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‘Outlinel

[1 Self-hashing tamper resistance overview
[1 High level overview of our attack
[1 Hardware memory management design and attack details

[ Results and implications
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‘Self-Hashing Tamper Resistance Problem I

[1 Protect an application binary against undetected modifications

L1 Verifying that an application for DRM has not been modified
[1 Protecting copy protection algorithms

[1 Guard against unfair advantages in networked environments
[1 Do so without dependence on external hardware or software
[1 Use some form of self-hashing to detect changes

[ ] Assumes a Hostile Host model
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‘Self-Hashing Software Tamper Resistancel

[] Read into the code segment to compute a hash

[1 Rely upon a known good value to detect modifications
[] Obscure reads into the code by hiding address calculations

[1 Protect the hashing code against alterations
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‘A Network of Hash functionsabl
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#Chang et al. Protecting Software Code by Guards, DRM-2001
PHorne et al. Dynamic Self-Checking Techniques..., DRM-2001
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‘Our Resultsl

[1 Self-hashing is not secure against attack on modern hardware

[1 Can modify an application without being detected
and without altering hashing algorithms
[1 Attack applies to proposals including:
[1 Chang et al. DRM-2001
[1 Horne et al. DRM-2001

[1 Aucsmith, IHW-1996 (despite digital signatures)
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‘Processor Design Elements Enabling our Attackl

[1 There does not exist a 1:1 correspondence between

virtual and physical addresses

[1 CPU caches are managed differently depending upon whether they

contain information on program instructions or data
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‘Graphical Representation of Our Attackl
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‘ High-Level Overview of Attack I

Create a copy of the application which will remain unmodified

Modify the application as desired

Modify the kernel to contain the run-time attack code

N N e I A

Load the modified application, installing and mapping both original

and modified code pages in physical memory

L] Run application - attack kernel vectors reads appropriately

[] This is the core of our attack
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‘Virtual Memory Translation I
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‘Hardware Architecture: Virtual Memory Translation I

Virtual Address Space Translation Mechanism Physical Address Space

Page Table >. >.

a I

__

Cache

IS DTLB| | TLB

B
Waurster et al. Page 11 Oakland 2005



e __

‘Alternative Attack Implementations I

[1 We use any of several methods to separate code and data reads

[1 Software TLB miss handlers
[1 Hardware page table miss handlers

[1 Hardware segmentation translation
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Har dwar e Transl ati on Mechani sm
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Attack | npl enentati on

Wourster’' 05
Trap To OS —D> Determine Virtual Address (VA)
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Overwrite VA’ with Jump; save old

Read from VA
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Jump to VA
V Jumps back to kernel code
Restore overwritten code
Clear PTE mapping VA Retry Instruction
P 8

Wurster et al. Page 14 Oakland 2005

U Em BN B BN B BN BN BN BN BN BN BN BN BN BN BN BN BN B BN BN BN BN N M B M B M m m m m om omomom P



e __

‘Filling the ITLB in Generic implementationl
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‘Filling the ITLB in Generic implementationl
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‘Filling the ITLB in Generic implementationl
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‘Filling the ITLB in Generic implementationl
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‘Filling the ITLB in Generic implementationl
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‘ Result of attack |

[ 1 Code read as data can differ from code executed

[1 By ensuring code read as data is unmodified code, self-hashing

always uses unmodified code — yielding the “correct” hash

[1 Attack applies to most modern general-purpose processors e.qg.
UltraSparc, x86, PowerPC, AMD64, Alpha, ARM

Note: The attack is not prevented by stealthy address computations®

%Linn et al. Enhancing Software Tamper-Resistance... ACSAC-2003
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‘ Overhead |

L1 Implementation Work
[ ] Must install a modified kernel

[1 Per-application overhead is negligible (COPY command)

[1 Run-Time Overhead
[1 Only on a TLB cache miss (0.1% of time on UltraSparc)
[1 Each DTLB miss adds 6 assembly instructions on UltraSparc

[1 Overhead is less than existing time spent on cache misses
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‘Variations of the Attack |
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‘ Realities of the Attack |

L1 Implemented on the UltraSparc, experimented on x86

[ ] Hash functions need not be found or modified

[1 Exploits translation and caching capabilities of processor

[1 Negligible performance hit

[1 Attack is possible on wide range of processors
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‘Conclusionsl

[1 Typical self-hashing can be subverted on modern processors

[] Need new protection to secure self-hashing tamper resistance

[1 must withstand real-time detection and separation of code/data

B
Waurster et al. Page 20 Oakland 2005



e ___

‘ Questions? I

http://ww. scs. carl eton. ca/ ~gwur st er
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