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Abstract The availability of low cost powerful parallel graphics cards has stim-

ulated the port of Genetic Programming (GP) on Graphics Processing Units (GPUs).

Our work focuses on the possibilities offered by Nvidia G80 GPUs when pro-

grammed in the CUDA language. In a first work we have showed that this setup

allows to develop fine grain parallelization schemes to evaluate several GP pro-

grams in parallel, while obtaining speedups for usual training sets and program

sizes. Here we present another parallelization scheme and optimizations about

program representation and use of GPU fast memory. This increases the compu-

tation speed about three times faster, up to 4 billion GP operations per second. The

code has been developed within the well known ECJ library and is open source.

Keywords Genetic algorithms � Genetic programming �
Graphics processing units � Parallel processing

1 Introduction

It is well known that the most time consuming part of a Genetic Programming (GP)

run is the evaluation process. When dealing with complex real world problems like

those addressed by Koza et al. in their last book [1], thousands or even millions of

programs need to be evaluated at each generation. For instance, the rediscovery of
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previously patented inventions with the use of GP required a population of

10,000,000 programs. Even if the training set is limited (say some hundreds of

cases), this huge population size makes GP runs impractical on common systems.

Several schemes have been proposed in the literature to speed up GP. For

example: bypassing the evaluation of some of the evolved programs [2, 3]; caching

common subtrees to accelerate the overall evaluation process [4]; using a divide and

conquer strategy in order to minimize the computational cost [5]; devising dedicated

crossovers to reduce the bloat [6] and thus the evaluation cost; or evolving programs

directly in machine code [7, 8]. Another common strategy is to parallelize or

distribute GP computations, e.g. [9–12]. This parallelization or distribution of GP is

an efficient answer to the evaluation bottleneck, but it has the drawback that parallel

or distributed systems are not always available and are often quite expensive.

Within the parallelization paradigm, newly introduced graphics processing units

(GPUs) provide fast parallel hardware for a fraction of the cost of a traditional

parallel system. GPUs are designed to efficiently compute graphics primitives in

parallel to produce pixels for the video screen. Driven by ever increasing

requirements from the video game industry, recent GPUs are very powerful and

flexible processors, while their price remains in the range of mass consumer market.

They now offer floating-point calculation much faster than today’s CPU and,

beyond graphics applications, they are able to address general problems that can be

expressed mainly as data-parallel computations, i.e. the same code is executed on

many different data.

Several general purpose high level-languages for GPUs have become available

such as Brook,1 Sh2 (now stopped as an open source package but continued as a

commercial platform under the name RapidMind), Accelerator from Microsoft

Research, or PeakStream. Thus developers do not need any more to master the extra

complexity of graphics programming APIs when they design non graphics

applications on GPUs.3 With the G80 family GPUs, Nvidia proposes the CUDA

development kit (Compute Unified Device Architecture) that is based on a C-like

general purpose language, allowing fine control over the hardware capabilities.

Exploiting the power of GPUs within the framework of evolutionary computation

has been done first for genetic algorithms, e.g. [13–18]. Then implementation

schemes of Genetic Programming on GPU have been recently released, based either

on dynamic compilation of GP individuals [19–21] or on interpretation of the GP

programs [22, 23]. Some GP application papers that take advantage of GPU power

have already been issued [24–26] (see also the General Purpose Genetic

Programming on GPU site).4

In [19–21], Harding et al. and Chitty have obtained interesting speedups but

mainly for large individuals and/or several thousands fitness cases. In [19] this was

acknowledged as a weakness of this scheme: ‘‘Many typical GP problems do not

1 http://www.graphics.stanford.edu/projects/brookgpu/.
2 http://www.libsh.org/.
3 See http://www.gpgpu.org for a survey.
4 http://www.gpgpgpu.com.
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have large sets of fitness cases...’’ and ‘‘this leads to a gap between what we can

realistically evaluate, and what we can evolve’’. We also think that being able to

speed up evolution of programs against a moderate number of fitness cases is useful

in many of today’s GP problems. For example, GP is often used to perform

supervised classification, where it may be difficult to provide large sets of labeled

training cases, especially when labeling requires human intervention as in medical

diagnosis.

In order to exploit the power of the GPU on small training sets size, we proposed

in [23] a parallelization scheme based on interpretation rather than compilation of

GP programs. In this previous paper we explored the possibilities offered by the

Nvidia G80 GPU and its successors, organized around a Single Program Multiple

Data (SPMD) architecture, rather than Single Instruction Multiple Data (SIMD).

Our algorithm allowed one to evaluate simultaneously several different GP

individuals in parallel, delivering speedups for small training sets and as a

consequence leaving more computational power available to increase the population

size of the GP system. Another interpreter-based approach, implemented with a high

level GPU toolkit, was proposed independently by Langdon and Banzhaf in [22],

but, since both papers were written independently, no comparison was done.

Moreover the actual distribution of the computational load on the GPU in [22] is

unknown since it is masked by the RapidMind high level toolkit.

This new paper focusses on filling this gap: i.e. measuring the improvements

brought by our SPMD parallelization scheme. In order to achieve this goal, we

implement another algorithm that relies on a simpler, more intuitive, SIMD inspired

parallel scheme, that may be close to those automatically implemented by high level

GPU toolkits.

This comparative study allows us:

– to validate our previous work versus the simpler SIMD scheme and compare

their behavior on different problems, population and training set sizes; this is

important since that SIMD scheme is the natural solution that comes to mind

when considering parallelization of GP, and we suspect it is the scheme used by

high level GPU programming toolkit when doing automatic parallelization;

– to report absolute speed measurements that allow comparison with Langdon and

Banzhaf’s experiments published in [22];

– to provide more refined guidelines for GP implementation on GPU, notably

about load balancing (notably minimal number of blocks see Sect. 5) and on-

chip high-speed shared memory;

– to promote the use and/or development of SPMD-aware programming toolkits,

as the speed gains are mostly dependent on this feature.

In this paper, we first recall the parallel scheme we proposed in [23], and we then

define another parallel scheme that exploits the G80 as a standard SIMD device.

We compare the computational speed of both schemes for different types of

benchmarks. These experiments support the need for an explicit management of

computations in order to benefit from the SPMD characteristic. Further enhance-

ments are implemented and evaluated: changing the representation of GP programs

in the evolutionary engine and caching them in fast memory for evaluation on GPU.
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We then test this final scheme on a benchmark taken from [22] in order to compare

it with another existing GPU implementation.

To implement these algorithms, we use the popular ECJ library [27] and we rely

on the Nvidia CUDA software development kit for evaluation on GPU since it

supports explicit low level distribution of computations. Higher level GPU toolkits,

while providing more comfort to the developer and more portability to the programs,

may hide critical parts of the system incurring severe losses in performance.

Note that even if the algorithms in this paper are primarily targeted for Nvidia

GPU graphic cards, it should be possible to port them onto ATI graphic hardware, as

both ATI and Nvidia new graphic cards share quite similar architectures. For

instance, in the case of the R600 graphics processing unit from ATI, each SIMD

array of 80 stream processors has its own sequencer and arbiter and so is close to the

multiprocessor concept implemented by Nvidia.

The rest of the paper is organized in the following way: the next section presents

the basic traits of the G80 GPU family and the CUDA programming language. In

Section 3 we present our two different parallelization schemes. Section 4 discusses

general issues about implementation and presents our set of benchmark problems. In

Section 5 we evaluate the gains brought by an SPMD-conscious implementation of

the GP evaluation phase. Section 6 introduces representation and memory

optimizations and gives final benchmark results. In Section 7 we present our

conclusions and discuss future issues.

2 G80 GPU architecture and CUDA language

From their origins, GPUs are dedicated graphics hardware organized as a pipeline

that manipulates very efficiently and very quickly graphics primitive operations.

Basically, this pipeline can be split into two main stages: the first stage is in charge

of manipulating 3D vertices on which transformations are applied (like rotation,

homothecy, etc.). The second stage implements operations on pixels that rely on

textures and colors. In previous generations of GPU, the first stage was performed

by so-called vertex processors while the second stage operations were done by

fragment processors also known as fragment shaders. Recent graphics cards are

based on a unified architecture where a pool of elementary processors can be used

either for first or second stage operations.

2.1 G80 architecture

The graphics card we consider is a Nvidia GeForce 8800 GTX based on the G80

GPU. It is natively limited to single precision floating point (32-bit data precision),

although double precision can be used through a software library. This hardware is

based on a unified architecture managed as a pool of 16 so-called multiprocessors.

A multiprocessor contains 8 elementary stream processors that operate at 1.35

GHz clock rate, giving a total number of 128 stream processors on the graphics card.

A multiprocessor also owns 16 KB of fast memory that can be shared by its 8 stream

processors, 8 KB of texture and constant cache and an independent program counter.
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Multiprocessors are SIMD devices, meaning their inner 8 stream processors

execute the same instruction at every time step. Nonetheless alternative and loop

structures can be implemented: for example in case of an if instruction where some

of the stream processors must follow the then path while the others follow the

else path, both execution paths are serialized and stream processors not concerned

by an instruction are simply put into an idle mode. Putting some stream processors

in an idle mode to allow control structures is called divergence, and of course this

causes a loss of efficiency.

At the level of multiprocessors the G80 GPU works in SPMD mode (Single

Program, Multiple Data): every multiprocessor must run the same program, but they

do not need to execute the same instruction at the same time step (as opposed to

their internal stream processors), because each of them owns its private program

counter. So there is no divergence between multiprocessors.

2.2 Execution model

The execution model supported by the architecture and CUDA language relies on 3

concepts:

– A grid is a set of computations performed with a given kernel (a program

executed on the CPU).

– A grid is divided into blocks, each block is a subset of computations being

executed on a given multiprocessor. If there are enough multiprocessors all the

blocks of a grid are executed in parallel, otherwise a scheduler manages them

and their order of execution is not known in advance. A block cannot access the

fast memory bank or registers of another block.

– A block is itself divided into threads that are scheduled on the elementary

stream processors of the multiprocessor that runs the block. The order of

execution of threads is not known in advance. On the G80, the number of

threads is a multiple of 32, thus there are always more threads than stream

processors in a multiprocessor. This scheduling allows the amortization of

memory access delays.

A thread can be roughly viewed as the smallest elementary computation process

on the parallel device.

2.3 CUDA language overview

CUDA is an extension of the C language, it is free software although proprietary

to Nvidia. Several general purpose libraries are available for CUDA, such as

linear algebra, FFT, etc.5 Its main drawback is that it runs only on Nvidia

hardware from the G80 and up, but it offers fine grain access to the architecture.

As usual for GPU software toolkits, programs are divided in two parts, one runs

5 see http://www.nvidia.com/object/cuda_home.html.
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on the host CPU and the other on the GPU device, this part of code being called

the kernel in the CUDA jargon. The host code is generally responsible for

transferring data and loading the kernel code to the graphics card memory,

performing input and output (with the obvious exception of the graphics display),

and calling the kernel code.

Inside a CUDA thread, the program can request the block and thread identifiers

(these are sequential integers) and then choose to execute some task depending on

this information, i.e. this allows one to associate tasks to given blocks or threads.

We make a heavy use of this ability in Sect. 3.2, to reduce divergence between

multiprocessors by carefully assigning tasks on blocks. To the best of our

knowledge, this management of threads is only available with CUDA.

By default the execution order of threads is decided by the scheduler, so the

language provides a syncthread instruction that synchronizes threads of a block,

thus the programmer can insure that a given set of operations are done before

proceeding further. It is also possible to declare variable and arrays allocated either

in the fast 16 KB memory bank of each multiprocessor (4 clock cycles access

overhead) or in the global memory of the graphics card although it is much more

slower (up to 600 clock cycles latency overhead, at least for the first memory word

of a sequence of consecutive addresses). Besides its large capacity (760 MB on the

Nvidia 8800 GTX card) global memory has also the advantage that it is accessible

from every thread running on the GPU, thus allowing complex operations.

Furthermore global memory can also be cached. Notice that neither recursion nor

function pointers are yet available on GPU processors, thus these concepts are

missing in the language. Pointers to data (variable, arrays) are available.

We provide an excerpt of CUDA code (not optimized), in a context similar to GP

regression, to illustrate how one can distribute the load on specific blocks and

threads, i.e. this can be done simply by testing and using the numerical identifier of

threads and blocks, somewhat close to programming multi-threaded applications

with fork instructions. We assume our sample application spawned as many blocks

as GP programs and as many threads as fitness cases. Then every block of threads is

supposed to process its own GP individual, the threads evaluating the different

fitness cases. When browsing the code displayed in Fig. 1, the reader should keep in

mind that the instructions will be performed in parallel by all the threads and that

local variables are local to threads. We hope it shows that using the parallelism of

GPU is not as complicated as it is sometimes rumored.

3 Population parallel models

Modern graphic cards including the G80 family are either SPMD or SIMD devices.

Several parallel models are possible depending on the hardware capabilities,

software development kit and, of course, programmer’s choice. First we discuss GP

program compilation versus interpretation issues. Then we recall the so-called

BlockGP parallel model that we introduced in [23], and we detail another parallel

model, called ThreadGP. Both these schemes use an interpreter to evaluate

simultaneously several individuals from a given generation.
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3.1 Compilation versus interpretation

Harding et al. and Chitty’s works [19–21] were the firsts to propose an

implementation of GP on GPU. Although using different programming toolkits,

both were based on the same approach: at any given time there is only one compiled

GP individual being evaluated (i.e. executed) and its evaluation is done in parallel

on the fitness cases, thus we call this scheme fitness parallel model. This process is

iterated on every individual, until the whole population is evaluated.

Fig. 1 A sample excerpt of (not optimized) CUDA code illustrating the management of blocks and
threads
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Of course, as the G80 is an SPMD device we cannot perform the direct execution

of several different GP programs in parallel. However, emulating MIMD tasks on a

basically SIMD hardware can be done in the form on an interpreter that considers

the set of programs as data (see e.g. [28]). This solution was chosen by Juillé and

Pollack when they parallelized GP on the MASPAR machine [10], evaluating

several different programs simultaneously. We call this approach population
parallel model, and in [23] we showed that this scheme yields speedups even for a

small number of fitness cases and short programs. The same approach was proposed

successfully by Langdon and Banzhaf in [22].

Compilation versus interpretation is clearly a trade-off choice: the cost of

iterating interpreted code on the training cases is to be balanced against the

compilation overhead and reduced cost of iterating compiled instructions. If there

are few training cases, meaning few iterations, then the interpreter may be a sensible

solution.

Moreover, if we execute one GP program at a time (either compiled or

interpreted), then we parallelize only the training data, and we might well have not

enough data to fill all the ALU pipelines of the elementary stream processors. This

would leave the GPU under-exploited, especially since new generation GPUs have

several hundreds of elementary processors. On the contrary interpreting several

programs in parallel increases the computation load. For all these reasons we chose

an interpreter scheme in this work, the implementation details being given in

Sect. 4.

3.2 BlockGP scheme

In order to limit the occurrences of divergence, we proposed in [23] to dispatch the

population of GP trees in such a way that, at any time, each multiprocessor

interprets only one GP tree. That is, GP trees are parallelized at the level of

multiprocessors, thus allowing up to 16 GP programs to be interpreted in parallel on

the G80. The fitness computation of a given tree is in turn parallelized on the 32

threads running on the multiprocessor that are scheduled on its 8 stream processors.

This scheme is illustrated in Fig. 2. So every stream processor evaluates around 1/

8th of the training cases (variations may occur due to scheduling). This 1/8th factor

should leave enough data to fill the ALU pipelines in most cases, even with small

training sets.

To highlight the main characteristics of the BlockGP scheme:

– Every GP program is interpreted by all threads running on a given

multiprocessor.

– The number of fitness cases to be processed by each thread is greater than in a

fitness parallel scheme (as defined in Sect. 3.1), thus BlockGP is more

computationally intensive, provided the population size is at least as big as the

number of multiprocessors (which is most often the case on current GPU).

– There is no divergence due to differences between GP programs, since

multiprocessors are independent.
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– However, divergence can still occur between stream processors on the same

multiprocessor, when for example an if structure resolves into the execution of

different branches within the set of fitness cases that are processed in parallel.

Now we turn to another possible way of parallelizing GP.

3.3 ThreadGP scheme

In the case of GPUs, perhaps the most natural way of parallelizing GP programs is

to have each thread interprets its own GP program. In this case, the number of

threads is the population size and each thread evaluates its program on every fitness

cases, as illustrated in Fig. 3, so even with few fitness cases, the arithmetic intensity

will be high. For the G80, threads are evenly spread in blocks respecting the

execution model constraints (a multiple of 32 threads per block), and blocks are

automatically scheduled on the multiprocessors. For the sake of simplicity, we refer

to this parallel model as ThreadGP.

To highlight the main characteristics of ThreadGP:

– Every GP program is interpreted by its own thread.

– This scheme is more computationally intensive than BlockGP since all fitness

cases for a program evaluation are computed on the same stream processor,

unless the population size is less than the number of elementary processors (i.e.

up to some hundreds on current GPUs).

Fig. 2 BlockGP parallelization scheme: each multiprocessor evaluates a different program. Depending
on the function set, threads may diverge and interpret different instructions as illustrated here. Each thread
handles a fraction of the training set
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– As several threads interpreting different programs are run on each multiproces-

sor, a higher level of divergence may be expected than with the BlockGP

scheme.

It is possible that high level development kits, that do not give access to detailed

management of threads, are using a scheme similar to ThreadGP when they

automatically dispatch the evaluation of trees on the stream processors. This

motivates us to implement and compare ThreadGP against BlockGP, and this is

possible using the block and thread identifier features of the CUDA language.

In the following sections we compare the efficiency of these two parallel schemes

on several benchmarks.

4 Implementation and experimental setup

Before examining performance timings, we describe our experimental framework.

Up to the time we write this paper, only the evaluation phase of GP has been

ported on GPU in the literature. As the evaluation phase is the traditional major

bottleneck in GP, it seems natural to port only this phase on GPU, although this

implies managing the transfer of evolved programs between the host CPU memory

and the kernel GPU memory.

We followed the same organization of code in this paper, i.e. we use the popular

ECJ library [27] as our evolutionary engine, and move only the evaluation phase on

GPU. Relying on a free and widely used library, one benefits from a large set of

features already implemented and checked. It also makes it easier for evolutionists to

Fig. 3 ThreadGP parallelization scheme on the G80: a single interpreter is run; each thread is in charge
of one GP program, manages a software instruction pointer for its interpretation and processes all fitness
cases
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run experiments on GPU: they just have to write the fitness function code in CUDA,

following the example code we provide on our web site [29]. They can even keep a

custom representation already written for ECJ, although in this case they will need to

provide a method for translating programs in order to merge their code with ours.

Anyway it would not be easy to implement a complete GP system on current

GPUs because neither recursion nor function pointers are yet available on these

processors. These two programming language features are not mandatory, but their

absence would result in a more obfuscated and less flexible code, for example when

dealing with pointed representations such as pointed trees or graphs. Current GP

libraries also heavily rely on genericity, which would be challenging to implement

without function pointers. For these reasons we think it is unlikely to see the release

of general purpose GP systems with breeding implemented on current GPUs,

although limited systems are possible to implement.

4.1 Bridging the ECJ library and the CUDA-written interpreter

The ECJ library is written in the Java language and it offers a set of already

implemented standard benchmarks, that we use to obtain the reference CPU timings

in Sect. 6.2. We need to transfer GP solutions and fitness cases from Java to CUDA,

which is done via the Java Native Interface (JNI).

In Sect. 5, our experiments are done with the mainstream tree representation for

GP individuals. This tree representation implies the use of hidden pointers, so GP

solutions are scattered into the Java Virtual Machine memory. Copying programs in

this representation to the graphics card would have implied a great number of small

data transfers which is overly costly. So we first translate GP trees in a linear

representation inspired by Reverse Polish Notation (RPN). Every program tree is

turned into as a sequence of operators and operands that are represented as floats so

that ephemeral random constants (ERCs) can be stored in-line. Programs are

concatenated into an array that also stores a table of pointers to the first instruction

of every program. Then the array is copied to the graphics card as a single chunk of

memory. Notice that we do not transfer individuals that are mere copies from the

previous generation, since they are already evaluated (this is known through the ECJ

‘‘evaluated’’ flag).

For the sake of efficiency, the if and iflte6 structures, and logical operators

and, or can be implemented as shortcut versions, i.e. branches that do not need to

be evaluated are bypassed. This is done by inserting jump opcodes, as in standard

code generation as in [30], and thus the resulting code interpreted on the GPU is not

true RPN since some operands are not evaluated.

For example, let us take the LISP-like expression:

ð� ðþ 3 1Þðiflte 3 4ð� 2 3Þ 5ÞÞ
This expression is translated into the following linear program, where ifg means

‘‘if greater’’ and jumps conditionally to the corresponding label if the top of stack is

dominated by the previous value:

6 iflte is a quaternary operator that stands for: if sibling1 less than sibling2 then sibling3 else sibling4.
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push3; push1; add; push3; push4; ifglabel1; push2; push3;

sub; jmplabel2; label1push5; label2mul;

A stack-based interpreter is very easy to write for the execution of RPN-like

solutions. The interpreter code is run on the GPU and is composed of a main loop

fetching the next instruction to process, and a switch that performs the operations

required depending on the instruction, see pseudo-code in Table 1.

In a second set of experiments, detailed in Sect. 6, we directly use RPN notation

as the basic representation for GP trees, thus departing from the ECJ standard, while

retaining ECJ evolution engine.

4.2 Experimental setup

Our test machine is equipped with an Intel Core-2 6600 at 2,4 GHz CPU and 2

Gbytes RAM, and has two graphics card: an 8400GS dedicated to the display, and

the 8800GTX that is reserved for the computations and thus not attached to an X

server. This dual cards setting allows one to get cleaner timings (no interference

with the display). Note that it is possible to use the 8800GTX for both display and

GP evolution, although with constraints: during intensive computation, the user

interaction with the X desktop is suspended; moreover any given call to the GPU

(i.e. executing the interpreter in our case) cannot last more than 5 s, otherwise the

process is killed by the X server watchdog process.

For the parallel schemes we use the minimal number of 32 threads per

multiprocessor for all experiments. The ECJ code is run using the Sun JDK 1.6 with

1 Gbyte RAM reserved for the Java virtual machine and recommended flags for

Table 1 Pseudo code of the interpreter

sp = 0; // initialize stack pointer

while there is an instruction to process {

fetch instruction;

switch (instruction) {

case OPERAND : stack[sp??] = data; // push data onto stack

case ADD : stack[sp-2] = stack[sp-1] ? stack[sp-2]; sp-;

case MUL : stack[sp-2] = stack[sp-1] * stack[sp-2]; sp-;

case IFG : if (stack[sp-2][stack[sp-1]) then

fetch new instruction pointer value;

sp = sp-2;

endif

case JUMP : fetch new instruction pointer value;

. . .

}

}
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speeding up the breeding phase: -XX:?AggressiveHeap -XX:NewSize=100M -

Xms1024M -Xmx1024M. All experiments are run using 32-bits floating point

arithmetics.

The main GP evolution parameters are common to all benchmarks, and taken

from ECJ standard parameter file inspired from early Koza experiments. These are:

initialization is ramped half and half, maximum tree depth is 17, no mutation is

used, crossover is subtree crossover, and the probability for crossover is 90%.

4.3 Benchmark problems

We assess the performance of our parallel schemes on three standard benchmarks:

symbolic regression, boolean multiplexer, and intertwined spirals classification. We

do not focus on GP ability to solve these standard benchmarks—this has been amply

covered in the GP literature—but rather on the computing time performance.

Running times have been obtained either through the monitoring utilities of the ECJ

library for the breeding and the evaluation phases or through the system time

command for full runs in Sect. 6.2. In order to obtain significant figures, 30

independent evolutionary runs have been executed for each problem and setting,

and the times have been averaged.

Sextic polynomial regression problem. The goal of this symbolic regression

problem is to evolve a function that best fits a set of points generated by the polynomial

x6 - 2x4 ? x2 [31]. The function set is fþ;�; �; =; sin; cos; exp; logg and terminal

set fERC; Xg. The fitness cases are randomly drawn in the interval [-1, ?1]. We test 16

versions of this benchmark with 20, 64, 256 and 1,024 fitness cases and, respectively

512, 1,024, 2,500 and 12,500 individuals. Duration of runs is 50 generations.

Boolean 6-multiplexer and 11-multiplexer problems. The boolean 6- and 11-

multiplexers can be viewed either as boolean symbolic regression or as electronic

circuit design problems. The goal is to evolve a function that takes address and data

bits as arguments and should return the particular data bit that is singled out by the

address bits (see [32]). The function set is fand; or; not; ifg and the terminal set is

fA0�A1; D0�D4g for 6-multiplexer, and fA0�A2; D0�D7g for 11-multiplexer. The

numbers of fitness cases are, respectively 64 and 2,048 for 6-multiplexer and 11-

multiplexer. Both benchmarks are done for population sizes 512, 1,024, 2,500 and

12,500 individuals, and for 50 generations. The GPU implementation is done the same

way as the standard ECJ code so-called ‘‘slowmultiplexer’’, i.e. boolean values are

stored as integers, and functions fand; or; ifg are shortcut versions. There exists an

optimized version of this benchmark in the ECJ library, that we did not choose since

we deem the optimizations very specific and thus the results would be less general.

Intertwined spirals problem. The intertwined spirals problem is a classification

problem [32, 33]. Two spirals coil around the origin of the x–y plane, each spiral being

defined by 97 points along its length. Given the coordinates x, y of one of those points,

the goal is to classify it as belonging either to the first or second spirals. The evolved

programs return a real value that is compared to the threshold 0 in order to select one

of the two classes. The function set is fþ;�; �; =; sin; cos; iflteg and the terminal

set is fERC; Xg . Again population sizes are 512, 1,024, 2,500 and 12,500 for 50

generations.
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5 Comparing BlockGP and ThreadGP evaluation time

In this part we compare the performance of the two parallelization schemes presented

in Sect. 3, BlockGP and ThreadGP, on the three benchmark problems defined above.

As breeding and selection phases are not impacted by our parallelization, we perform

our comparisons only on the evaluation phase, that includes:

– translation from tree representation to postfixed code,

– copy of the translated programs to graphics card memory,

– evaluation of the fitness cases on GPU.

The results are summed up in Table 2. The speedup plots in Fig. 4 illustrate the

ratio BlockGP timings over ThreadGP timings, i.e. how many times BlockGP is

faster than ThreadGP. Notice that the speedup is always greater than 1, i.e. in all

experiments BlockGP outperforms ThreadGP, although the speedup depends on the

benchmark and the number of fitness cases.

We now exploit these results, using Fig. 4 as reference:

– In the ThreadGP scheme you need at least 512 programs (32 mandatory threads

times 16 multiprocessors) to effectively use all multiprocessors. In this extreme

case where the population size is 512 individuals, all computations will be

mapped on only 16 blocks for ThreadGP, i.e. no more blocks than multipro-

cessors, meaning that the scheduler can not swap a waiting block for another

one. For the same population size, BlockGP allows the scheduler to amortize

delays between 512 blocks. We think this is the explanation for the increased

speedup with small population sizes. The speedup plots flatten for populations

bigger than 2,500 individuals, i.e. when there are roughly at least 5 blocks per

multiprocessor for ThreadGP.

– As BlockGP distributes the fitness cases on 32 threads, the computational

intensity per stream processor is lower than in ThreadGP. Thus increasing the

number of fitness cases for a given problem will help BlockGP to fill up the

ALUs and results in an increased efficiency and thus higher speedups, as can be

seen notably on the left sub-figure.

– For similar numbers of fitness cases, the speedup is higher on the left sub-figure

than on the right one. This is due to the fact that there is no divergence for

BlockGP on the Sextic regression, resulting in a better efficiency compared to

ThreadGP that encounters divergence in all problems.

– For the multiplexer-11 and the intertwined spirals, on the right sub-figure,

divergence is created by the function set even in the case of BlockGP.

Nonetheless BlockGP is still about 2 times faster as it does not suffer from extra

divergence due to execution of different programs on the same blocks.

– We also observe that the speedups are close for the multiplexer-11 and the

intertwined spirals while the number of fitness cases is much smaller for this last

problem. We think it can be explained in the same way as in the previous item,

i.e. the frequency of diverging operators is smaller for the intertwined spirals,

leading to a better efficiency for BlockGP.
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– A particular case is the multiplexer-6, that cumulates both a small number of

fitness cases and a high frequency of diverging operators: for this benchmark

BlockGP and ThreadGP exhibit comparable results. We recall that we observed

in [23] that the GPU was not faster than the CPU on this problem.

We do not report here the mean size of evolved trees, it can be found in the next

section Table 3: we recall that the trees are the same for both schemes, and since we

Table 2 Evaluation time in seconds for runs with one individual per block (BGP) and runs with one

individual per thread (TGP)

Problem Population size

# Cases: 512 1,024 2,500 12,500

Sextic 20

Time BGP 0.22 ± 0.08 0.40 ± 0.09 0.84 ± 0.20 4.26 ± 0.97

Time TGP 0.58 ± 0.26 0.79 ± 0.18 1.34 ± 0.34 6.08 ± 1.39

Speedup 2.45 ± 0.74 1.99 ± 0.10 1.60 ± 0.04 1.43 ± 0.02

Sextic 64

Time BGP 0.31 ± 0.13 0.44 ± 0.15 1.03 ± 0.36 5.55 ± 1.35

Time TGP 1.30 ± 0.42 1.64 ± 0.52 2.38 ± 0.62 12.10 ± 3.29

Speedup 4.36 ± 1.03 3.74 ± 0.93 2.52 ± 1.01 2.22 ± 0.50

Sextic 256

Time BGP 0.56 ± 0.20 0.89 ± 0.30 1.92 ± 0.72 10.54 ± 2.00

Time TGP 4.67 ± 2.19 6.52 ± 2.12 7.14 ± 0.62 33.77 ± 8.47

Speedup 8.28 ± 2.56 7.71 ± 2.70 3.92 ± 0.96 3.23 ± 0.74

Sextic 1024

Time BGP 1.10 ± 0.53 2.30 ± 0.87 6.15 ± 2.22 29.92 ± 7.91

Time TGP 14.47 ± 7.27 19.33 ± 6.82 29.97 ± 10.85 121.86 ± 30.21

Speedup 12.94 ± 3.29 8.59 ± 1.31 5.13 ± 1.61 4.20 ± 0.90

6-mult. 64

Time BGP 0.33 ± 0.10 0.57 ± 0.18 1.38 ± 0.32 6.29 ± 1.00

Time TGP 0.64 ± 0.18 0.85 ± 0.25 1.61 ± 0.37 6.96 ± 1.11

Speedup 1.92 ± 0.20 1.49 ± 0.09 1.17 ± 0.03 1.11 ± 0.02

11-mult. 2048

Time BGP 1.84 ± 0.69 2.87 ± 1.06 6.23 ± 2.22 29.20 ± 6.23

Time TGP 12.56 ± 4.08 11.85 ± 4.29 14.52 ± 4.87 62.85 ± 15.94

Speedup 6.95 ± 0.98 4.15 ± 0.43 2.34 ± 0.11 2.14 ± 0.12

Spirals 194

Time BGP 1.21 ± 0.48 2.32 ± 0.57 6.49 ± 2.28 33.54 ± 11.01

Time TGP 6.64 ± 2.23 7.93 ± 1.68 12.26 ± 3.91 61.37 ± 19.02

Speedup 5.67 ± 1.11 3.48 ± 0.55 1.92 ± 0.28 1.85 ± 0.21

Times and speedup BGP over TGP are given as mean and standard deviation over 30 runs, best timings

are in boldface
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use shortcuts for the and, or, if and iflte operators, the evaluation time can not be

directly related to the mean tree size.

From these results, we select BlockGP as our base parallel scheme for the rest of

the paper.

6 Generic optimizations and final results

Increasing speed being the purpose of porting GP on GPU, we now introduce

representation and memory optimizations that are needed to fully exploit our

BlockGP algorithm. Then we present the final speed results in terms of the number

of GP operations per second, a measure introduced by Langdon and Banzhaf in [22].

6.1 GPU and CPU optimizations

Removing tree to postfixed translation. In [23] we noticed that the reduction in

evaluation time for some problems is such that the breeding time is no longer

negligible. This is highlighted in Table 3 where breeding for standard ECJ trees and

evaluation are gathered for all our benchmarks. We can see that the ratio breeding

over evaluation time never drops below one third, and is often greater than one

meaning that in those case the breeding dominates the cost of the evaluation. We

can also notice that the lower ratios are associated to the benchmarks with:

– the more numerous fitness cases, such as sextic-1,024 versus other sextic

settings and multiplexer-11 versus multiplexer-6, since obviously evaluation

takes more time with more fitness cases,

– the smallest population sizes for a given number of fitness cases: we attribute

this to the degradation of the Java virtual machine performance when managing

huge number of objects, and also to fixed overheads when accessing the graphics

card for evaluation.
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regression x6 - 2x4 ? x2, on the right speedup on 6-multiplexer, 11-multiplexer and intertwined spirals
(64, 2,048 and 194 training cases, respectively)
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This confirms our previous claim that the breeding phase might no more be

considered negligible for common population sizes and fitness case numbers. Of

course this claim is dependent from our breeding implementation:

Table 3 Timings in seconds for breeding standard ECJ trees (on CPU) and evaluating them (on GPU)

with the BlockGP scheme

Problem Population size

# Cases: 512 1,024 2,500 12,500

Sextic 20

Breeding 0.48 0.91 2.26 23.65

Evaluation 0.22 0.40 0.84 4.26

Ratio 2.11 2.29 2.70 5.55

Tree size 48.28 60.93 62.86 64.68

Sextic 64

Breeding 0.54 0.82 2.28 24.54

Evaluation 0.31 0.44 1.03 5.55

Ratio 1.72 1.84 2.21 4.43

Tree size 51.16 54.53 61.72 66.24

Sextic 256

Breeding 0.52 0.87 2.12 24.20

Evaluation 0.56 0.89 1.92 10.54

Ratio 0.93 0.98 1.10 2.29

Tree size 50.38 60.83 58.36 65.72

Sextic 1024

Breeding 0.37 0.77 2.41 23.16

Evaluation 1.10 2.30 6.15 29.92

Ratio 0.34 0.34 0.39 0.77

Tree size 48.17 54.67 63.99 63.36

6-mult. 64

Breeding 0.96 1.75 5.71 48.71

Evaluation 0.33 0.57 1.38 6.29

Ratio 2.90 3.05 4.15 7.75

Tree size 138.72 127.49 132.09 120.60

11-mult. 2048

Breeding 1.05 2.07 7.00 66.11

Evaluation 1.84 2.87 6.23 29.20

Ratio 0.57 0.72 1.12 2.26

Tree size 160.03 151.76 149.69 156.24

Spirals 194

Breeding 1.08 2.31 10.89 88.28

Evaluation 1.21 2.32 6.49 33.54

Ratio 0.90 0.99 1.68 2.63

Tree size 161.92 167.49 196.46 197.00

Tree size, timings and the ratio breeding over evaluation timings are given as mean values over 30 runs
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– it is done on the CPU,

– it is coded in Java,

– it uses the standard ECJ tree representation.

Porting the breeding on GPU is certainly an interesting option for future studies.

Here we have chosen to keep part of the advantages and flexibility of ECJ in order

to achieve sensible reduction in breeding time on the CPU via a change in the

representation of individuals. Thus, we aim to obtain competitive results for full run,

and not only the evaluation phase.

One obvious improvement is to modify the ECJ evolution engine in order not to

work with standard pointer-based trees but rather to directly manipulate and evolve

linear coded RPN trees. Doing this we do not need translation anymore before

copying the population to graphics card memory, although we still need to add

shortcut jumps if present. We also greatly decrease the number of object creations

and deletions which are time costly. It is rather easy to locate any subtree in a RPN

tree by parsing it and counting the number of expected arguments associated to each

node, along the lines proposed by W. B. Langdon in [34]. Thus crossover and

mutation operators can be written efficiently for linear arrays of RPN instructions.

In this scheme an individual is stored as a byte array, each byte coding an

operator or an operand. It is not convenient to store floating point ERCs inside the

individual array, so we choose to store a set of predefined ERCs that are associated

with predefined operands. A similar representation was used for linear genetic

programming by Brameier and Banzhaf [35], and also by Langdon in [34]. Notice

that this representation forces one to define a maximum length for individuals, or

else the insertion of mutated inner subtrees would shift arbitrary large array slices

and thus would downgrade performance. It obviously creates some incompatibilities

with the rest of ECJ code, nonetheless it still uses the standard breeding pipeline,

and the overall evolutionary framework.

In Table 4 we illustrate the time savings brought by this breeding scheme for the

largest population size (12,500 individuals) where breeding is the more costly. Only

one setting as been reported for the sextic regression since the mean tree size and

thus the breeding time is very similar for all sextic settings. Breeding time and mean

Table 4 Comparison of breeding time in seconds between standard ECJ tree representation and RPN

representation for a population size of 12,500 individuals

Breeding scheme Sextic 1024 Multiplexer Intertwined spirals

6-bits 11-bits

Standard tree

Time 23.16 48.71 66.11 88.28

Size 63.36 120.60 156.24 197.00

RPN tree

Time 3.28 6.98 8.04 8.66

Size 67.22 120.60 156.24 163.68

Max. size 256 768 768 768

Time and mean tree size are averaged for 30 runs, best timings are in boldface
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tree size are given for both representations, standard ECJ trees and RPN ‘‘flat’’ trees,

with the maximum length for RPN individuals. The size of trees is comparable but

not exactly the same between the two representations. This is due to the difference

in ERCs management and to the maximum limit on the number of nodes in the RPN

coding, that produce different trees from the standard representation in some

benchmarks. On these experiments the RPN representation reduces the breeding

time by at least a factor six, and so we can check in the rightmost column of Table 3

that breeding becomes again of secondary importance, with the exception of the

multiplexer-6 problem.

We acknowledge that such gains in breeding time are not guaranteed in other

languages, such as C??, where pointed tree transformations may be cheaper, or

other libraries where tree representation is different.

GPU memory optimization. As we are going to show in this part, a careful use of

the different types of memory available on the G80 permits a sensible reduction of

computing time. Experiments with the standard cache memory did not bring

sensible time reduction, perhaps due to the cache being optimized for 2D structures.

However, a bank of fast memory is available on every multiprocessor. Its main

characteristics are:

– It is shared by the stream processors, i.e. by the threads.

– Accesses are significantly faster than for the graphics card global memory.

Documentation reports shared memory is as fast as registers, with accesses in 4

cycles, while a latency of 400–600 cycles is added for accessing global

memory.

– Its capacity is 16 KB, but it is silently used by the CUDA compiler to store

variables: there was only slightly more than 2 KB available once our interpreter

was compiled. Nonetheless it seems enough for storing a GP individual, in a

majority of the experiments from the literature.

– It is organized in 16 interlaced banks. Two threads accessing different addresses

in the same bank incur a delay (bank conflict).

Since program instructions will be accessed repeatedly for every fitness case,

they qualify as a priority target for memory optimization. We choose to cache the

GP individual evaluated by a block by copying it into shared memory. We do not

compute its actual length but rather copy up to the maximum number of bytes. The

question is whether it is worth it to copy the program into cache: it obviously

depends on the number of instructions that are actually evaluated and the number of

interpretations of the program, that is the number of fitness cases. Table 5 gives the

timings with the number of evaluated nodes, which is smaller than the tree length

for diverging problems since we skip part of the individual:

– As expected, the bigger the fitness cases set, the more loops over the same

cached programs, and the better the speedup with cache.

– In the case of sextic regression, as there is no divergence the same instruction is

fetched in parallel by the stream processors without incurring any bank conflict.

– In the case of diverging operators, memory accesses are no more synchronized

and bank conflicts arise. The shared memory efficiency drops and as a
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consequence a greater number of fitness cases is needed to amortize the filling of

the cache as can be seen on the multiplexers and spiral benchmarks.

– Notice that the speedup also increases with the population size: we attribute this

to memory transfer overheads (included in the evaluation time) that becomes

negligible against the computing time with more individuals.

The fitness cases are also frequently accessed. In all our experiments on GPU the

attributes of the current fitness case being evaluated are copied from global memory

to registers. Alike the deployment of computations on multiprocessors, this memory

management may not be possible with high-level GPU languages.

6.2 Final results

In this sub-section, we report results obtained for full runs with the optimized

BlockGP scheme, i.e. with RPN representation and cached individuals. Following

the practice proposed in [22], we give the speed in terms of the number of GP

operations per second, denoted GPop/s, that measures how many GP nodes have

been computed per second. For example, let us suppose a run duration of 3 s for 5

generations with a population of 2 trees, each of 10 nodes, evaluated on 12 fitness

cases. We also suppose that every node of every evolved tree was effectively

evaluated, i.e. no alternative statement branch have been shortcut and no tree have

been copied from one generation to the next. This hypothetical run would then

exhibit a performance of: ð5� 2� 10� 12Þ=3 ¼ 400 GPop/s.

We focus on the largest population size, 12,500 individuals, which we deem is

the more realistic setting (the trends for smaller populations can be deduced from

the previous section). We also added:

Table 5 Comparison of evaluation times on GPU with and without caching instructions in shared

memory

Population size Sextic regression Multiplexer Spirals

20 64 256 1,024 64 2,048 194

500

Without 0.15 0.18 0.35 1.21 0.45 2.34 0.98

With 0.15 0.16 0.24 0.76 0.86 1.72 1.39

Eval. nodes 47.36 52.97 49.01 59.34 19.77 17.44 60.04

2,500

Without 0.46 0.54 1.43 5.48 2.10 10.74 5.08

With 0.43 0.46 0.91 2.36 3.15 6.12 5.96

Eval. nodes 66.12 63.37 58.05 62.97 21.23 16.91 73.25

12,500

Without 1.76 2.73 8.21 29.58 9.10 45.79 26.44

With 1.46 1.68 3.58 11.32 10.51 27.36 28.94

Eval. nodes 64.48 68.84 68.83 67.22 20.29 14.06 82.95

Timings are given in seconds with the number of evaluated nodes and these are averaged for 30 runs, best

timings are in boldface
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– a version of the sextic benchmark with 100,000 fitness cases;

– the MackeyGlass benchmark as defined in [22]: the objective is to try to predict

a chaotic time series, with the function set fþ;�; �; =g , 128 predefined

constants and 8 inputs as the terminal set. We use a single population with

standard tournament selection of size 2 and no elitism, rather than the grid-based

demes from [22]. This setting generates less fit individuals but this should not

have a significant influence on the running time since their size is in the same

range as in Langdon et al.’s work. Inclusion of this benchmark allows a

comparison with another existing GPU implementation;

– for the MackeyGlass, the size of individuals is limited to 15 nodes, so we have

enough storage for caching several individuals together in fast memory and we

can interpret sequentially several individuals in the same block. This is done

with clusters of 10 individuals and the results are indicated by a star sign—

MackeyGlass*—in the following.

Among these experiments we selected those that could be run on CPU with the

standard ECJ code within reasonable time and memory constraints. The objective of

this comparison is not to establish the superiority of our GPU setting over the

CPU—it was expected since the G80 is announced at 330 Gflops versus 19 Gflops

for our Core-2 6600—but it is intended to provide guidelines about what gains can

or can not be expected from GPUs. Hence we do not present ECJ on CPU with RPN

breeding, the gains brought by RPN breeding being negligible anyway when

evaluation is done on CPU, with the exception of the multiplexer-6. Results are

collected in Table 6 and commented below:

– Higher speeds are obtained.

– for high computational intensity, as can be seen on the sextic regression with

varying number of fitness cases;

Table 6 Full run speed for optimized BlockGP and standard ECJ code on CPU

Experiment |T| |F| Pop. size Prog. size Eval. nodes Fit. cases GPU speed CPU speed

Sextic 1 ? 10 8 12,500 64.48 64.48 20 151 13.6

Sextic 1 ? 10 8 12,500 68.84 68.84 64 492 19.9

Sextic 1 ? 10 8 12,500 68.83 68.83 256 1,430 25.8

Sextic 1 ? 10 8 12,500 67.22 67.22 1,024 2,797 25.1

Sextic 1 ? 10 8 12,500 69.98 69.98 100,000 4,073 –

Multiplexer-6 6 ? 0 4 12,500 120.6 20.29 64 47 12.6

Multiplexer-11 11 ? 0 4 12,500 156.24 14.06 2,048 501 60.1

Inter. Spirals 2 ? 10 7 12,500 163.68 82.95 194 212 19.2

MackeyGlass 8 ? 128 4 204,800 10.22 10.22 1,200 1,300 –

MackeyGlass* 8 ? 128 4 204,800 10.22 10.22 1,200 1,720 –

Speed is measured in million of GPop s-1. Columns are respectively: terminals set size ? number of

ERCs, non terminal function set size, population size, average GPU program size, average GPU evaluated

nodes, number of fitness cases, GPU speed, CPU speed
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– when there are no diverging operators: while the GPU implementation is two

orders of magnitude faster than the CPU code on the sextic regression with

1,024 fitness cases, it is only about one order of magnitude on the multiplexer-

11 and the intertwined spirals or on the sextic with 20 fitness cases.

– For the multiplexer-6, the speedup is mainly due to the RPN breeding code (that

runs on CPU), and not to the GPU-ported evaluation.

– The MackeyGlass benchmark does not use diverging operators, but generates

very small programs, so its speed on GPU is smaller than the sextic regression

for a similar number of fitness cases. Nonetheless it is still much faster than the

diverging benchmarks.

– The MackeyGlass* with sequential interpretation of 10 programs per block is

more efficient, and this is due to the smaller number of block creations.

– The difference in speed between the sextic regression with 1,024 and with

100,000 fitness cases indicates the GPU is still far from being saturated with

1,024 fitness cases.

– If we compare these speedups against the ratio of announced gigaflops, we

observe that non diverging problems are particularly well-suited for parallel-

ization and can benefit from the GPU parallel architecture and higher memory

bandwidth, if the computational intensity is high enough. In contrast, the

speedup of diverging problems is below what could have been expected from

raw gigaflops data.

– For both MackeyGlass versions we notice a speedup versus the experiments

reported in [22] where the speed was 895 millions of GPop/s for programs of

size 11. This suggests that our BlockGP algorithm is faster than the automatic

parallelization achieved by the RapidMind toolkit.

7 Conclusions

In this paper, we focus on parallelizing the evaluation phase of Genetic

Programming on the G80 GPU. We propose two population parallel models, based

on an interpreter. We take advantage of the possibilities allowed by CUDA to

reduce the divergence between elementary processors and optimize memory

accesses when interpreting programs. By implementing the GPU evaluation as part

of the well-known Java ECJ library, we intend to offer easy development of GP on

GPU applications, the source code being available at [29].

On our set of benchmarks we observe that:

– The speedup depends on the problem, notably on the presence of diverging

operators and the number of fitness cases.

– For all our benchmarks, dispatching one GP program per multiprocessor yields

speedups even for problems that implement operators with unavoidable

divergence, and it is superior to the scheme that simply associates one program

to each thread.

– The reduced computing time needed by GPU evaluation may promote the

breeding phase as a new bottleneck for common setups.
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– On the G80, fast memory usage can yield improvement up to a factor 3 speedup,

but this is also dependent on the absence of divergence.

The two main critical points that determine the speedup on GPU are the presence

of operators that create divergence and the computational intensity, which is mostly

determined itself by the size of programs and the size of the fitness cases set (see also

[19]). Best results are expected for non diverging function sets, large programs and

large training sets. This implies that the speedup is expected to be rather low if the

fitness is to be computed by a simulator, since it is very likely that a simulator code

will use alternatives or loops. Another difficult case arises when there are both very

few fitness cases and diverging operators, as illustrated by the multiplexer-6. A small

fitness cases set also decreases the advantage of BlockGP over ThreadGP as shown

in Sect. 5. Note that the presence of divergence is of much greater impact than the

delays caused by transferring programs from the host computer to the graphics card.

With other GPUs, the number of elementary processors and the ratio of

elementary processors over multiprocessors will be different in most cases. Of

course the lower the total number of elementary processors is, the lower the

expected performance is. Some other guidelines can be deduced from this work:

– Few elementary processors per multiprocessor means we are closer to a true

MIMD machine and so the advantage of BlockGP over ThreadGP will decrease.

In the meantime, this would be closer to a perfect setting for implementing GP.

– The opposite—many elementary processors per multiprocessor—will generate

more divergence for ThreadGP and will favors BlockGP.

– The preceding item would be true unless the number of fitness cases is so small

that BlockGP cannot fill the stream processors ALUs. In the extreme, there may

be fewer fitness cases than the number of elementary processors or concurrent

threads per multiprocessor; of course this would greatly impair BlockGP.

These remarks lead us to derive other parallel schemes from the two presented

above:

– Two (or more) programs could be executed in parallel on any given block, i.e.

this would implement a crossover between BlockGP and ThreadGP. This way,

program divergence would probably be kept lower than in ThreadGP and

computational intensity would be higher than in BlockGP. This could be an

answer to the last item of the previous paragraph.

– Several programs could also be executed sequentially in each block, as in the

MackeyGlass* benchmark, in order to reduce the number of block creations in

BlockGP and the associated delays. As noted in Sect. 5, one should probably not

decrease below 5 the number of blocks per multiprocessor.

Even if we cannot conclude definitively on how high-level GPU toolkits

parallelize their computations, the MackeyGlass benchmark results suggest that

access to low level architecture is a highly desirable feature. Since the architecture

of the two main GPU makers seems to converge, we could even expect the

development of toolkit facilities common to different families of GPUs, at least for

the distribution of tasks on multiprocessors, and probably also for explicit storage in
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cache or fast memory. This would allow easier portability of high performance code

between GPUs.

SPMD architectures like the G80, built around a set of SIMD cores, exhibit a

lower complexity than true multi-core systems, and are currently very competitive

in terms of price. With new chips performing 64-bits operations, precision issues

should be relieved. With speedups more than a hundred times faster on some

problems, GPUs can offer the opportunity for increasing statistical soundness by

easily sampling hundreds of independent runs. Performance increases could also

open the way to large scale evolution with population sizes in the range of millions

on a standard desktop computer. Thus we think that GPU processing is to be taken

into account by the artificial evolution practitioner.

Some open questions are whether or not it is worth it to port the whole GP

algorithm on GPU, what is the potential of ‘‘crossovers’’ between BlockGP and

ThreadGP as schemed above, and is it possible to speed up diverging operators?
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