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Self-Hashing Tamper Resistance Problem

➠ Protect an application binary against undetected modifications

☞ Verifying that an application for DRM has not been modified

☞ Protecting copy protection algorithms

☞ Guard against unfair advantages in networked environments

➠ Do so without dependence on external hardware or software

➠ Use some form of self-hashing to detect changes

➠ Assumes a Hostile Host model
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Self-Hashing Software Tamper Resistance

➠ Read into the code segment to compute a hash

➠ Rely upon a known good value to detect modifications

➠ Obscure reads into the code by hiding address calculations

➠ Protect the hashing code against alterations
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A Network of Hash functionsab
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Hashing�� Code

Hashing�� Code
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Hashing�� Code

Code Segment

aChang et al. Protecting Software Code by Guards, DRM-2001
bHorne et al. Dynamic Self-Checking Techniques..., DRM-2001
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Our Results

➠ Self-hashing is not secure against attack on modern hardware

☞ Can modify an application without being detected

and without altering hashing algorithms

➠ Attack applies to proposals including:

☞ Chang et al. DRM-2001

☞ Horne et al. DRM-2001

☞ Aucsmith, IHW-1996 (despite digital signatures)
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Processor Design Elements Enabling our Attack

➠ There does not exist a 1:1 correspondence between

virtual and physical addresses

➠ CPU caches are managed differently depending upon whether they

contain information on program instructions or data
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Graphical Representation of Our Attack
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High-Level Overview of Attack

➠ Create a copy of the application which will remain unmodified

➠ Modify the application as desired

➠ Modify the kernel to contain the run-time attack code

➠ Load the modified application, installing and mapping both original

and modified code pages in physical memory

➠ Run application - attack kernel vectors reads appropriately

☞ This is the core of our attack
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Virtual Memory Translation

Virtual Address

Physical Address

Page Tables
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Hardware Architecture: Virtual Memory Translation

Physical Address SpaceTranslation Mechanism

Page Table

Cache

Virtual Address Space

ITLBDTLB
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Alternative Attack Implementations

➠ We use any of several methods to separate code and data reads

☞ Software TLB miss handlers

☞ Hardware page table miss handlers

☞ Hardware segmentation translation
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Page Table Lookup

I/D TLB Lookup

Trap To OS Fill TLB with PTE

Hit Miss

Not Present
Present

I/D Fetch

Retry

Hardware Translation Mechanism

Do Translation with TLB
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Trap To OS Determine Virtual Address (VA)

Compute Fetch Type

Point PTE for VA to Code
Point PTE for VA to Code’
Map VA’ to same PA as VA
Overwrite VA’ with Jump; save old

Jump to VA
Jumps back to kernel code
Restore overwritten code

Clear PTE mapping VA

Read from VA

Attack Implementation

Data Fetch Instruction Fetch

Retry Instruction

Wurster’05
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Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Install Code’
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Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Write Jump Instruction (save overwritten data)

VA VA’Kernel Memory
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Filling the ITLB in Generic implementation

Code’ Code
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Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB
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Filling the ITLB in Generic implementation

Code’ Code

Virtual Address Space

ITLB

Remove Mapping to Code’

Entry

for VA
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Result of attack

➠ Code read as data can differ from code executed

➠ By ensuring code read as data is unmodified code, self-hashing

always uses unmodified code – yielding the “correct” hash

➠ Attack applies to most modern general-purpose processors e.g.

UltraSparc, x86, PowerPC, AMD64, Alpha, ARM

Note: The attack is not prevented by stealthy address computationsa

aLinn et al. Enhancing Software Tamper-Resistance... ACSAC-2003
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Overhead

➠ Implementation Work

☞ Must install a modified kernel

☞ Per-application overhead is negligible (copy command)

➠ Run-Time Overhead

☞ Only on a TLB cache miss (0.1% of time on UltraSparc)

☞ Each DTLB miss adds 6 assembly instructions on UltraSparc

☞ Overhead is less than existing time spent on cache misses
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Variations of the Attack

Variation Oakland’05 TDSC’05

TLB Load (Ultrasparc) X X

Generic Attack X

Segment (x86) X X

Microcode X

Performance Counters X
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Realities of the Attack

➠ Implemented on the UltraSparc, experimented on x86

➠ Hash functions need not be found or modified

➠ Exploits translation and caching capabilities of processor

☞ Negligible performance hit

➠ Attack is possible on wide range of processors
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Conclusions

➠ Typical self-hashing can be subverted on modern processors

➠ Need new protection to secure self-hashing tamper resistance

☞ must withstand real-time detection and separation of code/data
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Questions?

http://www.scs.carleton.ca/∼gwurster
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