
1

Reducing Unauthorized Modification
of Digital Objects
Paul C. van Oorschot, Glenn Wurster

Abstract—We consider the problem of malicious modification of digital objects. We present a protection mechanism designed to protect
against unauthorized replacement or modification of digital objects while still allowing authorized updates transparently. We use digital
signatures without requiring any centralized public key infrastructure. To explore the viability of our proposal, we apply the approach to
file-system binaries, implementing a prototype in Linux which protects operating system and application binaries on disk. To test the
prototype and related kernel modifications, we show that it protects against various rootkits currently available while incurring minimal
overhead costs. The general approach can be used to restrict updates to general digital objects.

Index Terms—protection mechanisms, software release management and delivery, system integration and implementation, access
controls, file organization, operating systems.

F

1 INTRODUCTION AND OVERVIEW

IN current computing environments, most users are
not security experts. Most computer users are instead

tasked with using a computer in order to get their
job done. Such a scenario results in an environment
where security is often a tertiary goal [2]. In spite of
this, many access control systems, when deployed on
end-user desktops, place users in charge of granting
permission to update files [3], [4]. By putting the user
in charge, the implicit assumption is made that the user
is capable of managing permissions in a way that will
not compromise the security of the system. This assump-
tion is dangerous, as it can lead to situations in which
the user makes (or allows) modifications detrimental
to system security. The assumption is also dangerous
because passwords remain the dominant mechanism for
authorizing software updates, and security and usability
issues related to passwords are well-known [5].

In this paper, we re-examine the problem of how to
authorize the modification of digital objects. Instead of
relying on the user to properly control updates to a
digital object, we focus on allowing the creator of the
object to limit modifications to the object, through a well-
planned use of digital signatures and verification public
keys. Our approach does not rely on authenticating the
end-user of the system on which the object to be updated
resides, focusing instead on verifying that the creator
of the updated object is authorized by the creator of
the original object. We focus exclusively on the action
of replacing a digital object with a new version of that
object (i.e., whether object Ak+i is allowed to replace
object Ak). We do not require a knowledge of who

• Carleton Computer Security Lab, School of Computer Science, Carleton
University, Canada

• Version: August 30, 2010. This paper expands on a preliminary short
paper [1]. Contact author: gwurster@scs.carleton.ca

created the updated digital object, but instead ask was
this individual authorized to create an updated version of this
object?

The approach we take is to associate with each digital
object a digital signature of the object. This signature
is checked by the enforcement mechanism when per-
forming an update to the object. In essence, the object
is self-signed; no centralized (or other) public key in-
frastructure is involved. The core technology is a simple
variation of self-signed executables [1]. We use the term
key-locking to refer to our proposal, to avoid confusion
with other schemes designed to limit the installation
of digital objects based on the identity of the signing
party. The proposed system allows objects to be easily
upgraded, under the control of the (trusted) enforcement
mechanism.

Section 2 first outlines the generic key-locking ap-
proach, along with related benefits and drawbacks. We
then present several scenarios in which key-locking is
beneficial, and in Section 3 expand on one of these
approaches – restricting the modification of application
binaries on a modern desktop. Section 4 discusses a
prototype implementation of this application of key-
locking, discussing its performance and ability to protect
against known rootkit-related attacks in a Linux desktop.
Section 5 discusses similar proposals designed to limit
binary modification and related work. We summarize in
Section 6.

2 GENERIC PROPOSAL: RESTRICTING UP-
DATES BY KEY-LOCKING

At the core of our proposal is a simple but carefully
supported use of digital signatures, designed to protect
a digital object against unauthorized modifications. By
digital object, we mean digital content which is available

mailto:gwurster@scs.carleton.ca

2

as a single file identified by a file name. Examples in-
clude: program binaries (including both executables and
libraries), images, videos, application install packages,
and compressed archives. Each digital object protected
by key-locking contains both m ≥ 1 digital signatures
and n ≥ 1 verification public keys. Both m and n are
determined by the object author. To restrict who can
modify (or replace) an object, one simple protection rule
is enforced: An old key-locked digital object may be replaced
by a new one iff at least some number k ≥ 1 (set in the
enforcement policy) of unique digital signatures in the new
object validate correctly using public keys in the old object.
This basic idea, as applied to binaries, was first presented
in a short paper [1]. To be useful for replacing old objects
on a system using a given k, it is necessary that m ≥ k.
In general, m and n can be chosen independently, mold

does not constrain mnew, and nold does not constrain
nnew

1 (e.g., possibly (mold, nold, mnew, nnew) = (3, 2, 2, 5)
or (3, 4, 5, 1)).

We suggest supporting a few standardized digital
signature algorithms, where for each signature in the
object, the chosen scheme is specified alongside and
protected by the digital signature (i.e., different types
of signatures are supported within the object, allowing
for a transition away from a particular signature scheme
should it become undesirable).

For currently installed digital objects containing a
signature (in the “key-locking section”), an enforcement
mechanism (e.g., the kernel in our prototype imple-
mentation) prevents replacement unless the new object
contains k digital signatures (among its set of mnew

signatures) which can be verified using k of the nold keys
in the old version of the object. Otherwise, the original
object remains unmodified. Deployment is incremental
– digital objects not key-locked can be replaced without
restriction (which is how most systems currently oper-
ate). Once an object is key-locked however, it must be
replaced by an object with at least k verifiable digital
signatures. We discuss the choice of k in §2.2.

Each digital signature is computed over the contents
of the entire digital object, with any area reserved for
storing a digital signature zeroed out prior to computing
the digital signature. The areas of the digital object used
for storing verification public keys, as well as the key
prefixes (as explained later) used in locating the public
key when verifying the signature, are within the scope
of the digital signature. If any of the public keys are
modified, the digital object will fail to validate unless
it is re-signed. Likewise, if any digital signature meta-
data (e.g., length, any key prefix, or count of digital
signatures) is modified. No public key or signature can
be replaced (or inserted/deleted) in a multiply-signed
key-locked object without regenerating all signatures.
This approach of signing everything (except the digital
signatures) is necessary unless k = nnew and public
keys are tied directly to signatures (see §5.1). Otherwise,

1. mold is the value of m for an old object. Similarly for nold, etc.

if a key-locked object could be signed with additional
signatures while still being legitimate for those keys
already embedded, an attacker could take control of the
object by appending new verification public keys to an
already key-locked object.

The process of signing a digital object for key-locking
involves three steps, performed by an application de-
signed to key-lock objects: 1) Embed verification public
keys into the object – the creator of the object is responsi-
ble for choosing which public keys to embed and passing
them to the key-locking application. 2) For each digital
signature the object creator chooses to embed, the key-
locking application creates a corresponding record in the
digital object, filling in all fields except for the actual
signature. A corresponding key prefix record is also
created, which contains a prefix of the public key which
can be used to verify the signature contained in the
record. The key prefix record is used during signature
verification to quickly find related public keys. 3) For
each digital signature, the key-locking application uses
the corresponding private key to sign the digital object.
Although the object does not have to be signed with
all private keys at the same time (i.e., the object can be
passed around between private key holders involved in
the signing process), the set of public keys (step 1) and
signatures (step 2) to embed into the digital object must
be agreed upon before any signatures for the object can
be created.

Which software (or other) component enforces key-
locking varies depending on the type of digital object
being protected (see §2.7). For our prototype, which pro-
tected application binaries, enforcement was built into
the Linux kernel. For application packages, enforcement
should be built into the package manager. For files
hosted on a web-site, enforcement would be built into
the web server software.

2.1 Key Evolution

Over time, inevitably, signing keys used for key-locking
will be lost, compromised, or become outdated. These
situations can be ameliorated by using multiple verifica-
tion keys in an object, and setting k such that 1 < k <
nold. If one key is lost, the other key(s) can be used to
sign a subsequent version of the object (which can also
introduce new keys). We do not specify any conditions
on who or what controls the private keys corresponding
to these additional verification public keys, but many
options exist including community trusted organizations
or trusted friends who function as backups. While we
mandate no specific infrastructure for key revocation,
pro-actively installing a new version of a binary which
does not allow future versions signed with the previous
key (i.e., which excludes the old verification public key(s)
from those embedded in the new version) prevents an
outdated key from being used indefinitely, “revoking”
the key. At somewhat greater key management expense,
each object can be signed with a different key to limit the

3

effect of a compromised key. In the absence of versioning
(§2.6.1), we suggest replacing verification public keys in
the object with every major release to protect against
downgrade attacks. Objects must continue to be signed
with old keys in order to provide a smooth upgrade
path from any previous version, but we do not suggest
embedding in an object public keys corresponding to
outdated signing keys (i.e., m may grow over time as
verification public keys are replaced).

2.2 Using k of n public keys for signature verifica-
tion

Each digital object being protected by key-locking will
contain n ≥ 1 distinct verification public keys. In deter-
mining whether a new version of the digital object can
replace the current one, at least k of the nold public keys
in the current object must result in successfully verified
digital signatures contained in the new object.

Parameter k is set by policy, being chosen during cre-
ation and/or configuring of the enforcement mechanism
and enforced during every digital object replacement
check. We do not mandate any specific choice of k, but
do note some of the trade-offs:

1) The smaller k is, the greater the risk that k parties
holding signing keys for a digital object may “go
rogue.” For example, if k = 1 then any single
party holding a private signing key can distribute
an updated version of the object without coopera-
tion of any other original party, i.e., containing (or
excluding) any verification public keys they wish.
Choosing a very small k also increases the impact
of key compromise, as an attacker needs only k com-
promised keys to provide “authorized” updates.

2) If k = nold for a particular object, then the misplace-
ment of even a single signing private key prevents
future updates to that object (since the digital sig-
nature corresponding to the lost private signing key
cannot be created). To accommodate for lost private
signing keys, k should satisfy k < nold.

The security policy may set k dynamically as a func-
tion of m and n (e.g., k = d0.5nolde, k = mnew, or
k = nold [6, §5.3.3]), or as a rule-determined fixed value
(e.g., k = 2 if nold > 2 else k = 1).

2.3 Trust Model Assumptions (Generic)

In using key-locking, it is assumed that an attacker
does not have access to the private signing keys, nor
have control of the key-locking enforcement mechanism.
Private signing keys need not be shared amongst parties
involved in the creation of key-locked digital objects,
and it is assumed that a private signing key cannot be
derived from observation of the verification public key.
What must be protected against is an attacker obtaining
a private signing key through a compromise of the
machine where the private signing key is stored. We
assume that old verification public keys are not included

in newer objects, and new keys are introduced frequently
if a downgrade attack (i.e., replacing a more recent
digital object with an older version) is a concern.

2.4 Beneficial Characteristics
Key-locking has the following beneficial properties.

1. No Central Key Repository or Infrastructure.
The proposed system differs from many other code-
signing systems in that it does not attempt to tie the
signature to an entity. It can verify that the new version
of a digital object is associated with the same author
(or organization) as the old version without knowing
that party’s identity. Because the signature on a to-
be-installed object file is verified using the public key
embedded in the previous version of the object, there is
no need to centrally register a key or involve any central
repository. Thus, no central certification authority or public
key infrastructure (PKI) is required. Any new author can
create a signing key-pair and begin using it immediately;
creation of new digital objects remains unrestricted. We
make no effort to restrict what objects can be created.
If desired, different keys can be used for each object
created to limit the impact of a key compromise (as
long as all private keys are not stored in one place the
attacker gains access to, the attacker incurs a per-object
cost for replacing protected objects). Other object signing
schemes have relied on a trusted central authority [7],
[8].

2. Incremental Deployability with Incremental Ben-
efit. Systems which do not yet support the key-locking
mechanism see key-locked digital objects as if they were
normal, being unaffected by the existence of the extra
data fields associated with key-locking. Similarly, digital
objects not key-locked may be allowed on a system
which supports key-locking (in contrast to many pro-
posed code signing schemes [8]). Key-locking can be first
enabled in either the enforcement mechanism or digital
objects without an adverse affect on non-supporting
systems or software.

3. Low Overhead. As discussed in §4.8, key-locking
can be deployed with imperceptible overhead to the end-
user.

4. Simplicity. The key-locking concept is relatively
simple to understand, and does not require any addi-
tional hardware or co-processors.

2.5 Limitations
We now discuss some limitations related to key-locking.

1. Deletion of Digital Objects. Because the digital
objects themselves contain the list of public keys used
to authorize replacement by a new version of the object,
the deletion of a key-locked object also removes any
requirements of specific digital signatures being present
in any future version of the object installed onto that
system, thereby allowing arbitrary replacement. If key-
locked digital objects could be arbitrarily deleted, a new
version not containing any authorizing signatures could

4

be installed by first removing the old version of the dig-
ital object (since then there will be no previous version
to extract verification public keys from when the new
digital object is installed). The deletion of key-locked
digital objects is therefore disallowed, except by super-
users. In the case where the name of the digital object
is to be protected (e.g., for the bin-locking application
in §3), the renaming of key-locked objects must also be
restricted.

2. Denial of Service. Any attempt to replace a key-
locked object with another key-locked object for which
the signatures do not verify is denied. This creates a
race condition in claiming object file names, with “name-
squatting” applications potentially precluding the instal-
lation of legitimate digital objects through the creation
of large numbers of dummy key-locked objects (much
as domain name squatters tie up domain names). De-
pending on the environment in which key-locking is
deployed, it may be desirable to name-space restrict
what key-locked objects can be created by which entities.
The exact environment-specific restrictions are beyond
the scope of this paper.

2.6 Extensions to Key-Locking
Assuming a basic capability of verifying that digital
object updates are authorized, extended functionality
may be worth considering. The extensions discussed
here would require additional support from the key-
locking enforcement mechanism.

2.6.1 Versioning
As one possible extension, version numbers can be em-
bedded in both the old and new digital objects. If the
enforcement mechanism is expanded to control replace-
ment based on version number, the same set of signature
key pairs can be used over an extended period of time
without the risk of a downgrade attack. While object
authors (or organizations) can achieve the same effect
by “revoking” keys (as discussed in §2.1), versioning
allows the author of the object to reduce the number of
signatures necessary in any new version of the object
while still ensuring that the object can replace many
previous versions. Note that legitimate software rollback
(the process of reverting to a previous version) may not
be possible while key-locking enforcement is active on
a system (since key-locking, as outlined in this paper, is
designed to also prevent downgrade attacks).

2.6.2 Sub-Keying
In the core idea, any digital object which can be validated
using k keys in an installed object can replace the
installed object. To prevent one object from replacing
another semantically unrelated object from the same
organization, the organization can use a non-overlapping
set of keys for each object. As an extension to basic key-
locking, an organization could embed an index num-
ber into each object they sign. While new versions of

the same object would have the same index number,
different objects associated with the same organization
would have different index numbers. If the enforcement
mechanism dictates that the index number between the
old and new object must match, an organization could
use the same private signing key for all their digital
objects, without allowing semantically unrelated objects
to be switched on a system. As an example in our
prototype implementation (§3 below), sub-keying could
be used to prevent rm from replacing ls while allowing
the two binaries to be signed with the same key.

2.7 Applications of Key-Locking
Examples of possible applications of key-locking include
(i) protecting against arbitrary modification of applica-
tion binaries (as discussed in §3); (ii) restricting package
updates (as discussed in §5.1); and (iii) for authorized
updates, in place of procedural controls that typically
accompany the use of usernames and passwords when
pushing new versions of objects to a central server host-
ing digital objects created by users. A typical course of
action in developing a website hosting content provided
by multiple parties is to implement an authentication
scheme, use it to authenticate valid users of the website,
and then restrict the digital objects that can be modified
by the authenticated user to some subset of objects on
the site. Using key-locking, the initial version of a digital
object identified by a URI is provided by a user and
uploaded to the site through some alternate method (as
specified by the system administrator and not discussed
in this paper). Subsequent versions can be uploaded
directly by the user pursuant to the constraint that the
key-locking verification procedure passes. This provides
a type of digital rights management functionality, in the
form of exclusive control of updates. Such an approach
has several advantages:

1) No state need be maintained between the authen-
tication of a user and the uploading of the cor-
responding content by the user. Session hijacking
attacks are therefore eliminated. The verification
of authorization is performed through the verifi-
cation of key-locking signatures embedded in the
uploaded object.

2) Because the cryptographic verification of the digital
signature is performed on the server, the digital
content is protected against undetected and unau-
thorized modification while in transit (even without
SSL if privacy is not required).

Such an approach to uploading digital content could
be useful for servers hosting software repositories (e.g.,
for open-source package repositories).

3 EXEMPLAR OF KEY-LOCKING:
BIN-LOCKING

We first review how software installation is performed
in most current computing environments. Applications

5

created by many different authors all coexist on disk, be-
ing installed at various times by the user. Each normally
includes a number of program binaries along with some
associated libraries. While the installation of a new appli-
cation will normally not overwrite previously installed
binaries, permission to do so is common. Indeed, to
clearly state the problem: Any application installer (or even
application) running with sufficient privileges can modify
any other application on disk. Application installers are
routinely given these privileges during software upgrade
or install (e.g., almost all installers run as administrator
or root, with complete access to the system). Some ap-
plications even run with administrator privileges during
normal operation due to a variety of reasons despite
the best efforts and countless recommendations against
this practise over the years. The common running of
applications (including their installers) as administrator
leads to a situation in which a single application can
modify any other application binary on disk. Normally,
applications do not abuse this privilege to modify the
binaries belonging to other applications. Malware, how-
ever, exploits the ability to modify other binaries as
a convenient installation vector. Already in 1986, the
Virdem virus [9] was infecting executables in order
to spread itself; more recently, rootkits [10] have used
binary modification in an attempt to hide.

The above motivates our application of key-locking
to protect against arbitrary modification of application
binaries, and the design of a surrounding architecture
required to provide enforcement. We use the term bin-
locking, to distinguish this application of key-locking
from the general approach. We design, implement, and
test a prototype for bin-locking in Linux. The design
itself is generic – we see no reason why it could not
be implemented on Windows or MacOS.

Bin-locking is not intended for use in all environments,
for example, it does not co-exist well with some de-
veloper features for reasons discussed in §4.4. Its main
target audience is the vast majority of common end-
users, who do not use development environments or
related tools and are not security experts.

Bin-locking reduces the ability of malware to hide on
a system; system binaries can no longer be modified to
hide the presence of malware. Anti-virus system files can
similarly be protected against modification by malware.
Bin-locking does not prevent all malware from being
installed or run on a computer, but as a first step,
prevents the modification of designated binary files –
files created by developers and rarely (if ever) modified
by the user. While configuration files and scripts remain
unprotected by bin-locking, applying key-locking at the
application package level (as is done in Android [11] –
see §5.1), provides protection of such files.

3.1 Trust Model Assumptions (Bin-Locking)

Our prototype relies on several trust assumptions be-
yond those of the generic key-locking approach (§2.3).

We implemented bin-locking enforcement in the kernel,
and assume the attacker does not have kernel level con-
trol of the system.2 On current systems, any application
running with root (or administrator) access can modify
the running kernel. Such an application can also bypass
file-system interfaces exported by the kernel by writing
directly to the raw hard-drive. To justify the assumption
of being able to trust the kernel, we discuss (in §3.4) and
implement (in §4.2) several restrictions which lock down
the interface between a running kernel and root. We
note that protecting the kernel in this way is beneficial,
independent of bin-locking. Malware exploitation of the
kernel is a growing trend [12] and others in the security
community have numerous proposals to protect the
kernel [13], [14], [15], [16], [17], [18].

3.2 Additional Benefits for Key-Locking of Binaries
Bin-locking has benefits in addition to those discussed in
§2.4. Previous proposals which attempt to limit changes
to binaries on disk all apparently fall short for one of
three reasons: they either detect changes a posteriori
[19], [20], [7], [8] (making recovery hard), rely on the
user to correctly validate every file modification, or still
allow applications to modify arbitrary files during in-
stall/upgrade [8]. Deploying bin-locking addresses these
three points with the additional benefit of helping to
preserve trust in known parts of the software base even
after infection by user-level malware.

The operating system and core applications are nor-
mally installed before malware has infected user-space.
Bin-locking exploits this temporal property. Typical mal-
ware installed after the operating system (including
core libraries and programs) cannot modify bin-locked
operating system files. The integrity of the operating
system files can therefore be trusted. If an anti-virus
system is installed before any malware, the anti-virus
binaries can also be automatically protected using the
same mechanism. Core binaries on a system infected by
user-level malware can therefore be trusted, allowing
partial control over an infected system even without
requiring a reboot to clean media. This can also make
recovery easier [21]. Using bin-locking, the integrity of
anti-virus software and system binaries can be relied
upon, restricting the ability of malware to hide. In the
case of forensic analysis, while administrators may still
choose to reboot to known-clean media once they dis-
cover malware, the inability for malware to hide is likely
to result in earlier awareness of the malware.

3.3 Limitations for Key-Locking of Binaries
Bin-locking has two limitations beyond those in §2.5.

1. Kernel Interface Lock-down. In order for bin-
locking to successfully resist attacks, several dangerous

2. We define the kernel (kernel level control) to include only those
aspects running with elevated CPU privileges (ring 0 privileges on
x86). This does not include core system libraries installed alongside
the operating system but run in user space.

6

kernel interfaces must be locked down (as discussed in
§3.4). In the prototype, the new kernel restriction which
influenced applications the most was disabling raw disk
writes. Applications affected by locking down this kernel
interface include file-system repair utilities, disk parti-
tioning, and disk formatting utilities. In the discussion,
we concentrate on when these tools are used to write
to partitions containing bin-locked files – the only par-
titions protected by the prototype (see §3.4). File-system
repair utilities are only run on these partitions during
boot. This was addressed in the prototype by disabling
raw writes later during the boot process. Partitioning
and formatting utilities are very destructive in nature
and hence arguably should not be allowed to make
changes to core partitions during normal operation of a
system. We suggest that blocking the destructive power
of file-system utilities during normal system operation
is an acceptable (even beneficial) security practise. When
file-system utilities must modify core partitions, a reboot
into a kernel which does not enforce bin-locking can
enable access.

During development and use of the prototype, we
did not encounter any programs that were blocked by
the other kernel interface restrictions implemented as
part of the prototype. To our knowledge, no program
attempted to either mount or unmount a file-system
over core directories. We also did not encounter any
program (other than tested malware) which attempted
to write directly to swap or kernel memory. Note that
Windows Vista already implements many of the kernel
access protections discussed here, including restrictions
on write access to raw drive partitions, swap, and kernel
memory [22], [23], [24].

2. Aliases. The bin-locking mechanism only protects
binaries on disk. If malware can prevent the user-
intended binary on disk from being invoked, then it
retains a measure of control over previously installed
programs. As an example, running the ps command
from the prompt without a pre-pended path (i.e., fully
qualified file name) will cause the first copy of ps found
to be run (even though it may not be the /bin/ps
binary). While the bin-locking scheme is designed pri-
marily to protect binaries against modification, this pro-
tection is of limited use if the authentic binaries are by-
passed. We must ensure therefore on an infected system
that the legitimate binary can be easily run instead of a
binary at a location of the attacker’s choice. Additional
binaries of the same file name installed by malware can
be avoided by running applications from the trusted
base directly (e.g., during forensic analysis), avoiding the
environment. Methods for accomplishing this include
calling the kernel directly (e.g., using the execve system
call) to run a program. Because much of the aliasing
functionality is implemented by libraries likely to be pro-
tected by bin-locking, some aliasing vulnerabilities can
be addressed by controls in the binaries themselves (e.g.,
by the shell restricting PATH to include only designated
core system directories when running as root). While it

may be possible to restrict updates to symbolic links
based on signatures in the objects they reference, this
approach was not explored in the prototype.

3.4 Kernel Modifications
To ensure that bin-locked files remain visible, we must
ensure that a new file-system is not mounted over top
of bin-locked files, and that a file-system containing bin-
locked files is not unmounted unexpectedly. We first
recognize that the mounting and unmounting of file-
systems is not commonly performed (or at least does
not affect core system directories) after system boot. We
therefore extend the kernel to prevent mounting and
unmounting of file-systems on specific paths. In the pro-
totype, the list of such paths to protect is customizable
by the user or machine administrator, being set as part
of the boot process (however once a path is specified, it
cannot be removed from the list of specified paths). We
discuss prototype details more in §4.2.5.

To ensure that the bin-locking protection mechanism
cannot be subverted, we must also disable raw disk
access to those partitions containing bin-locked binary
files. Raw disk access allows privileged processes to
write directly to the drive, bypassing any restrictions
associated with files on that drive. We disable raw disk
access in a way similar to mounting as discussed above.
The modified kernel accepts a list of devices to which
writes should not be allowed. Specifying the partitions
containing the core system libraries forces any file up-
dates to be processed through the bin-locking system.
We discuss the implementation details of this in §4.2.4.

If deleting application binaries were still allowed, the
bin-locking system would be rendered ineffective; an
attacker could simply delete the binary and then install a
new one having the same file name. To delete bin-locked
files, the bin-locking protections must be disabled. In
the prototype, this requires a reboot into a kernel which
does not enforce the protection mechanism (see §4.7).3

Previous work on providing a trusted interface (e.g., see
[25]) – one which cannot be subverted by malware –
between the kernel and the user may help to eliminate
the reboot requirement. One solution (not implemented
in the prototype) is to tie enforcement of bin-locking
to whether or not a hardware token is inserted (similar
to that presented by Butler et al. [26]) – as long as the
appropriate hardware token is inserted, the deletion of
bin-locked objects would be allowed.

Disabling bin-locking by modifying the running ker-
nel, and how to prevent this, are discussed in §4.2.3.

4 BIN-LOCKING PROTOTYPE
IMPLEMENTATION AND EVALUATION

To verify the viability of the bin-locking exemplar of key-
locking, we modified a system to implement bin-locking,

3. Because all application installs are performed as root in Debian,
restricting the deletion of bin-locked binaries to the root userid is not
sufficient for protecting the system.

7

including the kernel interface restrictions. The prototype
implementation is composed of a number of different
pieces which work together to protect the system. We
did not implement the §2.6 extensions to key-locking.
We wrote a binary signing utility which is used along
with associated custom scripts to sign the binaries in
the Debian software archive (for Debian 4.0), creating a
new local mirror. We then installed these binaries on a
test system using the Debian package manager which
we modified to support bin-locked binaries. The Linux
kernel (version 2.6.25) on the test system was modified
to enforce the proposed protection mechanisms (which
include restrictions on bin-locked binaries as well as
access to the kernel and file-systems). The Linux boot
process was modified on the test system to limit raw
writes and mounting (see §3.4). We used a constant value
k = 1 (m and n both varied between 1 and 3). We now
discuss each modified element of the prototype Debian
system in detail.

4.1 Extensions to the ELF file format
Executable files for a particular operating system nor-
mally follow a standard structure. Most Unix distribu-
tions (including Linux) use the binary format file ELF
(Executable and Linkable Format). The basic ELF file is
represented in Figure 1. Except for the ELF file header,
all other elements are free to be arranged as desired.
We modified ELF files (our approach could be adapted
to other types of files not modified by the user – e.g.,
Windows executables, Windows libraries, or application
data files), creating a new type of section for the purpose
of storing bin-locking related data. ELF was designed
such that applications could create new sections and
many other applications (e.g., GCC and bsign [27]) take
advantage of this flexibility.

ELF Binary File
ELF Header

ELF Program Segment Table

ELF Section Table

Program Segment
Section

Section

Section

Program Segment
Section

Section

Bin−Locking Section (new)

Fig. 1. Basic ELF Layout including Bin-Locking section.

The bin-locking section of the ELF file consists of
one or more records (the section table contains a field
specifying the number of records), with each record

containing a type of digital signature (e.g., all elements
related to the DSA algorithm would be in one record).
Each record specifies a signature, prefix of the public key
corresponding to the private key used to generate the
signature, and zero or more keys which can be used to
verify digital signatures of the same type in subsequent
versions of the binary. The key prefix record contains the
first four bytes of the public key related to the signature
and is used for quickly determining what verification
key in a previous version of the binary should be used
for verifying the signature (if multiple keys share the
first four bytes, the kernel will attempt to verify with
each). Figure 2 illustrates the layout.

Bin−Locking Section

Signature Type Record

Key Sub−Record

Key Prefix Sub−Record
Signature Sub−Record

Key Sub−Record

Key Prefix Sub−Record
Signature Sub−Record

Signature Type Record

Fig. 2. Bin-Locking File Section Layout

To allow for future signature schemes, we included
several components in bin-locking section headers. The
header for records and sub-records was specified to in-
clude both a length and type field, allowing the modified
kernel to skip over unrecognized signature types. The
sub-record header, in addition, contains a flag which
notifies the modified kernel that the record contents
should be zeroed before hashing the file as part of
the signature creation or verification – signatures are
stored in sub-records with this flag set. We discuss the
kernel verification of digital signatures more in §4.2.2.
The layout of a sub-record is illustrated in Figure 3.

LengthType Flags Data...

0 4 86Offset (byte)

ZUnallocated

Zero the data in this record

when computing a signature

2

Fig. 3. Layout of a sub-record in the bin-locking section
(records are similar).

8

4.2 Kernel Modifications
The kernel was modified to enforce bin-locking as dis-
cussed in §3. We used the MPI library ported to the Linux
kernel for cryptographic primitives [28]. Signed binary
files could no longer be deleted, moved, or opened for
writing. They could only be replaced with new binary
files which contained a signature verifiable using a key in
the corresponding old binary. On a replacement request
(which is initiated through a move system call involving
a bin-locked binary), the kernel attempts to extract and
use the keys from the old binary to verify the autho-
rization of the new binary. If the signature in the new
binary successfully verifies, the kernel moves the new
binary over top of the old binary. Figure 4 summarizes
the sequence of decisions the modified kernel makes
in replacing a bin-locked binary through the move call.
Figure 4 illustrates one technique by which a kernel can
update a bin-locked file. The kernel retains backwards
compatibility with binary files that are not bin-locked,
not restricting their replacement or removal.

Note 1 to Figure 4: recall from §2.5 that renaming bin-
locked files would allow arbitrary replacement. Renam-
ing is therefore not directly allowed by the prototype
kernel; hence the use of an 8-byte BIN-LOCK prefix. The
BIN-LOCK prefix serves as a special marker to the kernel,
to temporarily allow deletion and movement of the file
prior to it replacing an existing bin-locked file, since
normally bin-locked files may not be deleted or moved.

move(new, old)

Deny

no

yes

Does new start with
"BIN−LOCK"

Is old a bin−locked
ELF?

Is new a bin−locked
ELF? (note 2)

yes

no

no

yes

Is new now a bin−locked
ELF?

Suppose "BIN−LOCK" is deleted
from new

no

yes

Do key−locking signature check
for new replacing old

pass

fail

Delete "BIN−LOCK" from
new

Does old already exist?

yes

no

Move new to old

(note 1)

Fig. 4. Kernel flow chart for replacing bin-locked files. See
text for explanation of note 1 and 2.

To simplify the implementation, we chose not to

rely on a user mode helper (e.g., by using the
call_usermodehelper function in the kernel) in de-
signing the prototype system. While we believe a user
mode helper could be implemented securely, it would
need to be bin-locked itself, and the interfaces it uses
to talk to the kernel would have to be designed very
carefully to avoid being taken over by malware.

4.2.1 Detecting Bin-Locked files
To detect whether or not a file was bin-locked (at note 2
in Figure 4), the modified kernel examined very specific
file elements. It verified that the file was 1) an ELF file,
2) contained a bin-locking section, and 3) the bin-locking
section contained a digital signature in a format known
to the kernel (e.g., DSA). To determine if a file is bin-
locked, the kernel read the file header (the first 52 bytes
of the file on a 32bit x86 platform) as well as the section
table (40 bytes per section). If any element in either
the file header or section header was considered invalid
according to the ELF specification [29], the file was
treated as not bin-locked. An attacker is not able to turn a
bin-locked file into one not bin-locked because the kernel
does not allow a properly bin-locked file to be altered
(except by replacing it with another properly bin-locked
file). The eight byte header described in §4.2 results in a
file which is not recognized as a valid ELF file and hence
the modified kernel allows it to be removed, modified,
and moved. We assume individuals attempting to bin-
lock their own binaries will not purposely create invalid
binaries (as that would negate the effort of bin-locking
the binary in the first place). As part of the prototype, we
created a tool to test that ELF files are recognized as bin-
locked and correctly signed. The overhead of enforcing
bin-locking is discussed in §4.8.

4.2.2 Verifying Digital Signatures
To verify that a new binary is authorized to be installed,
the modified kernel first extracts out a list of verification
keys from the old binary (which share the same prefix
as the key prefix stored in the new version of the binary
alongside the digital signature). With each verification
key that matches the key prefix, the kernel attempts to
verify the signature. If the signature check passes, the
replacement is allowed (i.e., k = 1).

While the prototype used an older and less efficient
implementation (space-wise) to store and verify digital
signatures than described herein, the method proposed
in this sub-section is preferred.

4.2.3 Avenues for Kernel Modification
To protect the bin-locking system itself, the kernel was
also modified to remove the following functionality
which could otherwise be used to attack the system: (1)
modifying the kernel to disable the protection scheme;
(2) editing bin-locked binaries directly on disk; and (3)
hiding bin-locked binaries (by either mounting or un-
mounting the partitions they reside on). To prevent (1),

9

/dev/kmem was disabled and /dev/mem was restricted
to only allow access to non-RAM physical addresses. In
parallel and independent of our proposal, this protection
was introduced in version 2.6.26 of the Linux kernel
[30], [31]. /dev/mem cannot be disabled entirely as X
(the graphical display manager) uses it to communicate
with the video card (by restricting access to /dev/mem
instead of modifying X, we do not require X to be trusted
alongside the kernel). Red Hat has restricted access to
/dev/kmem and /dev/mem for several years without
problems [30], [31]. While we disabled module loading
entirely, a better option is to deploy module-signing
(as discussed by Kroah-Hartman [32]). While the above
protections were sufficient for testing the prototype, we
refer the reader to mechanisms and proposals by others
for complete kernel protection (see §3.1)

To address (2) and (3), we also limited raw disk
access and drive mounting (as discussed below). While
certain hardware configurations may provide additional
methods of gaining write access to kernel memory in
the prototype, we believe kernel device drivers can be
modified to remove vulnerabilities caused by specific
hardware; this requires further exploration beyond that
done in the prototype implementation.

4.2.4 Disabling Raw Disk Access
To protect bin-locked binaries against modification, one
must also disable raw writes for partitions that contain
bin-locked files. We did this by exporting a syscon-
trol from the kernel, allowing a user space process
to set which partitions should prevent (disable) raw
disk writes. A syscontrol is a single pseudo-file (a file
which does not exist on disk) which exposes kernel
configuration to user space. In this case, the list of
protected partitions can be read, and a new partition
can be appended to the list by writing to the pseudo-
file. Because the syscontrol only supports appending to
the list maintained by the kernel, the only way to remove
a partition from the list is to reboot the system, which
resets the list to empty. As part of the boot-up process,
the list of partitions for which raw disk access is dis-
abled is written back into the syscontrol (after the initial
fsck/file-system check). This list of partitions we wrote
to the syscontrol included the swap partition (to prevent
attacks against kernel memory [24]). If any partition on
a disk is designated as protected, the prototype kernel
disables raw writes to the file representing the entire
drive. In order for malware to enable raw disk writes, it
must modify the start-up process to disable initialization
of the syscontrol and reboot the system. One solution
to prevent this is to initialize the syscontrol in init
(the first binary run). Binaries involved in the start-up
process (including init) can be bin-locked, preventing
modification.

In the prototype, the restriction on raw disk writes was
implemented as a user-specified list because the kernel
could not determine quickly what partitions contain bin-
locked files. As a usability improvement, the file-system

could be modified to include a flag indicating the pres-
ence of bin-locked files on that partition. If bin-locked
files are present, then raw writes to the partition could
be automatically disabled without the kernel needing a
list. By avoiding file-system modifications, the prototype
was able to operate at the security module layer [33],
not depending on a particular file-system. By leaving
the file-system unmodified, backward compatibility with
systems not aware of bin-locking is also maintained.

4.2.5 Restricting Mounting
To prevent bin-locked files from becoming inaccessible,
the prototype restricts the locations where file-systems
can be both mounted and unmounted using the same
approach of a syscontrol which supports both read
and write operations. By writing “< /usr/lib” to a
syscontrol created by the prototype, the modified kernel
enforces that no file-system can be mounted or un-
mounted at /usr/lib, /usr, or /, meaning that all files
in /usr/lib continue to be accessible until the system is
rebooted. By writing “> /usr/lib”, no file-system can
be mounted on any sub-directory or parent directory of
/usr/lib. File-system root rotations are also not per-
mitted by the prototype kernel if the syscontrol restrict-
ing mounts has been written to. Although both the new
syscontrols support write operations, all writes to these
syscontrols are converted to appends by the modified
kernel and hence cannot be used to modify previous
entries written to the bin-locking related syscontrols.
Remounting partitions to enable and disable write access
must be allowed, as this functionality is used during the
shutdown process to avoid file-system corruption.

We currently see no easy method of avoiding the
list of mount location restrictions. Unmounting may (or
may not) be required on devices containing bin-locked
files (e.g., unmounting removable media). While it is
possible to prevent mounting a new file-system over bin-
locked files using a file-system flag (as discussed above),
whether to prevent file-system unmounts depends on
the environment.

4.3 Modifications to Executable Files
To bin-lock binary files, we used binary rewriting. We
created an application which would use one or more
signing keys to sign an existing binary, injecting into the
binary both the signatures and all the verification public
keys related to the signature (per the format of Figure
3). We chose not to use bsign [27], preferring to keep
the kernel code as simple as possible. ELF files are used
for both program executables and shared libraries – the
bin-locking approach covers both. The prototype signing
application signs binaries using the Digital Signature
Algorithm (DSA) [34], although this can be extended to
other signature formats. The modification of executables
is backwards compatible. Signed (i.e., bin-locked) exe-
cutables can be used seamlessly on a system which does
not understand bin-locking.

10

We modified the Debian package manager [35] to not
write out bin-locked binaries to temporary files during
the installation of the prototype system (since the tem-
porary bin-locked ELF file would be protected by the
modified kernel). Instead, the package manager writes
out the BIN-LOCK prefix followed by the signed file
(see §4.2). The binary rewriting application was used
along with several additional scripts to create a local
Debian 4.0 mirror [36] where every application binary
and library was bin-locked. Binaries created by install
scripts through install-time compilation or optimization
were not bin-locked in the system.

One element in the standard Debian boot process ini-
tially posed an issue for our bin-locking process. During
the boot process, the temporary initial RAM disk (a file-
system within RAM which stores files used early in the
boot process) is deleted because it is no longer necessary.
If this initial RAM disk contains binaries which are bin-
locked, the new kernel prevents the delete. To overcome
this, the modified kernel does not enforce bin-locking on
drives not associated with a physical device.

4.4 Bin-Locking on Developer Systems
Developers are not the target audience of bin-locking.
Here we discuss several developer features which cur-
rently remain enabled on all systems and undermine
the security of bin-locking. We propose limiting these
features on systems using bin-locking (e.g., end-user
desktops) in order to increase security. We believe that
typical end-users (as opposed to developers) do not
typically use these features.

1. UNIX ptrace hooks [37] are used by developers
to debug a running application. By allowing reads and
writes to a process memory space, arbitrary changes to
both data and code within the running application can be
made. To ensure bin-locked binaries are run unmodified,
ptrace access must be disabled for bin-locked binaries.

2. The use of custom builds by third parties is limited
(by bin-locking) to those verifiable using public keys in
the original binary. The modification of binaries by third
parties, however, is exactly the type of attack that bin-
locking aims to prevent. Bin-locking ensures the software
run by end-users is never modified by anyone other than
those who developed the software. Developers wishing
to switch between original software and custom builds
(e.g., during debugging) will not be able to take advan-
tage of the benefits of bin-locking for those binaries.

3. Preloaders such as LD_PRELOAD on Linux allow
additional libraries not specified in an executable to be
linked in at run-time. Pre-loaders provide a method
for modifying a binary at run-time. There are two al-
ternatives for preventing this from being exploited by
attackers. The first (and easiest) is to globally disable
LD_PRELOAD on non-developer machines (e.g., by ship-
ping a bin-locked /lib/ld-linux.so.2 not imple-
menting the feature). The second defence comes through
recognizing that LD_PRELOAD must be processed (indi-
rectly) by the executable during start-up. While most

applications leave the functionality intact (i.e., by call-
ing the default /lib/ld-linux.so.2), the application
developer can ship bin-locked binaries to end-users with
the feature disabled.

4.5 Protection Against Current Rootkits
To verify that the bin-locking system was able to defend
against rootkit malware, we attempted to install several
Linux rootkits.4 Linux rootkits can be grouped into two
categories. The first is those that use some method to
gain access to kernel memory, installing themselves in
the running kernel. These rootkits then operate at kernel
level, hiding their actions from even root processes. The
second category consists of rootkits that replace core
system binaries. These binaries are often used by the
administrator in examining a system. Both classes of
rootkits attempt to hide nefarious activities and pro-
cesses on a compromised system.

We selected six representative Linux rootkits, two
that modify the kernel and four that replace sys-
tem binaries. Both kernel-based rootkits (suckit2 and
mood-nt) failed to install because of disabled write
access to /dev/kmem. The mood-nt kernel based rootkit
which we tested also attempted and failed to replace
/bin/init (in order to re-initialize itself on system
boot); this replacement was denied by the modified ker-
nel. The four binary replacement rootkits (ARK 1.0.1,
cb-r00tkit, dica, and Linux Rootkit 5) were all de-
nied when attempting to replace core system programs
(e.g. ls, netstat, top, and ps). The bin-locking pro-
posal provided protection against the modification of
both application and system binaries. The fact that none
of the six rootkits were able to install is supporting
evidence of expected functionality of the bin-locking
system.

4.6 Effect on User Tasks
As partial evidence that the modified kernel and signed
executables are viable, all installed binaries and libraries
were bin-locked and kernel interfaces were locked down
(as discussed in §4.2.3) on a test system. The test system,
a desktop install running KDE (the graphical based K
Desktop Environment) was used to browse the web,
write e-mail, listen to music, and view video – all
with no noticed differences from an ordinary system. In
using the test system over the course of two weeks, no
application appeared to be broken by the enforcement of
bin-locking, and we found no problems. From the nature
of the modifications, we have no reason to anticipate that
major problems would be found through more thorough
testing. We did not encounter any scripts that attempted
to remove or optimize pre-existing binaries as part of the
package install process. While the home directory of the
test system was mounted over the network and worked

4. All Linux rootkits tested were from http://packetstormsecurity.
org/UNIX/penetration/rootkits/

http://packetstormsecurity.org/UNIX/penetration/rootkits/
http://packetstormsecurity.org/UNIX/penetration/rootkits/

11

without difficulty, we did not explicitly test bin-locking
enforcement on network-based file-systems.

4.7 Reboots

Because the prototype requires a reboot to delete or
move bin-locked files, the process of rebooting into a
kernel which does not enforce bin-locking protections
must be as user-friendly as possible. We used the stan-
dard GRUB [38] boot loader to provide an option to the
user as to whether or not to use the bin-locking enabled
kernel; the user must select one of the non-enforcing
kernels from the menu during boot. Once booted into an
alternate kernel, the user may delete and move any bin-
locked file. An open problem is how to persuade users to
normally use the kernel which enforces bin-locking. We
discuss an option for removing the reboot requirement
in §3.4.

4.8 Performance

While any performance impact of the proposed system
was imperceptible to the end-user, for precise perfor-
mance measurements we ran benchmark tests to quan-
tify the overhead of bin-locking on a Pentium 4 at
2.8GHz with 1G of RAM. First, consider all non-locked
files. Using the Perl benchmark library, we measured the
average increase in kernel time required to perform a
open, delete, and move operation on both non-ELF and
unsigned ELF files with an ext3 file-system. Over 25000
test runs – 10000 with a small (1.2K) file, 10000 with a
medium (32K) one, and 5000 with a large (5.3M) file –
the average increase in time to open for writing, and
move/delete both non-ELF and unsigned ELF files is
listed in Table 1. There was a 0.05% overhead in opening
any file for reading.

Operation Average Min Max

no
n-

EL
F Move/Delete 15.59% 13.83% 17.52%

6.0µs 3.0µs 7.0µs
Open for Write 34.84% 25.00% 38.24%

3.9µs 2.6µs 4.3µs

un
si

gn
ed

EL
F Move/Delete 29.15% 24.36% 41.91%

11.2µs 9.3µs 15.4µs
Open for Write 66.65% 57.14% 77.78%

7.7µs 6.7µs 9.4µs

TABLE 1
Overhead of file operations with bin-locking enabled.

While the percentage increases are high for opening
a file, the absolute time required to open a file remains
small. In the interest of retaining file-system compatibil-
ity with kernels not enabling bin-locking, we chose not to
optimize the overhead of moving, deleting, and opening
bin-locked files. By reserving one bit per file on the file-
system for indicating whether a file is bin-locked or not,
this overhead could be brought down to essentially 0%.

Second, the cost of replacing a bin-locked file is in-
creased by the time to perform a cryptographic hash
(thus linear in its length) and one DSA verification.

We emphasize that this cost is only occurred during
the install or upgrade of a bin-locked binary, not while
performing normal tasks (e.g., executing an application).

5 COMPARISON WITH RELATED APPROACHES

We first compare bin-locking with Google Android v2.0
[11], and then discuss work related specifically to bin-
locking (in §5.2) and key-locking (in §5.3).

5.1 Google Android

In parallel to our work (but subsequent to publication
of the preliminary design [1]), Google introduced a
signing approach [39] in the Android platform [11] with
similarities to key-locking. An application developed for
Android v2.0 is packaged and signed with a private key
created by the developer. As with key-locking, there is no
requirement for a public key infrastructure. Application
updates under Android are allowed if all verification
public keys in the new version are also in the installed
version of the package, and each verification public
key in the new version can be used to verify a digital
signature in the new version (i.e., m = n, nnew ≤ nold,
k is set dynamically such that k = mnew, and the set
of keys in the new package is a subset of keys in the
old). The approach of checking all verification public
keys as used in Android is necessary because of its use
of jarsigner [40] to perform the signing operation –
jarsigner does not include verification public keys in
the data protected by a digital signature (recall from §2
paragraph 4 that k is constrained such that k = nnew if
public keys are not included in signed data). Another
artifact of using jarsigner is that public keys cannot
be added to a package without the corresponding digital
signature of the package also being added. In contrast to
key-locking, the Android scheme precludes new public
keys being added during upgrade. While the bin-locking
implementation of key-locking signs individual binaries,
Android signs application packages. Each application
must be installed as a package, and is assigned into its
own separate directory by the Android OS. The OS keeps
track of application signatures, preventing applications
from overwriting files outside the assigned directory.
The Android approach protects all types of files, not
just application binaries. Backwards compatibility re-
quirements preclude bin-locking from assuming that all
data associated with an application is installed into the
same directory (e.g., configuration files are commonly
all stored in /etc and binaries stored in /usr/bin
on Linux [41]). The Android signing approach is a
customized solution for that platform but not suitable
in other environments because of the constraints it puts
on how and where applications are installed. Bin-locking
provides a more generic, configurable solution while pre-
serving backward compatibility with current file-system
layouts.

12

5.2 Bin-Locking Related Work

The rootkit-resistant disks proposal by Butler et al. [26]
provides protection for designated disk areas by requir-
ing that the user insert a hardware token every time
the corresponding area of the disk protected by that
token is to be updated. To protect every application
separately, a different hardware token would be used
for each application installed. In contrast, bin-locking
protects each application separately, allowing binaries to
be upgraded without the presence of a physical token.

Tripwire [42], [19] records cryptographic checksums
for designated files on a system to detect what files
are changed by malware (by comparing against the
current checksum). Read-only media [43] prevents any
change from being made to the drive while the system
is running, allowing the user to revert to a known-good
state by simply rebooting the system. In both systems,
security patches become troublesome to install (either a
new read-only media needs to be created, or all changes
need to be verified by the user). With Tripwire, the user
has the option of verifying that an application does not
overwrite core system binaries during install or upgrade;
the same is not the case when updating read-only media.
Tripwire does not prevent the modification of a file; it
detects any modifications afterwards.

Package managers such as dpkg allow signing the root
file in the package repository [36], which results in all
packages in the repository being protected against un-
detected modifications. The signature is checked before
any package install or upgrade by the package manager
using public key certificates stored on the client. While
public key certificates can be updated by the install of a
package, the approach differs from key-locking because a
single signature protects the entire repository, where key-
locking is potentially much finer-grained. Furthermore,
dpkg ties public key certificates to entities (typically, the
repository maintainers).

Related to the work of Butler et al. [26], SVFS [44] also
protects files on disk at the cost of running everything in
a virtual machine. Software updates and installs are not
addressed by SVFS. Strunk et al. [45] proposed logging
all file modifications for a period of time to assist in
recovery after malware infection. The approach does not
prevent binaries from being modified in the first place.
By combining this approach [45] with bin-locking, only
modifications to configuration files need to be logged,
since binaries can not be modified by user-level malware.

There have been many proposals for detecting mod-
ifications to binaries (in addition to Tripwire above).
Windows file protection (WFP) [20], [46] maintains a
database of specific files which are protected, along with
signatures on them. The list of files protected by WFP
is specified by Microsoft and focuses on core system
files. WFP is designed to protect against a non-malicious
end-user, preventing only accidental system modifica-
tion. Pennington et al. [47] proposed implementing an
intrusion detection system in the storage device to detect

suspicious modifications; as with previous approaches
[45], [19], their approach relies on detecting modifica-
tions after the fact. While WFP is capable of handling
updates, the other solutions [26], [44], [47], [45], [19], [43]
do not appear to directly support binary updates.

Apvrille et al. [7] presented DigSig, another approach
using signed binaries in protecting the system. A mod-
ified Linux kernel prevents binaries with invalid signa-
tures from being run (in contrast, bin-locking prevents
the modification). Under DigSig, all binaries installed
must be signed with the same key. While the use of
a single key may work for corporate environments de-
ploying DigSig, it is less well suited to decentralized
environments. DigSig relies on a knowledgeable user or
administrator to verify all updates to binary files (similar
to Tripwire) before signing them with the central key.

The signing approach in bin-locking also differs from
that of van Doorn et al. [8] (and indeed many other
signed-executable systems such as [48] and [49]). In these
systems, the installation (or running) of binaries is re-
stricted by whether or not the application is signed with
a trusted key. In contrast, bin-locking does not restrict the
addition of new executables (those with new file names)
onto the system and does not rely on any specific root
signature key being used, or external notions of trusted
keys, or on any centralized PKI.

In all the approaches described above (with the excep-
tion of that by Butler et al. [26] when using multiple to-
kens), it seems one common pitfall is that any application
performing an update or install will have permissions
sufficient to modify any other binary on the system.
Some proposed systems attempt to mitigate this threat
by assuming a vigilant and knowledgeable user will
verify all changes to binaries. They assume this user will
never be tricked into installing a Trojan application. We
believe that by differentiating between files originating
from different developers or organizations, bin-locking
can rely less on vigilant and knowledgeable users to
protect some parts of the system. All of the above
approaches except bin-locking treat upgrades the same
as new application installs.

While policy systems such as SELinux [50], [51] have
the capability to restrict system configuration actions,
the overhead of correctly configuring a policy for ev-
ery application (including every installer) makes this
approach unrealistic in many environments. Bin-locking
allows binaries to be protected based on who developed
(or created) them, a property not easily translated into
frameworks such as SELinux. While projects such as
DTE-enhanced UNIX [52] and XENIX [53] restrict the
privileges of root (reducing the risk of system binaries
being overwritten), installers (and even upgrades) are
still given full access to all binaries on disk.

The OpenBSD schg [54] and ext2 immutable [55] flags
are similar to bin-locking in that they prevent files from
being changed, moved, or deleted. These flags, however,
do not allow an application binary to be updated, re-
sulting in a system more akin to read-only media (see

13

above).
Sparkle5 allows developers to create signing keys,

using them to sign their applications without relying
on a central PKI. The approach authenticates updates
to applications by ensuring all updates are signed with
the same signing key as the initial version. While the
approach is similar to key-locking, Sparkle enforces
that only a single fixed signing key can be used per-
application (key-locking allows both the embedding of
multiple keys and key evolution).

5.3 Other Related Work
Digital Rights Management (DRM) [56] focuses on con-
trolling the distribution and usage of digital assets. Key-
locking, in contrast, is not concerned with the distribu-
tion of digital objects, but rather the updating of already-
existing copies of those digital objects.

SDSI/SPKI [57], [58] simplifies management of public
keys by treating the public keys as principals. Each
principal can make statements, requests, or even act
as a certification authority. In doing this, SDSI/SPKI
removes the reliance on a global key repository, but still
attempts to associate public keys with certificates (where
the DN is a local name [59]). In key-locking, there is no
attempt made to tie a verification public key to a digital
certificate. Instead, keys are trusted only for the limited
scope of replacing a digital object.

Code-signing involves verifying the author (code
source) before software is run [60]. Such an approach in-
volves authenticating the source, as well as determining
whether authorization to perform the requested actions
is given. While code-signing approaches can restrict
what the software can do while running (e.g., in Symbian
[61] and Blackberry [62]), tying a key to an entity results
in an approach distinct from key-locking. When applied
to installers, code-signing allows a user to verify the
source of the software they are about to install (and that
the software has not been modified since the vendor
signed it) – the same is true for package managers
[36]. Some systems maintain a cryptographic hash for
files installed, akin to those used by Tripwire (see §5.2);
but hashes alone are insufficient for tying two versions
of a binary to the same source. While the key-locking
approach can prevent digital objects modified during
distribution from being installed as an upgrade, we don’t
focus specifically on this problem as do Bellissimo et al.
[63].

6 SUMMARY

Key-locking allows fine-grained control over entities al-
lowed to replace a particular object. Key-locking can be
used to protect against arbitrary modification of appli-
cation binaries (as discussed in §3), and restrict package
updates (as discussed in §5.1). Key-locking can also be
used instead of usernames and passwords when pushing

5. http://sparkle.andymatuschak.org

new versions of binary objects to a central server hosting
digital objects created by users (as discussed in §2.7).

Our application of key-locking to application binaries
addresses a widespread problem: When binaries are
being installed, the current (almost universal) situation is
that the installer has write access to essentially the entire
file-system – far too coarse a granularity from a security
perspective. While bin-locking is not designed to protect
all files or address all malware-related problems (indeed,
a single solution to all such problems is unlikely to
ever be found), we believe the prototype implementation
validates the general approach and provides an impor-
tant mechanism to help limit the abilities of malware.
One aspect not widely addressed in the literature (to
our knowledge) is the ability to transparently handle
software application upgrades. With many applications
now receiving regular patches, dealing with upgrades in
a smooth and non-intrusive manner is important. Key-
locking provides a mechanism to enforce a separation
between binary files belonging to different applications;
even with privileges sufficient to install an application,
binary files belonging to one application cannot be modi-
fied by an application originating from a different source.

The bin-locking exemplar of key-locking consists of
a modified Linux kernel which restricts updates to
designated binaries. It also restricts writes to raw disk
sectors, drive mounting/unmounting, and write access
to kernel memory by user space processes. It includes
a utility which can create bin-locked binaries, inserting
both the digital signature and verification public keys.
Our prototype testing included key-locking every binary
in the Debian archive, creating and installing the new
packages (resulting in every application binary on the
system being key-locked).

ACKNOWLEDGEMENTS

We thank the anonymous referees whose comments
helped improve this work, and many individuals who
provided feedback on preliminary drafts of this paper.
The first author acknowledges NSERC for an NSERC
Discovery Grant and his Canada Research Chair in
Authentication and Computer Security. Partial funding
from NSERC ISSNet is also acknowledged.

REFERENCES

[1] G. Wurster and P. van Oorschot, “Self-signed executables: Re-
stricting replacement of program binaries by malware,” in Proc.
USENIX 2007 Workshop on Hot Topics in Security (HotSec).

[2] ——, “The developer is the enemy,” in Proc. 2008 Workshop on
New Security Paradigms, Sep 2008.

[3] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian,
“Flexible support for multiple access control policies,” ACM
Transactions on Database Systems, vol. 26, no. 2, pp. 214–260, Jun
2001.

[4] S. Garfinkel, G. Spafford, and A. Schwartz, Practical Unix &
Internet Security, 3rd ed. O’Reilly Media, Inc., Feb 2003, Chapter
5. Users, Groups, and the Superuser.

[5] D. Florêncio and C. Herley, “A large-scale study of web password
habits,” in Proc. 16th International Conference on World Wide Web,
2007, pp. 657–666.

http://sparkle.andymatuschak.org

14

[6] G. Wurster, “Security mechanisms and policy for mandatory
access control in computer systems,” Ph.D. dissertation, Carleton
University, 2010.

[7] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and V. Roy,
“Digsig: Run-time authentication of binaries at kernel level,” in
Proc. LISA ’04: 18th Systems Administration Conference, 2004, pp.
59–66.

[8] L. van Doorn, G. Ballintign, and W. A. Arbaugh, “Signed exe-
cutables for Linux,” Univ. of Maryland, Tech. Rep. CS-TR-4259,
2002.

[9] E. Skoudis and L. Zeltser, Malware: Fighting Malicious Code. Pren-
tice Hall PTR, 2004.

[10] D. Dittrich, ““root kits” and hiding files/directories/processes
after a break-in,” Web Page, Jan 2002, http://staff.washington.
edu/dittrich/misc/faqs/rootkits.faq.

[11] “Google Android,” Web site (viewed 28 Aug 2009), http://code.
google.com/android/.

[12] A. Baliga, P. Kamat, and L. Iftode, “Lurking in the shadows:
Identifying systemic threats to kernel data,” in Proc. 2007 IEEE
Symposium on Security and Privacy, May 2007, pp. 246–251.

[13] N. L. Petroni Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot
- a coprocessor-based kernel runtime integrity monitor,” in Proc.
13th USENIX Security Symposium, August 2004, pp. 179–194.

[14] Y.-M. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski,
“Detecting stealth software with strider ghostbuster,” in Proc.
International Conference on Dependable Systems and Networks (DSN-
DCCS), June 2005, pp. 368–377.

[15] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level
rootkits through binary analysis,” in Proc. 20th Annual Computer
Security Applications Conference (ACSAC’04). IEEE Computer
Society, 2004, pp. 91–100.

[16] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” in Proc. 2003 Network
and Distributed Systems Security Symposium. Internet Society,
February 2003, pp. 191–206.

[17] N. L. Petroni Jr., T. Fraser, A. Walters, and W. Arbaugh, “An
architecture for specification-based detection of semantic integrity
violations in kernel dynamic data,” in Proc. 15th USENIX Security
Symposium, August 2006, pp. 289–304.

[18] A. Baliga, X. Chen, and L. Iftode, “Paladin: Automated detection
and containment of rootkit attacks,” Rutgers Univ. Dpt. of Com-
puter Science, Tech. Rep. DCS-TR-593, January 2006.

[19] G. H. Kim and E. H. Spafford, “The design and implementation
of Tripwire: A file system integrity checker,” in ACM Conference
on Computer and Communications Security, 1994, pp. 18–29.

[20] Microsoft, “Description of the Windows file protection feature,”
Web Page, May 2007, http://support.microsoft.com/kb/222193.

[21] J. B. Grizzard, “Towards self-healing systems: Re-establishing
trust in compromised systems,” Ph.D. dissertation, Georgia In-
stitute of Technology, May 2006.

[22] “WriteFileEx function,” Web Page, Nov 2008, http://msdn.
microsoft.com/en-us/library/aa365748(VS.85).aspx.

[23] Digital Signatures for Kernel Modules on Systems Running Windows
Vista, Microsoft, Jul 2007, http://www.microsoft.com/whdc/
winlogo/drvsign/kmsigning.mspx.

[24] J. Rutkowska, “Subverting Vista kernel for fun and profit,”
Blackhat Presentation, August 2006, http://blackhat.com/
presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.

[25] Z. Ye, S. Smith, and D. Anthony, “Trusted paths for browsers,”
ACM Transactions on Information and System Security, vol. 8 (2), pp.
153–186, May 2005.

[26] K. R. B. Butler, S. McLaughlin, and P. D. McDaniel, “Rootkit-
resistant disks,” in Proc. 15th ACM Conference on Computer and
Communications Security, Oct 2008, pp. 403–415.

[27] “bsign,” Web site (viewed 22 Jan 2009), http://packages.debian.
org/lenny/bsign.

[28] D. Howells, “Modsign: Kernel module signing,” Patchset from
Linux Kernel Mailing List (LKML: 14 Feb 2007), Feb 2007, http:
//lkml.org/lkml/2007/2/14/164.

[29] Executable and Linkable Format (ELF), 1st ed., http://www.skyfree.
org/linux/references/ELF Format.pdf.

[30] A. van de Ven, “make /dev/kmem a config option,”
GIT Commit, Apr 2008, http://git.kernel.org/?p=
linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=
b781ecb6a379f155568ef7093e38c6c1d857fe53.

[31] ——, “x86: Introduce /dev/mem restrictions with a config
option,” GIT Commit, Apr 2008, http://git.kernel.org/

?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=
ae531c26c5c2a28ca1b35a75b39b3b256850f2c8.

[32] G. Kroah-Hartman, “Signed kernel modules,” Linux Journal, vol.
117, pp. 48–53, January 2004.

[33] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-
Hartman, “Linux security modules: General security support for
the Linux kernel,” in Proc. 11th USENIX Security Symposium, Aug
2002, pp. 17–31.

[34] ““Digital Signature Standard”, Federal Information Process-
ing Standards Publication 186,” U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, Virginia,
Tech. Rep., 1994.

[35] The Debian GNU/Linux FAQ: Chapter 8 - The Debian Package Man-
agement Tools, Jun 2008, http://www.debian.org/doc/FAQ/ch-
pkgtools.en.html.

[36] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in
the mirror: Attacks on package managers,” in Proc. 15th ACM
Conference on Computer and Communications Security, Oct 2008, pp.
565–574.

[37] P. Padala, “Playing with ptrace, part 1,” Linux Journal, vol. 103,
Nov 2002.

[38] Y. K. Okuji, “GNU GRUB,” Web Page, Dec 2008, http://www.
gnu.org/software/grub/.

[39] Google, “Andorid developer guide,” Developer Website, Jul
2009, http://developer.android.com/guide/publishing/app-
signing.html.

[40] S. Oaks, Java Security, 2nd ed. O’Reilly Media, Inc., May 2001,
Chapter 12. Digital Signatures.

[41] R. Russell, D. Quinlan, and C. Yeoh, Filesystem Hierarchy Standard,
2nd ed., Filesystem Hierarchy Standard Group, Jan 2004, http:
//www.pathname.com/fhs/.

[42] G. H. Kim and E. H. Spafford, “Experiences with Tripwire: Using
integrity checkers for intrusion detection,” Purdue Univ., Tech.
Rep. CSD-TR-93-071, 1993.

[43] “Knoppix Linux,” Web Page (accessed 15 Dec 2008), http://www.
knoppix.net.

[44] X. Zhao, K. Borders, and A. Prakash, “Towards protecting sensi-
tive files in a compromised system,” in Proc. Third IEEE Interna-
tional Security in Storage Workshop (SISW’05), 2005, pp. 21–28.

[45] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and G. Ganger,
“Self-securing storage: Protecting data in compromised systems,”
in Proc. 4th Symposium on Operating Systems Design and Implemen-
tation, Oct 2000.

[46] J. Collake, “Hacking Windows file protection,” Web Page, May
2007, http://www.bitsum.com/aboutwfp.asp.

[47] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Goodson, and
G. Ganger, “Storage-based intrusion detection: Watching storage
activity for suspicious behavior,” in Proc. 12th USENIX Security
Symposium, August 2003, pp. 137–151.

[48] M. Pozzo and T. Gray, “An approach to containing computer
viruses,” Comuters and Security, vol. 6(4), pp. 321–331, Aug 1987.

[49] G. Davida, Y. Desmedt, and B. Matt, “Defending systems against
viruses through cryptographic authentication,” in Proc. 1989 Sym-
posium on Security and Privacy, May 1989, pp. 312–318.

[50] P. Loscocco and S. Smalley, “Integrating flexible support for secu-
rity policies into the Linux operating system,” in Proc. FREENIX
’01, Jun 2001.

[51] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing integrity protection
in the SELinux example policy,” in Proc. 12th USENIX Security
Symposium, Aug 2003, pp. 59–74.

[52] K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac, D. L.
Sherman, and K. A. Oostendorp, “Confining root programs with
domain and type enforcement (DTE),” in Proc. 6th USENIX Secu-
rity Symposium, Jul 1996.

[53] “Trusted XENIX version 3.0 final evaluation report,” National
Computer Security Center, Tech. Rep. CSC-EPL-92-001, Apr 1992.

[54] Y. Korff, P. Hope, and B. Potter, Mastering FreeBSD and OpenBSD
Security. O’Reilly, 2005, Chapter 2.1.2.

[55] C. Tyler, Fedora Linux. O’Reilly, 2007, Chapter 8.4.
[56] Q. Liu, R. Safavi-Naini, and N. P. Sheppard, “Digital rights man-

agement for content distribution,” in Proc. Australasian Information
Security Workshop Conference on ACSW Frontiers, vol. 21, 2003, pp.
49–58.

[57] R. L. Rivest and B. Lampson, “A simple distributed secu-
rity infrastructure,” Oct 1996, http://people.csail.mit.edu/rivest/
sdsi11.html.

http://staff.washington.edu/dittrich/misc/faqs/rootkits.faq
http://staff.washington.edu/dittrich/misc/faqs/rootkits.faq
http://code.google.com/android/
http://code.google.com/android/
http://support.microsoft.com/kb/222193
http://msdn.microsoft.com/en-us/library/aa365748(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365748(VS.85).aspx
http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx
http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://packages.debian.org/lenny/bsign
http://packages.debian.org/lenny/bsign
http://lkml.org/lkml/2007/2/14/164
http://lkml.org/lkml/2007/2/14/164
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=b781ecb6a379f155568ef7093e38c6c1d857fe53
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=b781ecb6a379f155568ef7093e38c6c1d857fe53
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=b781ecb6a379f155568ef7093e38c6c1d857fe53
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=ae531c26c5c2a28ca1b35a75b39b3b256850f2c8
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=ae531c26c5c2a28ca1b35a75b39b3b256850f2c8
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6-stable.git;a=commit;h=ae531c26c5c2a28ca1b35a75b39b3b256850f2c8
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.knoppix.net
http://www.knoppix.net
http://www.bitsum.com/aboutwfp.asp
http://people.csail.mit.edu/rivest/sdsi11.html
http://people.csail.mit.edu/rivest/sdsi11.html

15

[58] C. Ellison, RFC 2692: SPKI Requirements, Sep 1999, http://www.
isi.edu/in-notes/rfc2692.txt.

[59] J. Y. Halpern and R. van der Meyden, “A logical reconstruction
of SPKI,” Journal of Computer Security, vol. 11, no. 4, pp. 581–613,
2003.

[60] A. D. Rubin and D. E. Geer Jr., “Mobile code security,” IEEE
Internet Computing, vol. 2, no. 6, pp. 30–34, Nov 1998.

[61] A. P. Heiner and N. Asokan, “Secure software installation in a

mobile environment,” in Poster, 3rd Symposium on Usable Privacy
and Security, 2007, pp. 155–156.

[62] BlackBerry Java Application: Fundamentals Guide (Version 5.0), Re-
search in Motion Limited, Apr 2010.

[63] A. Bellissimo, J. Burgess, and K. Fu, “Secure software updates:
Disappointments and new challenges,” in Proc. USENIX 2006
Workshop on Hot Topics in Security (HotSec).

http://www.isi.edu/in-notes/rfc2692.txt
http://www.isi.edu/in-notes/rfc2692.txt

	Introduction and Overview
	Generic Proposal: Restricting Updates by Key-Locking
	Key Evolution
	Using k of n public keys for signature verification
	Trust Model Assumptions (Generic)
	Beneficial Characteristics
	Limitations
	Extensions to Key-Locking
	Versioning
	Sub-Keying

	Applications of Key-Locking

	Exemplar of Key-Locking: Bin-Locking
	Trust Model Assumptions (Bin-Locking)
	Additional Benefits for Key-Locking of Binaries
	Limitations for Key-Locking of Binaries
	Kernel Modifications

	Bin-Locking Prototype Implementation and Evaluation
	Extensions to the ELF file format
	Kernel Modifications
	Detecting Bin-Locked files
	Verifying Digital Signatures
	Avenues for Kernel Modification
	Disabling Raw Disk Access
	Restricting Mounting

	Modifications to Executable Files
	Bin-Locking on Developer Systems
	Protection Against Current Rootkits
	Effect on User Tasks
	Reboots
	Performance

	Comparison with Related Approaches
	Google Android
	Bin-Locking Related Work
	Other Related Work

	Summary
	Acknowledgement
	References

