock trading strategy creation work presented here can
be improved. First of all, the stock trading model used is very simplistic. Currently a

17

0.03 1
® 32 Stocks
O 64 Stocks
v 128 Stocks
0.02 -
o)
x
- 0.01 A
k)
T
k=]
& 0.00 -
>
>
m
~0.01
o
o
-0.02 o
-0.03 T T T T T T
0 20 40 60 80 100
Generation

Figure 10: Profitability of Different GP Runs on Testing Data With 1 SD Error Bar (Using
256 Training Days)s

specific amount of money is allotted to each specific stock; however, some level of portfolio
management could be used to distribute the available money among all possible stocks.
The GP trees could also be modified to generate real numbers representing the potential
profitability of a stock at the current time. This way money could be probabilistically
allocated to stocks, with more money being placed into what are deemed to be the most
profitable stocks. The work in [11] recognized significantly higher profits with the addition
of leverage and the ability to buy more of a stock after the initial purchase, so perhaps
higher returns could be seen when including these extensions as well.

The implementation used also attempts to generate a single strategy to use across all
time periods. This could be modified to train on multiple shorter periods, with smaller
testing periods following immediately after the training data, as in [17]. Also, a relatively
small number of easy-to-implement indicators were taken from [4]. Future work could
address this by including a wider range of indicators, as well as other available economic
information (e.g., interest rates, stock index values). This could result in the evolution of
economy-aware individuals who select different plans based on basic economic data.

Finally, the fitness function used to evaluate individuals (Training ROI - Buy and Hold
ROI) is quite simple, and may carry hidden biases that result in poor out of sample testing
results. A second evolutionary algorithm could be implemented to evolve a fitness function
which, when used to evolve individuals on training data, will result in high profitability on
testing data. Inputs to this algorithm could include measurements such as average ROI over
all stocks, deviation of ROI over all stocks, maximum ROI attained on a single stock, etc.
With the problem broken down into numerous testing periods (as explained above), these
inputs could be combined/weighted to maximize the effectiveness of generated individuals.

18

7.2 GP on GPU Devices

One of the biggest breakthroughs for tree-based GP on GPU devices may be nVidia’s
Fermi architecture, which will support recursive function calls. This will allow tree-based
GP to be performed directly on the GPU, which eliminates the conversion of individuals
and stack interpretation that was necessary without recursion support. Also, the entire GP
engine could easily be moved to GPU, which would eliminate the costly process of copying
individuals/results between the host and device.

It has also been mentioned that linear genetic programming (in which individuals consist
of a sequence of imperative instructions or machine code as explained fully in [6]) may be
a better fit for GPU genetic programming. With linear genetic programming, no recursion
is required, so even without recursion support, a linear GP approach could be implemented
directly on a GPU device. Furthermore, even with recursion support on a GPU, the depth
of the tree-based GP individuals would be limited to the size of the stack. With linear
GP however, there are no stack depth limitations, allowing programs to grow as long as
necessary.

To speedup execution with the current implementation, a double-buffering approach
could be used to evaluate a subset of the population while another subset is being converted
and copied to the GPU. Once again, with the Fermi architecture, many CUDA operations
are asynchronous (including kernel launches), which would allow the double buffering ap-
proach to be easily implemented. Finally, it is obvious from the results that memory access
optimization plays an extremely important role in determining the speed at which the GPU
can evaluate GP individuals. The Compute Visual Profiler supplied with the CUDA toolkit
allows in depth analysis of GPU operation. This tool can be used to identify further areas
of memory optimization, as well as other possible speed improvements which could increase
speedup even more. More information on the Compute Visual Profiler can be found in [1].

8 Conclusion

Within this work, genetic programming was used in an attempt to solve the real-world prob-
lem of stock trading strategy generation. A GPU device was used to evaluate individuals
within the GP population through stack-based interpretation (due to the lack of recursion
support on many GPU devices). With a small amount of memory access optimization, a
speedup factor of over 600 was reached when compared to a sequential evaluation of the
same data running on a 2.4Ghz CPU.

The effect of increasing the size of the training set (through the addition of more stocks
and longer training periods) was also investigated. It was found that using small training
sets resulted in the worst testing results. Furthermore, the best test results were found
when using the largest training sets. These results supported the hypothesis that analyzing
more stocks over a longer period of time can generate a more general and effective stock
trading strategy. The speedup gained using GPU devices for evaluation enable this large
training set to be evaluated quickly, while a sequential implementation would make this
approach unfeasible.

Finally, several areas of improvement for both GP on GPU and stock trading strategy
creation using GP were identified. Continuing work and addressing these possible areas of
improvement may result in faster evaluation of individuals, as well as a much more profitable
trading solution.

19

References

1]

[11]

[12]

[13]

[14]

[15]

Cuda Compute Visual Profiler, October 2010.
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit
/docs/VisualProfiler/Compute_Visual Profiler User_Guide.pdf.

Cuda Programming Guide 3.2, 2010.
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit
/docs/CUDA_C_Programming_Guide.pdf.

nVidia Fermi Architecture, 2010.
http://www.nvidia.com/object/fermi_architecture.html.

Steven B. Achelis. Technical Analysis from A to Z. Irwin, 1995.

Anthony Brabazon, Michael ONeill, and Tan Dempsey. An introduction to evolutionary
computation in finance. IFEE Computational Intelligence Magazine, 2008.

Markus Brameier. On Linear Genetic Programming. PhD thesis, Universitt Dortmund,
2004.

Darren M. Chitty. A data parallel approach to genetic programming using pro-
grammable graphics hardware. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages 1566-1573, New York, NY,
USA, 2007. ACM.

M.A.H. Dempster and C.M. Jones. A real-time adaptive trading system using genetic
programming. Quantitative Finance, 1:397-413, 2001.

David Goldberg, K. Deb, and B. Korb. Messy genetic algorithms: motivation, analysis,
and first results. Complex Systems, 3:493-530, 1989.

Simon Harding and Wolfgang Banzhaf. Fast genetic programming on GPUs. In Fu-
roGP’07: Proceedings of the 10th European conference on Genetic programming, pages
90-101, Berlin, Heidelberg, 2007. Springer-Verlag.

Akinori Hirabayashi, Claus Aranha, and Hitoshi Iba. Optimization of the trading
rule in foreign exchange using genetic algorithm. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 1529-1536, 2009.

A. Hryshko and T. Downs. An implementation of genetic algorithms as a basis for a
trading system on the foreign exchange market. In Evolutionary Computation, 2003.
CEC °03. The 2008 Congress on, volume 3, pages 1695 — 1701 Vol.3, dec. 2003.

Hugues Juillé and Jordan B. Pollack. Massively parallel genetic programming. Advances
in Genetic Programming, 2:339-357, 1996.

John R. Koza. Genetic programming : on the programming of computers by means of
natural selection. MIT Press, Cambridge, 1992.

W. Langdon. A many threaded cuda interpreter for genetic programming. In Genetic
Programming, volume 6021 of Lecture Notes in Computer Science, pages 146-158.
Springer Berlin / Heidelberg, 2010.

20

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

W. Langdon and Wolfgang Banzhaf. A SIMD interpreter for genetic programming
on GPU graphics cards. In Genetic Programming, volume 4971 of Lecture Notes in
Computer Science, pages 73-85. Springer Berlin / Heidelberg, 2008.

Kazuhiro Matsui and Haruo Sato. A comparison of genotype representations to acquire
stock trading strategy using genetic algorithms. Artificial Intelligence Systems, IEEE
International Conference on, pages 129-134, 2009.

David J. Montana. Strongly typed genetic programming. FEvolutionary Computation,
3:199-230, 1995.

Dr. Bill Punch. Lilgp, September 1998.
http://garage.cse.msu.edu/software/lil-gp/.

Denis Robilliard, Virginie Marion, and Cyril Fonlupt. High performance genetic pro-
gramming on GPU. In Proceedings of the 2009 workshop on Bio-inspired algorithms
for distributed systems, BADS ’09, pages 85-94, New York, NY, USA, 2009. ACM.

Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt. Population parallel GP on
the G80 GPU. In FuroGP’08: Proceedings of the 11th European conference on Genetic
programming, pages 98-109, Berlin, Heidelberg, 2008. Springer-Verlag.

Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt. Genetic programming on
graphics processing units. Genetic Programming and Evolvable Machines, 10:447-471,
20009.

Garnett Wilson and Wolfgang Banzhaf. Interday foreign exchange trading using linear
genetic programming. In GECCO ’10: Proceedings of the 12th annual conference on
Genetic and evolutionary computation, pages 1139-1146, New York, NY, USA, 2010.
ACM.

21

