
Oakland 2005

Hardware-assisted circumvention of

self-hashing software tamper resistance

Glenn Wurster, Paul Van Oorschot, Anil Somayaji

School of Computer Science

Carleton University, Canada



Outline

➠ Self-hashing tamper resistance overview

➠ High level overview of our attack

➠ Hardware memory management design and attack details

➠ Results and implications

Wurster et al. Page 2 Oakland 2005



Self-Hashing Tamper Resistance Problem

➠ Protect an application binary against undetected modifications

☞ Verifying that an application for DRM has not been modified

☞ Protecting copy protection algorithms

☞ Guard against unfair advantages in networked environments

➠ Do so without dependence on external hardware or software

➠ Use some form of self-hashing to detect changes

➠ Assumes a Hostile Host model

Wurster et al. Page 3 Oakland 2005



Self-Hashing Software Tamper Resistance

➠ Read into the code segment to compute a hash

➠ Rely upon a known good value to detect modifications

➠ Obscure reads into the code by hiding address calculations

➠ Protect the hashing code against alterations

Wurster et al. Page 4 Oakland 2005



A Network of Hash functionsab

Hashing�� Code

Hashing�� Code

Hashing�� Code

Hashing�� Code

Hashing�� Code

Hashing�� Code

Code Segment

aChang et al. Protecting Software Code by Guards, DRM-2001
bHorne et al. Dynamic Self-Checking Techniques..., DRM-2001

Wurster et al. Page 5 Oakland 2005



Our Results

➠ Self-hashing is not secure against attack on modern hardware

☞ Can modify an application without being detected

and without altering hashing algorithms

➠ Attack applies to proposals including:

☞ Chang et al. DRM-2001

☞ Horne et al. DRM-2001

☞ Aucsmith, IHW-1996 (despite digital signatures)

Wurster et al. Page 6 Oakland 2005



Processor Design Elements Enabling our Attack

➠ There does not exist a 1:1 correspondence between

virtual and physical addresses

➠ CPU caches are managed differently depending upon whether they

contain information on program instructions or data

Wurster et al. Page 7 Oakland 2005



Graphical Representation of Our Attack

Request Address

Instruction Fetch

Data Fetch

Physical Memory

Code

Code’

Wurster et al. Page 8 Oakland 2005



High-Level Overview of Attack

➠ Create a copy of the application which will remain unmodified

➠ Modify the application as desired

➠ Modify the kernel to contain the run-time attack code

➠ Load the modified application, installing and mapping both original

and modified code pages in physical memory

➠ Run application - attack kernel vectors reads appropriately

☞ This is the core of our attack

Wurster et al. Page 9 Oakland 2005



Virtual Memory Translation

Virtual Address

Physical Address

Page Tables

Operating System

Hardware Translation

Process Process Process

Space

Space

Wurster et al. Page 10 Oakland 2005



Hardware Architecture: Virtual Memory Translation

Physical Address SpaceTranslation Mechanism

Page Table

Cache

Virtual Address Space

ITLBDTLB

Wurster et al. Page 11 Oakland 2005



Alternative Attack Implementations

➠ We use any of several methods to separate code and data reads

☞ Software TLB miss handlers

☞ Hardware page table miss handlers

☞ Hardware segmentation translation

Wurster et al. Page 12 Oakland 2005



Page Table Lookup

I/D TLB Lookup

Trap To OS Fill TLB with PTE

Hit Miss

Not Present
Present

I/D Fetch

Retry

Hardware Translation Mechanism

Do Translation with TLB

Wurster et al. Page 13 Oakland 2005



Trap To OS Determine Virtual Address (VA)

Compute Fetch Type

Point PTE for VA to Code
Point PTE for VA to Code’
Map VA’ to same PA as VA
Overwrite VA’ with Jump; save old

Jump to VA
Jumps back to kernel code
Restore overwritten code

Clear PTE mapping VA

Read from VA

Attack Implementation

Data Fetch Instruction Fetch

Retry Instruction

Wurster’05

Wurster et al. Page 14 Oakland 2005



Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Install Code’

Wurster et al. Page 15 Oakland 2005



Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Write Jump Instruction (save overwritten data)

VA VA’Kernel Memory

Wurster et al. Page 15 Oakland 2005



Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Jump to VA

Jump back to Kernel Page

VA VA’

Entry

for VA

Wurster et al. Page 15 Oakland 2005



Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Restore Overwritten Data

Entry

for VA

VA VA’

Wurster et al. Page 15 Oakland 2005



Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Remove Mapping to Code’

Entry

for VA

Wurster et al. Page 15 Oakland 2005



Result of attack

➠ Code read as data can differ from code executed

➠ By ensuring code read as data is unmodified code, self-hashing

always uses unmodified code – yielding the “correct” hash

➠ Attack applies to most modern general-purpose processors e.g.

UltraSparc, x86, PowerPC, AMD64, Alpha, ARM

Note: The attack is not prevented by stealthy address computationsa

aLinn et al. Enhancing Software Tamper-Resistance... ACSAC-2003

Wurster et al. Page 16 Oakland 2005



Overhead

➠ Implementation Work

☞ Must install a modified kernel

☞ Per-application overhead is negligible (copy command)

➠ Run-Time Overhead

☞ Only on a TLB cache miss (0.1% of time on UltraSparc)

☞ Each DTLB miss adds 6 assembly instructions on UltraSparc

☞ Overhead is less than existing time spent on cache misses

Wurster et al. Page 17 Oakland 2005



Variations of the Attack

Variation Oakland’05 TDSC’05

TLB Load (Ultrasparc) X X

Generic Attack X

Segment (x86) X X

Microcode X

Performance Counters X

Wurster et al. Page 18 Oakland 2005



Realities of the Attack

➠ Implemented on the UltraSparc, experimented on x86

➠ Hash functions need not be found or modified

➠ Exploits translation and caching capabilities of processor

☞ Negligible performance hit

➠ Attack is possible on wide range of processors

Wurster et al. Page 19 Oakland 2005



Conclusions

➠ Typical self-hashing can be subverted on modern processors

➠ Need new protection to secure self-hashing tamper resistance

☞ must withstand real-time detection and separation of code/data

Wurster et al. Page 20 Oakland 2005



Questions?

http://www.scs.carleton.ca/∼gwurster

Wurster et al. Page 21 Oakland 2005


