F __

Oakland 2005

Hardware-assisted circumvention of

self-hashing software tamper resistance

Glenn Wurster, Paul Van Oorschot, Anil Somayaji

School of Computer Science

Carleton University, Canada

e __

e

__

‘Outlinel

[1 Self-hashing tamper resistance overview
[1 High level overview of our attack
[1 Hardware memory management design and attack details

[Results and implications

B
Waurster et al. Page 2 Oakland 2005

F __

‘Self-Hashing Tamper Resistance Problem I

[1 Protect an application binary against undetected modifications

L1 Verifying that an application for DRM has not been modified
[1 Protecting copy protection algorithms

[1 Guard against unfair advantages in networked environments
[1 Do so without dependence on external hardware or software
[1 Use some form of self-hashing to detect changes

[] Assumes a Hostile Host model

B
Waurster et al. Page 3 Oakland 2005

e __

‘Self-Hashing Software Tamper Resistancel

[] Read into the code segment to compute a hash

[1 Rely upon a known good value to detect modifications
[] Obscure reads into the code by hiding address calculations

[1 Protect the hashing code against alterations

B
Waurster et al. Page 4 Oakland 2005

g

__

‘A Network of Hash functionsabl

Code Segment
Hashing Code

~
Hashing Code

Hashing Code)

Hashing Code)

Hashing Code [

Hashing Code /(

#Chang et al. Protecting Software Code by Guards, DRM-2001
PHorne et al. Dynamic Self-Checking Techniques..., DRM-2001

B
Waurster et al. Page 5 Oakland 2005

e __

‘Our Resultsl

[1 Self-hashing is not secure against attack on modern hardware

[1 Can modify an application without being detected
and without altering hashing algorithms
[1 Attack applies to proposals including:
[1 Chang et al. DRM-2001
[1 Horne et al. DRM-2001

[1 Aucsmith, IHW-1996 (despite digital signatures)

B
Waurster et al. Page 6 Oakland 2005

e __

‘Processor Design Elements Enabling our Attackl

[1 There does not exist a 1:1 correspondence between

virtual and physical addresses

[1 CPU caches are managed differently depending upon whether they

contain information on program instructions or data

F __

Waurster et al. Page 7 Oakland 2005

F _

‘Graphical Representation of Our Attackl

Physical Memory

Request Address

Instruction Fetch

Data Fetch

\v4
> Code’
> Code

v

/i __

Waurster et al. Page 8

Oakland 2005

F __

‘ High-Level Overview of Attack I

Create a copy of the application which will remain unmodified

Modify the application as desired

Modify the kernel to contain the run-time attack code

N N e I A

Load the modified application, installing and mapping both original

and modified code pages in physical memory

L] Run application - attack kernel vectors reads appropriately

[] This is the core of our attack

B
Waurster et al. Page 9 Oakland 2005

.

‘Virtual Memory Translation I

Process Process Process

SN

Virtua Address
Space

Page Tables

Operating System

Hardware Trand ation

Physical Address\ \
Space

/i e
Wurster et al. Page 10 Oakland 2005

s

‘Hardware Architecture: Virtual Memory Translation I

Virtual Address Space Translation Mechanism Physical Address Space

Page Table >. >.

a I

__

Cache

IS DTLB| | TLB

B
Waurster et al. Page 11 Oakland 2005

e __

‘Alternative Attack Implementations I

[1 We use any of several methods to separate code and data reads

[1 Software TLB miss handlers
[1 Hardware page table miss handlers

[1 Hardware segmentation translation

B
Waurster et al. Page 12 Oakland 2005

F __

Har dwar e Transl ati on Mechani sm

--- —-—

/ I/D Fetch ;

/D TLB Lookup

Page Table Lookup

)

Not Present

(Do Translation with TLB

A/

_ _ Retry
Trap To OS Fill TLB with PTE }-------

T W E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R =y

B
Waurster et al. Page 13 Oakland 2005

.

MEE B B B B B BN B BN B BN BN BN B BN B BN M B B W W M m m m m m mmm?

i __

Attack | npl enentati on

Wourster’' 05
Trap To OS —D> Determine Virtual Address (VA)
\/

Dat a Fet ch | nstruction Fetch

v

Compute Fetch Type

Point PTE for VA to Code

Point PTE for VA to Code’
é Map VA’ to same PA as VA
Overwrite VA’ with Jump; save old

Read from VA

%

ST M WM Em EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ==y

Jump to VA
V Jumps back to kernel code
Restore overwritten code
Clear PTE mapping VA Retry Instruction
P 8

Wurster et al. Page 14 Oakland 2005

U Em BN B BN B BN BN BN BN BN BN BN BN BN BN BN BN BN B BN BN BN BN N M B M B M m m m m om omomom P

e __

‘Filling the ITLB in Generic implementationl

Virtual Address Space

Instal |l Code’

T

| TLB

~

Code’ Code

/i i
Waurster et al. Page 15 Oakland 2005

s __

‘Filling the ITLB in Generic implementationl

Virtual Address Space VA Kernel Memory VA

T~

i f

Wite Junp Instruction (save overwitten data)

A

Code’ Code

| TLB

y i
Waurster et al. Page 15 Oakland 2005

e __

‘Filling the ITLB in Generic implementationl

Junp to VA
Junmp back to Kernel Page
Virtual Address Space VA VA
| TLB
N Z
\/Entry
for VA

Code’ Code

/.
Wurster et al.

Page 15

.
Oakland 2005

s __

‘Filling the ITLB in Generic implementationl

Virtual Address Space VA VA

T~

Restore Overwitten Data

| TLB

Entry
for VA

Code’ Code

y i
Waurster et al. Page 15 Oakland 2005

e __

‘Filling the ITLB in Generic implementationl

Virtual Address Space

T~

Renmove Mappi ng to Code’

| TLB
Entry
for VA

Code’ Code

/i i
Waurster et al. Page 15 Oakland 2005

F __

‘ Result of attack |

[1 Code read as data can differ from code executed

[1 By ensuring code read as data is unmodified code, self-hashing

always uses unmodified code — yielding the “correct” hash

[1 Attack applies to most modern general-purpose processors e.qg.
UltraSparc, x86, PowerPC, AMD64, Alpha, ARM

Note: The attack is not prevented by stealthy address computations®

%Linn et al. Enhancing Software Tamper-Resistance... ACSAC-2003

B
Waurster et al. Page 16 Oakland 2005

P __

‘ Overhead |

L1 Implementation Work
[] Must install a modified kernel

[1 Per-application overhead is negligible (COPY command)

[1 Run-Time Overhead
[1 Only on a TLB cache miss (0.1% of time on UltraSparc)
[1 Each DTLB miss adds 6 assembly instructions on UltraSparc

[1 Overhead is less than existing time spent on cache misses

B
Waurster et al. Page 17 Oakland 2005

e __

‘Variations of the Attack |

Variation

Oakland’05 TDSC’05

TLB Load (Ultrasparc)
Generic Attack
Segment (x86)

Microcode

Performance Counters

v v

v
v v
v
v

B
Waurster et al. Page 18 Oakland 2005

e __

‘ Realities of the Attack |

L1 Implemented on the UltraSparc, experimented on x86

[] Hash functions need not be found or modified

[1 Exploits translation and caching capabilities of processor

[1 Negligible performance hit

[1 Attack is possible on wide range of processors

B
Waurster et al. Page 19 Oakland 2005

g __

‘Conclusionsl

[1 Typical self-hashing can be subverted on modern processors

[] Need new protection to secure self-hashing tamper resistance

[1 must withstand real-time detection and separation of code/data

B
Waurster et al. Page 20 Oakland 2005

e ___

‘ Questions? I

http://ww. scs. carl eton. ca/ ~gwur st er

B
Waurster et al. Page 21 Oakland 2005

