
A generic attack on hashing-based software
tamper resistance

By

Glenn Wurster

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario, Canada

April 2005

c©Copyright

Glenn Wurster, 2005

The undersigned hereby recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis,

A generic attack on hashing-based software tamper resistance

submitted by

Glenn Wurster

Dr. Douglas Howe

(Director, School of Computer Science)

Dr. Paul Van Oorschot

(Thesis Supervisor)

Carleton University

April 2005

Abstract

Self-hashing forms of software tamper resistance have been considered efficient in pro-

tecting the integrity of an application. Hashing allows a running application to quickly

determine whether the program code has been modified and respond accordingly.

Self-hashing relies on being able to accurately read the code of an application in

memory. In this thesis, we demonstrate that hash code contained within the program

being verified is vulnerable to attack. By using the modern processor’s ability to

separate code and data, self-hashing tamper resistance can be circumvented.

We describe several possible implementations of an attack in this thesis. We

have implemented one form of attack. All implementations are generic (i.e. they

only need to be implemented once to work on a wide range of applications) and

fast. Understanding work detailed in this thesis will help future tamper resistance

algorithms withstand our attack.

ii

Acknowledgements

The author wishes to thank the insightful feedback given by both Paul C. van

Oorschot and Anil Somayaji. As well, the author wishes to thank Tony White and

Stan Matwin for their input and assistance in defence of this thesis.

The author wishes to Canada’s National Sciences and Engineering Research Coun-

cil (NSERC) for their financial support through a PGS M scholarship. Also, Defence

Research and Development Canada (DRDC) for their additional financial support.

During the development of associated conference and journal papers, feedback

was received from a number of individuals. I thank David Lie for his constructive

comments, including a remark which motivated the attack in Section 4.2. We also

thank Mike Atallah, Clark Thomborson and his group for their comments.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction and Overview 1

2 Overview of Software Protection 5

2.1 Obfuscation . 8

2.2 Software Diversity . 10

2.3 Watermarking . 11

2.4 Software Tamper Resistance . 12

2.4.1 Remote Verification . 12

2.4.2 Hardware Assisted Software Tamper Resistance 17

2.4.3 Self-Checking Software Tamper Resistance 18

2.5 Defences for a Trusted End User . 20

2.6 Chapter Summary . 20

3 Background on Software Tamper Resistance 21

3.1 Hashing . 21

3.2 Protecting the Hashing Algorithm . 24

3.2.1 Aucsmith’s Integrity Verification Kernel (overview) 25

iv

CONTENTS v

3.2.2 Networked Hash Functions . 25

3.2.3 Obfuscation for Protecting Hashing Algorithms 29

3.3 Aucsmith’s Integrity Verification Kernel (details) 30

3.3.1 IVK Creation . 30

3.3.2 IVK Use . 34

3.4 Networks of Checksumming Code . 34

3.4.1 Testers . 35

3.4.2 Guards . 37

3.5 Chapter Summary . 38

4 The Attack against Integrity Self-Hashing 39

4.1 Summary of Applicability of Attack Variations to Processors 42

4.2 A Generic Attack Against Hashing on many Processors 43

4.3 Variations on the Attack . 49

4.3.1 Defeating Self-Checking on the UltraSparc 49

4.3.2 Defeating Self-Checking on the x86 52

4.3.3 Microcode Variation of Attack 56

4.3.4 Performance Monitoring . 57

4.4 Locating the Hashing code . 60

4.5 Chapter Summary . 61

5 Other Issues Related to the Attack 62

5.1 Setting up the Split Pages . 63

5.1.1 Extracting the Code Pages . 64

5.1.2 Notifying the OS of the Split Code Pages 65

5.1.3 Installing the Split Code Pages 66

5.2 Limitations of our Proof of Concept 67

CONTENTS vi

5.2.1 Additional Allocation of Executable Memory Regions 68

5.2.2 Page Swapping . 68

5.2.3 Extracting the Code Pages . 68

5.3 Chapter Summary . 69

6 Further Discussion and Concluding Remarks 70

6.1 The Mental Model of a Modern Processor 70

6.2 Noteworthy Features of our Attack 71

6.2.1 Difficulty of Detecting the Attack Code 71

6.2.2 Feasibility where Emulator-Based Attacks would Fail 72

6.2.3 Generic Attack Code . 73

6.2.4 Breadth of Variations . 73

6.3 Implications of the Attack . 73

6.3.1 Differential Attacks . 75

6.3.2 Processor Modifications Preventing an Attack 76

6.4 Concluding Remarks . 77

A Hardware Architecture Background 79

A.1 Page Table Translation . 80

A.2 TLBs (Translation Lookaside Buffers) 83

A.3 Page Swapping . 85

A.4 Access Controls on Memory . 86

A.5 Performance Monitoring . 87

B The UltraSparc Processor Attack Code 90

B.1 Kernel Source Code . 90

B.1.1 The data TLB Miss Interrupt Handler 91

CONTENTS vii

B.1.2 Tamper Resistance Attack Include File 93

B.1.3 Tamper Resistance Attack System Call and Initialization . . . 95

B.1.4 Small Modifications to Other Source Files 99

B.2 Application Wrapper . 101

List of Figures

2.1 Partial classification of software protection approaches 6

3.1 Dependency graph of hash functions in a web without cycles. 27

3.2 Dependency graph of hash functions in a web containing cycles. . . . 27

3.3 Flow of Control during the processing of an IVK 33

3.4 Positioning of the corrector value within the tester interval 36

4.1 Implementing a generic attack on processors with hardware TLB load. 46

4.2 Loading a page into the ITLB for a generic attack 47

4.3 Separation of virtual addresses for instruction and data fetch 51

4.4 Translation from virtual to physical addresses on the x86 53

4.5 Translation of a get using segment overrides 54

4.6 Splitting the flat memory model to allow a tamper resistance attack . 55

6.1 Possible differential of program versions where network tamper resis-

tance is used. 76

A.1 Translation of a Virtual Address into a Physical Address 80

A.2 Translation of a Linear Address into Physical Address through Paging 81

A.3 Page table entry format for the UltraSparc64 processor [77] 82

A.4 Virtual Address to Physical Address using a TLB 84

viii

List of Tables

3.1 x86 machine and assembly code for series sum algorithm 24

3.2 XOR shifting of cells in the IVK encryption/decryption algorithm . . 33

4.1 MMU implementations on different processors 43

4.2 Feasibility of our attack on each processor 43

4.3 Applicability of the attack of Section 4.2 49

4.4 Feasibility of a software TLB load attack on each processor 52

5.1 Sample program memory map based on ELF file information 64

A.1 Page table entry (PTE) format for the PowerPC processor 82

A.2 Separation of access control privileges for different page types 87

ix

List of Algorithms

2.1 Power Function with Oblivious Hash 15

3.1 Hash Function . 22

3.2 Calculate Sum of Series containing 1 to 100 23

4.1 TLB Miss Performance Counter Interrupts 59

5.1 Install Split Pages in an Application Address Space 67

A.1 Branch Prediction Performance Counter Interrupt 89

x

Chapter 1

Introduction and Overview

Software vendors, developers, administrators, and users require mechanisms to ensure

that their applications are not modified by unauthorized parties. Most commonly, this

need is satisfied through the use of technologies that compute checksums of program

code. For example, checksums are used in signed code systems such as Microsoft’s

Windows Update [56] to ensure the integrity and authenticity of downloaded programs

and patches. Checksums, in the form of one-way hashes, are also used to periodically

check on-disk code integrity in systems such as Tripwire [47].

While these mechanisms are useful for protecting against third-party attackers

and some kinds of malicious software, they are of little use to developers who wish

to protect their applications from modifications by users, administrators, or installed

malicious software. Tamper resistance attempts to prevent modifications to software.

There are numerous applications of tamper resistance, including:

1. An application developer attempting to employ copy-protection in an applica-

tion will protect the copy-protection algorithm with software tamper resistance

mechanisms.

2. A developer will employ tamper resistance in a game to prevent against mali-

1

2

cious users having unfair advantages during game play, thus destroying enter-

tainment value for standard users.

3. A distributed application developer will employ tamper resistance to prevent

against modification of a distributed algorithm (e.g. to alter rankings in a mas-

sively distributed network [5]).

4. A digital rights management application uses tamper resistance to protect

against modification allowing the extraction of digital content.

5. An application will employ tamper resistance to protect against undetected

infection by a worm or computer virus.

There are a number of approaches which have been proposed to prevent software

tampering (see Chapters 2, 3, and 6). Without the additional support from other

resources, however, we are limited to mechanisms that can be implemented within

the program itself.

One popular tamper-resistance strategy is to have a program hash itself (called

self-hashing in this thesis), so that the binary can detect modifications and respond.

Such self-hashing is the basis of Aucsmith’s original proposal for tamper resistant

software [12]; it is also the foundation of the work by Chang and Atallah [19] and

Horne et al. [39]. Because these proposed mechanisms involve little runtime overhead

and are easy to add to existing programs, they appear to be promising tools for

protecting software integrity; unfortunately, the work described in these and other

papers are based on a simple, yet flawed assumption (as we show in this thesis) that

hashed code is inseparable from executed code. Self-hashing algorithms inherently

assume that the instruction data returned by the processor as a result of a data read

by the program code is identical to the instruction data executed by the processor,

3

as a result of instruction fetches from the same (virtual) address. Application code

treated as data for hashing is not guaranteed to be identical to code executed by

the processor, as demonstrated in this thesis. Code and data reads can be efficiently

separated with the help of the microprocessor, allowing our powerful attack.

To improve efficiency, modern microprocessors distinguish between code and data

throughout the memory hierarchy. Much of this separation can only be observed

at the hardware level; with virtual memory, however, this distinction is apparent to

the operating system. In this thesis, we present an attack (with several different

instantiations) which uses the operating system to bypass self-hashing mechanisms

with no appreciable runtime overhead. This attack has the fundamental advantage

to the attacker that the self-hashing code need not be reverse engineered or disabled.

The attacker can (essentially) ignore the self-checking code, once other aspects of

the attack are put in place. The idea is for code which is read as data to remain

unchanged, while code which is read for execution is potentially modified by the

attacker. Since the self-hashing algorithm always reads code as data, it will receive

the unmodified application code.

The implication of our attack is that self-hashing cannot be trusted to provide

reliable results when under attack on most modern processors. Applications which

compute checksums (including digital signatures) of their own code segment are vul-

nerable to attack unless they employ additional alternate protection schemes. The

attack described in this thesis is generic, and does not rely on knowing the location

or structure of the hashing code.

The main contribution of this thesis is a new and powerful generic attack against

self-hashing mechanisms used to verify the integrity of application code. The attack

is outlined; and parts of implemented code are also included. The attack (and its

variations) is applicable on essentially all modern processors, including x86, Ultra-

4

Sparc, AMD, ARM64, PowerPC, and Alpha. On these processors, our attack applies

to all self-hashing algorithms currently known (to the best of our knowledge) in the

open literature. We discuss the implications of our attack, and also include a survey

and review of software protection and software tamper resistance algorithms.

The remainder of this thesis is structured as follows. Chapter 2 provides back-

ground material on software protection, including related work in the area of soft-

ware tamper resistance. Chapter 3 presents background on material required for

self-hashing software tamper resistance. It also discusses several proposed methods

for performing self-hashing software tamper resistance. Chapter 4 presents our new

and novel attack against self-hashing tamper resistance. It outlines several possible

implementations of our attack. Chapter 5 details additional software functionality

required to support the attack of Chapter 4. Chapter 6 discusses the effect of our

attack on self-hashing software tamper resistance. The discussion is centred around

the oversight of self-hashing algorithm design which allows for our attack, as well as

the power of our attack and the implications for software tamper resistance.

Chapter 2

Overview of Software Protection

In this chapter, we introduce software protection and its corresponding classes. In

understanding the effect of the attack introduced in this thesis (see Chapter 4), it is

important to have an overview of the area of software protection including software

tamper resistance. Software protection encompasses a number of different areas,

which are presented below. Section 2.1 discusses software obfuscation. Section 2.2

discusses software diversity, including fingerprinting. Section 2.3 discusses software

watermarking. Section 2.4 discusses software tamper resistance - the main topic

of discussion in this thesis. We explore the different methods of tamper resistance

starting with remote verification in Section 2.4.1. We then discuss the benefits of

hardware assistance for software tamper resistance in Section 2.4.2. We complete our

discussion of software tamper resistance by examining self-checking software tamper

resistance in Section 2.4.3. We briefly mention defences for a trusted end user in 2.5.

Tamper resistance falls under the class of digital security commonly referred to as

software protection. Software protection is concerned with making a program secure

against reverse engineering and modification [83]. This can be achieved through a

number of different methods. A partial classification of these methods is shown in

5

6

Figure 2.1. We concentrate on those aspects of software protection related to tamper

resistance, not expanding all areas of software protection into their respective sub-

classes.

Software Diversity

Tamper Resistance

Obfuscation

Remote Verification

Hash Functions Encryption

Software Protection

Checksumming

Hardware Assisted

Digital Signatures

Self Checking

Fingerprinting

Watermarking

Figure 2.1: Partial classification of software protection approaches

Software protection in general attempts to address the hostile host problem. The

hostile host problem assumes that the attacker has control of the machine for which

we wish to protect a running application [26]. Because the attacker has control of the

machine, there are many elements which cannot be trusted. These elements include

the input and output of the application (including the screen, keyboard, network).

Also, the application cannot trust content stored on either permanent storage (disk

drive) or memory. In the extreme case, the application cannot even trust the hardware

on which it is running. The attacker has a vast number of tools at their disposal for the

purposes of examining an application. These tools include debuggers, disassemblers,

and emulators.

Because of the incredible power of a hostile host, it has been proposed that soft-

ware obfuscation is impossible [14]. This depends heavily on the precise definition

7

and theoretical model of “obfuscation” that one has in mind, and indeed, the work of

Barak et al. [14] is typically mis-cited and mis-quoted. While protecting an applica-

tion forever against an attacker with unlimited resources may be impossible, software

obfuscation, and more generally, software protection mechanisms can substantially

increase the workload of the attacker in one form or another [22].

The hostile host problem is in stark contrast to the hostile client problem [70].

The hostile client problem appears to be an easier problem to solve and indeed vir-

tual machines such as the Java Virtual Machine do quite well at protecting web

applications from affecting the host. Often, the approach used is sandboxing.

There are other problems in digital security which seemingly bridge the problem

space of the hostile host and hostile client problem. Applications such as Tripwire [47]

are designed to detect against attackers who have managed to elevate their privileges

on the system (see Section 2.5). The attacker, in the extreme case, can take complete

control of the system, meaning that detecting malicious changes to the applications

operating environment amounts to detecting a malicious host. Programs that attempt

to verify the integrity of the system therefore could themselves benefit from software

protection mechanisms. Integrity checkers do have one distinct difference from the

standard hostile host problem. The user physically sitting at the computer usually

can be trusted, and therefore elements outside the realm of control of the current

system can be trusted. One example of using this hardware access is physically

removing the hard drive of a possibly compromised computer and checking it with

another computer. This technique is commonly used in forensic analysis by security

professionals to detect changes to the file system [16]. An application running on a

potentially hostile host does not have this functionality available.

2.1. Obfuscation 8

2.1 Obfuscation

Obfuscation for software protection is useful in several areas. Obfuscation attempts

to make the attackers job of understanding an application infeasible by protecting

primarily against static analysis. Obfuscation gains its strength by combining a num-

ber of heuristics and algorithms which are designed to hide the true purpose and

function of the machine language code (see recent surveys [26, 83]). This hinders the

attacker’s ability to gain a high level understanding of program flow. The high level

understanding is useful in extracting critical algorithms or sections of code from an

application (for use in applications the attacker may be developing). A high level of

understanding is also useful when the attacker wishes to modify the application for

their own gain (e.g. disabling copy protection on digital rights management programs

to allow distribution of copyrighted material). Through the use of strong obfuscation

techniques, intelligent software modification is not possible. Goto et al. [36] propose a

quantitative approach to measuring the difficulty of understanding a section of code.

Obfuscation techniques fall into several categories [24]:

1. Control-Flow Transformations concentrate on the flow of instructions as

the program is executed. There are numerous different methods employed in

order to hide the purpose of a section of code, as well as how it interacts with

the rest of the application.

2. Data Transformations attempt to hide both static and dynamic data which

may be used during the running of the application. Data can split up and

distributed throughout the application. Data can also be encrypted or otherwise

encoded to hide the true contents.

3. Layout Obfuscation is focused on the representation of program source. For

2.1. Obfuscation 9

programs which are run under an interpreter, this is especially important. These

programs are distributed in source form. The potential obfuscations that can be

done to the source include identifier mangling, removal of developer comments,

and formatting changes.

4. Preventative Transformations focus on the shortcomings of current anal-

ysis tools. These tools include disassemblers, emulators, and debuggers. By

thwarting methods that tools use to analyze software, the tools are less useful

in analyzing obfuscated applications (e.g. thwarting breakpoints in a debugger

by modifying the debugging interrupt during execution).

Most good obfuscation techniques attempt to rely on NP-hard problems as the

basis for their strength. Chenxi Wang’s Ph.D. thesis (see [84]) provided some ground-

breaking work on the topic of obfuscation and NP-hard problems. While NP-hard1

problems are believed to be hard, there are a few potential issues with the assumption.

• Although the general form of an NP-hard problem may be hard to solve, it is

often found that specific subsets or versions of the problem are actually quite

easy to solve. One good example of this is the travelling salesman problem

(TSP). In theory, this problem is NP-complete however a number of heuristics

have been developed which are relatively good at solving the problem [44].

When creating an instance of an NP-hard problem for use in obfuscation, it

must be verified that the specific instance is indeed hard to solve.

• Although NP-complete problems are believed to be hard, it has not been proved

that P 6= NP .

1NP-hard problems are at least as hard as NP-complete problems. NP-complete problems are
contained within the class of NP problems. P problems are also in the class of NP problems, but
the intersection of P and NP-complete is empty (a problem cannot be both P and NP-complete).
This all assumes of course that P 6=NP.

2.2. Software Diversity 10

Research in the area of obfuscation is ongoing. One issue that complicates research

in the current obfuscation community is the potential for business opportunities.

Often, research is not released to the academic community (but instead turns into

a business venture, with propriety algorithms guarded as trade secrets). Similar to

the beginnings of cryptography, where encryption was done on a security-through-

obscurity basis, many obfuscation algorithms may not be publicly known. Only with

time and scrutiny will the good obfuscation algorithms stand and the poor ones be

broken. Closed research which turns into a business venture lacks the benefit of peer

review. It is hard to determine whether these businesses are built on good research.

2.2 Software Diversity

Most often, all copies of a specific application are made to look identical. The appli-

cation is compiled once from pristine source and that compiled version is copied onto

the distribution media. All customers who purchase the software product receive the

same bit string encoding which is the application (variations in licencing are accounted

for with licence keys). In every copy of the application being identical, an attacker

needs only break one copy of the application and distribute their break in order for

all copies to be circumvented. Often, the crack itself can be distributed as a patch

to the application, being much smaller than a complete copy. If software diversity

was employed, it may be infeasible for the attacker to create a generic patch which

can be applied to all systems running the application. This use of software diversity

is very similar to that used to protect against wide exploitation of vulnerable code

in protecting hosts against attack [32]. Instead of the attacker distributing a patch,

they would have to distribute their entire copy of the application. By removing the

ability to create a small generic patch against all copies of an application, the costs

2.3. Watermarking 11

of distributing a “cracked” application increase dramatically (e.g. a crack disabling a

check for the original CD in the drive can no longer be distributed simply as a patch

to the original application).

Related to software diversity is fingerprinting [26, 65]. In our previous example,

fingerprinting could be used to track the source of the attacked application. Finger-

printing is one form of software diversity which can be employed by an application

developer, allowing them to track each copy of an application. This allows the com-

pany developing an application to pinpoint the copy of their application the attacker

used to develop a crack. Legal action may then be possible against the attacker, if the

attacker can be identified or located. Because of the legal recourse possible through

fingerprinting, it has been proposed as a technique to deter software piracy (see [4]).

2.3 Watermarking

In stark contrast to other forms of software protection, software watermarking is con-

cerned with tracking where a piece of software goes [23]. Software watermarking does

not distinguish between different copies of the same application. An application may

contain intellectual property or trade secrets that the developer wants to protect [67].

This intellectual property may be in the form of an algorithm or library. By em-

bedding a watermark into the application, the company may be able to demonstrate

legally that the application or content is their property. Watermarking is therefore

most often used to protect software through legal methods. In order to determine who

distributed the software illegally, the company would additionally use fingerprinting

(as discussed above).

2.4. Software Tamper Resistance 12

2.4 Software Tamper Resistance

While software obfuscation attempts to protect against an attacker being able to

understand the machine level code, tamper resistance attempts to protect against

modification. Tamper resistance is similar to error detection methods used in data

transmission. Many different algorithms have been proposed and presented to deal

with transmission errors, including those in networks, media, and even internal buses

within a computer. Cyclic Redundancy Checks (CRCs) are often used as a method of

detecting transmission errors. Tamper resistance is similar in that it tries to detect

changes in a stream of bits (the stream of bits being the program). The difference,

however, is that tamper resistance attempts to detect potentially malicious modifica-

tions, while error detection methods do not. Tamper resistance algorithms must be

more robust against attack, but can also rely on more complex functionality present

in computer systems.

2.4.1 Remote Verification

One method of doing tamper resistance is through the use of remote verification. If

program A is to be protected against tampering, another program, B is used to verify

the integrity of program A. B can either be located on the same computer system as

A, or can be remote. Several methods have been proposed for tamper resistance that

use remote verification.

Trusted Computing Systems

Trusted computing systems such as NGSCB [63, 80] have been proposed as one

method for protecting programs against tampering. A core aspect of this complex

system is similar to current digital signature schemes used for downloaded content.

2.4. Software Tamper Resistance 13

The digital signature of an application binary is verified before running. If the digital

signature does not verify, the system refuses to run the application. The trusted com-

puting base is assumed to compute the digital signature and correctly verify whether

the application has been modified. Within a hostile host environment, trust in the

operating system is established through a secure bootstrapping process [8] originat-

ing in the hardware of the machine. Application developers can rely on the trusted

system to prevent a modified binary from running. The work in this thesis assumes

an untrusted kernel, and hence the attacks of Chapter 4 cannot be applied within a

trusted computing base. Many papers have been written on the subject of trusted

computing, including recent works by Lie et al. (see [51]). A trusted computing plat-

form has been used in a number of areas, including policy enforcement for remote

access (see [69]).

Redundant Computation

Redundant computation is another alternate form of verification. It involves the same

calculation being performed at least twice. By comparing the answer of multiple runs

of the computation, incorrect results are detected. This technique is used in large

distributed computation environments, like BOINC [5] (the system currently used

for SETI@Home [6] among others). In large distributed environments often all users

cannot be trusted. Increasing redundancy decreases the chance of undetected errors.

Independently Verifying Computations

Independently verifying computations is very similar to redundant computation, with

the exception that one instance of the application (or important components of it) is

protected against modification. This instance usually remains in a computing envi-

ronment controlled by the application developer. A computation is done in parallel

2.4. Software Tamper Resistance 14

on both the trusted and untrusted instance of the application. Results from the un-

trusted copy of the application are verified by the server, being compared against the

results from the trusted instance of the application.

SWATT [71] has been proposed as a method for external software to verify the

integrity of software on an embedded device. Other recent research [69, 17] proposes a

method, built using a trusted platform module [79], to verify client integrity properties

in order to support client policy enforcement before allowing clients (remote) access

to enterprise services.

Several methods for verifying the integrity of an application using external third

parties have been developed. These external third parties can check various aspects

of the application. Some external third parties check side-effects of a computation

(as described in Section 2.4.1). Other techniques also use the external authority to

determine what a correct hash result should be. Specific techniques include [45, 21, 38]

and are discussed further in Section 2.4.1. Often, the authority will submit a challenge

to the host. The host, in order to be considered secure, must submit a correct solution

within a limited time frame. The challenge is usually such that there is insufficient

time to construct a correct response in the presence of program modifications.

Research is ongoing into techniques for remote authentication (e.g. see [45, 72, 46],

also [17]). Because of the use of non-cryptographic hashing in R. Kennell and L.

Jamiesons work, and it’s similarity to work presented in this thesis, we describe it in

more detail in Section 2.4.1.

Self-Checking Code

Y. Chen et al. [20] document an approach using what they call oblivious hashing.

Although difficult to determine from the paper, oblivious hashing appears to refer to

program code generating a hash alongside standard computation. The execution trace

of the program is tracked using the hash value – an incorrect execution trace will result

2.4. Software Tamper Resistance 15

in an incorrect hash value. An example of this is shown in Algorithm 2.1. Although

the algorithm is not secure against attack in its present form, it demonstrates a sample

implementation of their algorithm based on our understanding.

Algorithm 2.1 Power Function with Oblivious Hash

1: procedure Power(b, e)
2: r ← 1
3: h ← b ⊕ e

4: for i = 1 → e do
5: r ← rb

6: h ← 8h ⊕ r

7: end for
8: return r

9: end procedure

In Algorithm 2.1, the function is to compute be. This is done through a recursive

loop over line 5. In addition to computing the resulting value, however, the function

also calculates a value h in line 6. This hash value can be used as a good indication

of whether the algorithm performed accurately. As an example, if the function was

run with b = 2, e = 4 then the return value r would be 16 and h would be 0x6550.

If the code was modified to compute r incorrectly, then it is likely that h would

also be modified as h relies on the correct computation of r. Although their paper

documents the use of oblivious hashing in a local software tamper resistance setting,

the data dependence of the hash results in additional complexity not discussed in

their paper. The paper also suggests that oblivious hashing is an “ideal fit” for

remote code authentication. An external authority can be used to determine what

the correct hash result should be, since it can do a similar computation using the

same data values. The resulting hash value would be the same as that returned by

an unmodified system.

In order to insert the oblivious hashing code into the application, they examine

the parse tree of an application during compilation. They modify the parse tree in

2.4. Software Tamper Resistance 16

order to add additional instructions which compute the hash value.

The aspect of self-checking has been examined in other areas of computer science

as well [7]. Self-checking programs should be able to detect infection of themselves by

a virus (which is useful for a virus scanner). Self-checking is also used in applications

for which safety is critical [66, 78]. These applications include medical equipment,

aviation, and control systems for applications such as nuclear reactors.

Establishing the Genuinity of Remote Computer Systems

R. Kennell and L. Jamieson [45] present checksumming as a potential method for

verifying the genuinity (i.e. that an authorized kernel is running on physical hard-

ware) of a remote computer system. Their work relies on kernel level control by the

checksumming code. A Cyclic Redundancy Code (CRC) checksum (see Section 3.2.2)

of the kernel’s instruction address space (along with some relatively static data) is

computed and it is tested (to some degree of assurance) that the code is positioned

correctly in memory and running on a physical processor. The checksum is computed

using operations that are difficult to simulate quickly and completely in an emulator.

It is worth exploring, however, how the checksum is made to depend on the loca-

tion of the code, as well as the specific processor. R. Kennell and L. Jamieson leverage

the additional functionality presented by modern processors. The instruction pointer

is inserted as part of the checksum to verify the correct position of code. Attributes of

the specific processor are incorporated into the checksum through examining counters

which exist on the Pentium and more recent processors. These counters are capable of

tracking events which are control flow sensitive and processor specific. These events

include TLB misses, read and writes from memory, instructions executed, branches

taken/predicted, pipeline stalls and other specific elements [41] (see Appendix A).

Performance counters are only available in supervisor mode, and therefore cannot be

observed by an application without assistance from the operating system.

2.4. Software Tamper Resistance 17

The genuinity test described in [45] relies on the ability to manipulate the page

table and run within the kernel (so that they can access performance counters).

Because of their kernel level control of the page table and associated elements, the

attack described in this thesis (see Chapter 4) is not applicable to their system. Our

current attack code cannot co-exist as they directly manipulate the kernel memory and

CPU registers. An alternate attack to their approach has been proposed [72] which

attempts to hide from the checksumming code. The attack does this by modifying

the performance counters.

Since publication of this attack against genuinity, a rebuttal from the original au-

thors (see [46]) attempts to clarify the original algorithm and comes to the conclusion

that the attack against genuinity as described in [72] will not succeed.

2.4.2 Hardware Assisted Software Tamper Resistance

In contrast to using additional software to verify the authenticity of software, hard-

ware approaches have also been proposed. Hardware assisted methods attempt to

limit the user’s control over their system, and hence restrict the power of the attacker

in a hostile host system. With the introduction of additional hardware, the ability of

the attacker to exploit software applications can be reduced. Hardware is assumed to

be secure against attack by all but the most determined attacker. Various hardware

approaches to solving the software protection problem have been proposed.

Secure processors add additional functionality to the processor for the purposes

of protecting applications (see [74, 80, 37]). These secure co-processors have been

proposed for use in such applications as NGSCB [63]. By assuming trusted hardware,

a trusted operating system can be loaded which in turn protects the system against

malicious modifications to protected applications. Trusted hardware is not widely

deployed currently, leading to problems. Other forms of trusted hardware such as

2.4. Software Tamper Resistance 18

AEGIS [75, 8] “provide multiple mistrusting processes with environments such as

those described above, assuming untrusted external memory.” The AEGIS processor

presents an entirely new processor architecture to applications. The AEGIS processor

currently seems to be only a research project.

Many of these approaches for securing the hardware also focus on the memory bus.

Since the memory for a computer system is attached to a bus, attackers can read and

modify memory values as they travel along the bus [40]. While most attackers do

not have the necessary skills to examine the bus directly, there are hardware modules

which allow access. These modules often come in the form of cards which can be

installed into the computer [82]. It may be entirely possible to develop a hardware

card which interfaces with memory directly in hardware (the design of such a card is

not discussed in this thesis). To combat this, checksumming or encrypting the main

memory has been proposed [34].

Preventing read access to programs has also been proposed as a method for pre-

venting tampering. In order to tamper with a program, the attacker must first be able

to obtain a copy of the application. By employing the use of execute-only memory

[50, 49] the stream of bytes composing the application can be kept secret. Appli-

cations protected with execute-only memory cannot be distributed using currently

available methods.

Secure hardware including related software support is not currently widely de-

ployed in general purpose systems. Because of the lack of complete support for secure

hardware, it is currently not viewed as a suitable mass-market solution.

2.4.3 Self-Checking Software Tamper Resistance

In stark contrast to the other methods of tamper resistance, self-checking tamper

resistance does not rely on the existence of resources outside the application. The

2.4. Software Tamper Resistance 19

mechanism, instead, attempts to perform tamper resistance without the aid of ex-

ternal resources. The code for detecting and dealing with tampering is contained

directly in the application which is distributed. There are several common methods

for performing tamper resistance within the application.

Redundant Computation

Similar to Section 2.4.1, a computation is performed multiple times. All results

are checked against each other to reveal modifications. If even one result is different

from the others, the application has been modified. Each instance of the algorithm

calculating the result can be obscured in a different manner, making modification

difficult [24].

Hash Functions

The use of hash functions for tamper resistance is described in Section 3.1.

Encryption

Encryption for tamper resistance relies on the fact that the processor execut-

ing an application only ever sees small sections of the program at any given time.

Those sections of an application not being actively used by the processor can be en-

crypted. Since most sections of an application can remain encrypted at any point

in time, it becomes difficult for an attacker to make a modification which results in

valid machine-language code. By modifying an encrypted stream of bytes, often the

resulting code after decryption is invalid, causing the application to crash or halt.

Alternate forms of protecting an application through encryption involve the use of

a virtual machine built into the application. Called table interpretation (see [25]), the

virtual machine reads program bytes and executes corresponding machine language

instructions. The program bytes can be obfuscated, encrypted, and perform different

operations than what the underlying processor allows [24]. The Integrity Verifica-

tion Kernel (IVK) in Aucsmith’s work [12] is one example of using encryption as a

2.5. Defences for a Trusted End User 20

protection mechanism.

2.5 Defences for a Trusted End User

There are additional methods for software protection when a trusted end user is

assumed. A trusted end-user is assumed in the case of protecting against a system

being compromised by a remote hostile attacker. When the attacker is not local, other

forms of software integrity verification can be used, including programs like Tripwire

[47], which attempt to protect the integrity of a file system against malicious intruders.

Integrity verification at the level of Tripwire assumes that the operator is trusted to

read and act on the verification results appropriately. Other recent proposals include

a co-processor based kernel runtime integrity monitor [61]. These mechanisms mainly

attempt to detect a compromise on a system level, and do not focus on the ability to

prevent modification of a single application binary.

2.6 Chapter Summary

In this chapter we introduced software protection, including the areas of obfuscation,

diversity, watermarking, and tamper resistance. We then explored the area of soft-

ware tamper resistance, including such areas as remote verification, hardware assisted

tamper resistance, and self-checking. The algorithms described in this chapter are not

believed to be vulnerable to the attack described in this thesis. In the next chapter

we will explore self-hashing tamper resistance algorithms that pertain directly to our

attack of Chapter 4.

Chapter 3

Background on Software Tamper

Resistance

Of the most interest in this thesis are algorithms employing self-hashing for the pur-

poses of tamper resistance. Software tamper resistance algorithms which use self-

hashing are vulnerable to the attack described in this thesis. In order to gain a

proper understanding of papers involving self-hashing software tamper resistance, we

must explore types of hashing and how they relates to self-hashing. We then pro-

ceed to explore several software tamper resistance algorithms related to self-hashing

software tamper resistance.

3.1 Hashing

A hash function is defined according to the Handbook of Applied Cryptography [55]

as a function h which has, as a minimum, the following two properties:

1. compression h maps an input x of arbitrary finite bit length, to an output

h(x) of fixed bit length n.

21

3.1. Hashing 22

2. ease of computation given h and an input x, h(x) is easy to compute.

When a hash function is used in digital signatures and other applications which

require it to be cryptographically secure, a one way hash function is used. A one way

hash function has the additional properties that it is preimage and second preimage

resistance. These properties are defined as follows [55]:

1. Preimage resistance for essentially all pre-specified outputs, it is computa-

tionally infeasible to find any input which hashes to that output, i.e., to find any

preimage x0 such that h(x0) = y when given any y for which a corresponding

input is not known.

2. Second preimage resistance it is computationally infeasible to find any sec-

ond input which has the same output as any specified input, i.e., given x, to

find a second preimage x0 6= x such that h(x) = h(x0).

For the purposes of this thesis, the part that concerns us is how the hash value is

calculated. We assume all hash functions calculate the output hash value through the

general steps shown in Algorithm 3.1 (we ignore padding, length-coding and other

additional features used for strengthening the hash):

Algorithm 3.1 Hash Function

1: procedure Hash(s)
2: h ← IV

3: for i = 0 → num portions(s) do . num portions ≡ # of segments in s

4: h ← combine(h, s[i])
5: end for
6: return h

7: end procedure

The value of IV (the pre-defined initial value) and the exact functioning of

combine() are dependant on the exact hash function being used. At each step in

3.1. Hashing 23

the algorithm, the value of s[i] (i.e. the next portion of the input string to be hashed)

is read and combined with the intermediate hash result h (See Algorithm 3.1 line 4).

When using hashing for tamper resistance, the important parts of the algorithm

include the actual functioning of the hashing algorithm (including details of the

combine() function), as well as the resulting value. It is assumed that the attacker

can cause the input to the hash function to change, since the attacker has control of

the program code.

To see how the hash function works to protect code, we take the following sim-

plified example: Say we have a function which calculates the sum of the numbers

1 through 100 (for the purposes of this example we ignore the formula n(n+1)
2

). An

implementation of the function may look as shown in Algorithm 3.2:

Algorithm 3.2 Calculate Sum of Series containing 1 to 100

1: procedure calc

2: t ← 0
3: for i = 1 → 100 do
4: t ← t + i

5: end for
6: return t

7: end procedure

In order to protect this function against modification, we must be able to detect

changes. Self-hashing software tamper resistance would compute a hash of the ma-

chine code representing algorithm 3.2. When the function is compiled on the x86

processor [43], we may get the sequence of instructions as shown in Table 3.1

In using hashing for tamper resistance, machine code bytes of a particular section

of code are hashed dynamically (i.e. during program execution) to come up with a

hash value. It can be checked against a known good value (a trusted copy of which is

assumed to be available for comparison), or used in a critical computation within the

application. For the bit string consisting of the machine code in Table 3.1 the SHA1

3.2. Protecting the Hashing Algorithm 24

Machine Code Assembly Instruction
55 push %ebp

31 c0 xor %eax, %eax

89 e5 mov %esp, %ebp

31 d2 xor %edx, %edx

89 f6 mov %esi, %esi

8d bc 27 00 00 00 00 lea 0x0(%edi), %edi

01 d0 add %edx, %eax

42 inc %edx

83 fa 64 cmp $0x64, %edx

7e f8 le <calc+0x10>

5d pop %ebp

c3 ret

Table 3.1: x86 machine and assembly code for series sum algorithm

[30] hash value is 319f0bb93e17b7efdc13f5b07f71993a0485a996. Because SHA1 is

believed to be cryptographically secure in the sense of being second preimage resistant,

even if an attacker has access to the application, they will not be able to modify the

machine code bit-string of Table 3.1 in such a way that its hash value remains the

same. This is important for tamper resistance, as we are trying to protect the integrity

of the binary code.

As long as the hash function is correctly computing the result of machine code,

and the integrity of the test value to which it is compared is guaranteed, it is expected

to detect modifications to the code. Hashing is therefore used in tamper resistance

as a convenient method to protect against modifications by an attacker.

3.2 Protecting the Hashing Algorithm

When distributing an application there are other aspects of hashing to be considered

for it to be secure against attack. While cryptography concentrates primarily on

the computing of the hash value there are other factors to consider when the hash

3.2. Protecting the Hashing Algorithm 25

function is in the hands of the attacker.

In current application deployment scenarios, the attacker (e.g. typical end user)

always has access to the machine code of the application. He is therefore able to

modify it as he wishes. The hash function and resulting hash value are stored within

the application, and are therefore vulnerable to attack. The hash function protects the

rest of the application from being modified, but the hash function and predetermined

hash value must also be protected.

There have been at least two methods proposed for the protection of the hash

algorithm and predetermined hash value. The first is through an Integrity Verification

Kernel [12] as proposed by Aucsmith.

3.2.1 Aucsmith’s Integrity Verification Kernel (overview)

Aucsmith [12] proposes that an Integrity Verification Kernel (IVK) can be installed

in an application to protect against application modifications by an attacker. This

IVK contains both the hash function and a known good hash value of the application

in question which has been computed at compile time. The hash value is computed

through a cryptographically secure manner, and so in order for the application to

have guaranteed integrity, the IVK must be strong against attack. The IVK attempts

to protect the hash function and value through a sophisticated series of protection

mechanisms. The structure and operation of the IVK is discussed more in Section

3.3

3.2.2 Networked Hash Functions

Another common way of protecting the hashing algorithm is through the use of a

network of hashing functions, all working together. Since the hash function itself is

3.2. Protecting the Hashing Algorithm 26

just a string of machine language instructions, the string of bytes corresponding to

the hash function can itself be hashed. The same holds true for the predetermined

hash value, which itself is a string of bytes. The resulting overview of the program

has the appearance of an intricate web, with both hash functions and their input

regions spaced throughout the range of the application address space. To see how

this applies to tamper resistance, we first define the following:

Definition 1. A hash function instance h(x) = y which takes as input a string x and

should produce output y (if the application has not been modified) is said to depend

on hash function instance h1(x1) = y1 if any part of the machine code describing h1

or any part of the resulting y1 is contained in the string x.

If either h1 or y1 is modified in attacking an application, it follows that h or y

must also be modified in order for the change to go undetected. Furthermore, if

there exists another hash function instance h2 which depends on h then h2 must also

be modified. This creates an expanding web where all functions either directly or

indirectly depending on h1 must be modified in order for an application modification

to go undetected.

There is one small caveat in creating a web of hash function instances. In order

for every hash function instance to be protected, the graphical representation of the

instance dependencies must have a cycle. If no cycle exists, then at least one hash

function instance would be unprotected. The lack of a cycle in a graph results in a

forest.1 At the root of each tree would be one hash function instance which is not

depended upon by any other instance. This is illustrated in Figure 3.1. h depending

on h1 is illustrated through h → h1. A hash function instance h1 is not depended

upon if the number of incident edges (i.e. its in-degree) is 0.

1A graph composed of one or more trees is called a forest in graph theory.

3.2. Protecting the Hashing Algorithm 27

Figure 3.1: Dependency graph of hash functions in a web without cycles.

In Figure 3.1, there are several hash function instances which are not depended

upon (denoted by grey verticies). These hash functions instances are therefore unpro-

tected and vulnerable to attack. In order to close the hole, we must introduce cycles

into the graph. Figure 3.2 illustrates this. Every vertex in the graph has at least one

incoming edge, denoting a dependence on the node. To further strengthen the web,

the graph should be connected (there should exist a path of dependence from x to y

for every instance of a hash function x and y in the graph).

Figure 3.2: Dependency graph of hash functions in a web containing cycles.

If every node in the graph has at least one incoming edge, there must be a directed

cycle in the graph. The proof of this is as follows [33]:

Proof. Let P = v1v2, . . . , vk−1vk be a path in a directed graph D with a maximum

number of edges. Since each vertex vi in D has at least one incoming edge there

is an edge wv1. It follows from the choice of P that w is a node of P (w = vi for

3.2. Protecting the Hashing Algorithm 28

some i ∈ {2, . . . , k}, otherwise there would be a longer path P ′ = w, P . Therefore

v1v2, . . . , vi−1vi, viv1 is a directed cycle in the graph D.

The presence of a directed cycle in the graph introduces a problem for those hash

algorithms which are cryptographically secure. If the precomputed hash values are

left out of checking by the hash function instance, then they are susceptible to attack

(i.e. they can be modified without detection by the hash function check) and the

ability to modify code is dependant only on the number of hash function instances

that directly read that code. For instance2, if only hi(p+xi) = yi and hj(p+xj) = yj

check a range which includes a code segment p, then if p were changed, only yi and yj

would need to be updated in order for the change of p to go undetected (since yi and

yj are left out of checking by other hash function instances). It is therefore advisable

to include the precomputed hash values as part of the input to another hash function

instance. The inclusion of a hash value as part of the input in a graph containing

cycles necessitates that the hash function not be preimage resistant [19]. As another

example of this, suppose that y1 = h(x + x1) and x1 = h(y + y1) where x and y

are code segments, x1 and y1 are hash values. From this, we can derive the formula

x1 = h(y + h(x + x1)) which cannot be solved efficiently if h is a one-way hash.

Because a network of hash function instances can not be built on cryptograph-

ically secure hash functions, alternate hash algorithms must be used. One hash

algorithm which can be easily used is the standard [15, 86] Cyclic Redundancy Check

(CRC). CRC codes have been long used for detecting data transmission errors. They

can reliably detect most changes in the input string. Using a CRC for the hash

function allows all hash functions and predetermined hash values to be stored in

areas of memory which are subsequently hashed by other hash functions. When non-

2In the context of h(a + b), a + b denotes the string a and the string b concatenated together in
some form to form a single input to h, or a + b = a1 . . . aibai+1 . . . ai

3.2. Protecting the Hashing Algorithm 29

cryptographic hash functions are used for tamper resistance, the common term is

checksumming . The result of hashing with a CRC (or similar non-cryptographic)

function is a checksum. We consider self-checksumming algorithms to be a subset of

self-hashing algorithms for software tamper resistance.

The strength of using a checksumming algorithm for tamper resistance comes

through the web structure of the instances. In order for an attacker to avoid detection,

they must modify most of the checksumming blocks (because of the dependency

structure). By obscuring the checksumming areas of the code, the difficulty of finding

checksumming blocks and associated precomputed values is directly dependant on

the strength of the obscuring function. Obscuring of the checksumming blocks is

commonly done through obfuscation.

3.2.3 Obfuscation for Protecting Hashing Algorithms

Some researchers group obfuscation in the same category of software protection as

tamper resistance. While tamper resistance attempts to protect against all modifica-

tions in an application, often the intent of the attacker is to produce useful modifi-

cations. In the process of producing useful modifications, the attacker must typically

understand the code. As described in Section 2.1, obfuscation attempts to guard

against useful modifications by making the application hard to understand. Obfus-

cation, however, remains distinct from tamper resistance in that it does not protect

against all modifications to an application. One method of understanding an appli-

cation is through the use of a “try-and-see” approach, where elements are modified

and the program is run to determine the effect of the modification. Obfuscation does

not protect against this form of modification for the purpose of understanding.

3.3. Aucsmith’s Integrity Verification Kernel (details) 30

3.3 Integrity Verification Kernel (details)

This section follows from Section 3.2.1. We provide details on the algorithm used in

the IVK to assist the reader in understanding the algorithm. Through understanding

the exact functioning of the IVK, we can examine how the attack of Chapter 4 applies

to a program protected with an IVK.

Aucsmith [12] defines the Integrity Verification Kernel (IVK) as “Small code seg-

ments that have been armoured . . . so that they are not easily tampered with. They

can be used alone, to ensure that their tasks are executed correctly, or they can

be used in conjunction with other software, where they provide the assurance that

the other software has executed correctly. That is, they can be used as verification

engines”.

3.3.1 IVK Creation

While the construction of the IVK is complex, the scope of the IVK is usually quite

small. It is designed to guard critical functions against modification. If these critical

functions are protected, then the rest of the program can be guarded using the code

in the IVK. The functions which an IVK performs may include those which:

1. Verify the integrity of code segments or programs. This is typically done through

creating a digital signature of the application. The digital signature is either

verified within the local IVK, or the computed hash value is sent to a remote

system for verification.

2. Perform critical tasks for the application. Some critical tasks (e.g. initializing

global data and state required for the application) need to be done inside the

IVK to protect against the entire IVK simply being disabled in a system.

3.3. Aucsmith’s Integrity Verification Kernel (details) 31

The IVK that Aucsmith proposes uses several different techniques to ensure that

all functions performed within the IVK are protected against modification. Taken

directly from Aucsmith’s work [12], the techniques used include:

1. Interleaved tasks All functions that an IVK performs must be

interleaved so that no function is complete until they are all complete.

Thus, for tasks A, B, and C where a, b, and c are small parts of tasks

A, B, and C respectively, the IVK executes abcabcabcabc rather than

aaaabbbbcccc. This is done to prevent a perpetrator from having the

IVK complete one of its functions, such as performing the integrity

verification of the program, without performing another function,

such as verifying the correct functioning of another IVK.

2. Distributed Secrets The IVK must contain at least one secret (or

the IVK could be bypassed by any code written to respond in a pre-

determined way). In general, one of these secrets will be a private key

used to generate digital signatures. The public key would be used

to verify the integrity of the program and to verify the responses to

challenges in the Integrity Verification Protocol . Secrets are broken

into smaller pieces and the pieces are distributed throughout the

IVK.

3. Obfuscated Code The IVK is encrypted and is self-modifying so

that it decrypts in place as it is executed. The cipher used ensures

that, as sections of the code become decrypted, other sections become

encrypted and memory locations are reused for different op-codes at

different times.

4. Installation unique modifications Each IVK is constructed at

3.3. Aucsmith’s Integrity Verification Kernel (details) 32

installation time in such a way that even for a given program, each

instance of the program contains different IVKs. This way, a per-

petrator may analyze any given program but will not be able to

predict what the IVK on a particular target platform will look like,

making class attacks very unlikely. The uniqueness is a property of

installation specific code segments and cryptographic keys.

5. Non-deterministic behaviour Where possible, the IVK utilizes

the multithreading capability of the platform to generate confusion

(for the attacker) as to the correct thread to follow.

The IVK that Aucsmith proposes performs tamper resistance by splitting the IVK

into two sections, called high and low memory. Each section is further subdivided

into a set of cells (there are 2N cells) which contain some part of one critical task, as

well as code to jump to the next cell in the chain. At the end of processing a cell, a

new cell is decrypted in the non-active section. This new cell is then jumped to and

processing continues. A graphical representation of this is shown in Figure 3.3. The

previously executed cell is re-encrypted at the same time that the cell which will be

run next is decrypted. The figure demonstrates how control flow proceeds through

the IVK, decrypting new cells at the same time that used cells are re-encrypted.

The splitting of the IVK into cells allows most of the principles of the IVK to

be satisfied. The encryption and decryption of the cells is based on a key which is

determined at installation time, which presents a unique IVK to every instance of

the application. The only technique left which the IVK must satisfy is the ability to

self-modify the code (contained in point 3). From Figure 3.3 it may appear as though

the code at each cell remains constant, which is not the case. Indeed, the code is also

moved around by the encryption algorithm used. An XOR algorithm is used which

depends on other memory locations in the area of memory. For exact details of the

3.3. Aucsmith’s Integrity Verification Kernel (details) 33

Upper Memory

Lower Memory

Decrypt Cell in Lower Memory Run Cell in Lower Memory Decrypt Cell in Upper Memory Run Cell in Upper Memory

Currently Executing Cell

Encrypted Cell

Previously Executed Cell

Next Cell to Execute

Run Cell in Upper Memory

Figure 3.3: Flow of Control during the processing of an IVK

XOR scheme used, the reader is encouraged to consult [12]. The example given in

Table 3.2 demonstrates a switching of a sequence of bytes using a possible encryption

algorithm (li indicates byte i from the low section of memory, while hi indicates byte

i from the high section of memory). This is not the form used in the paper, but is

designed to give the reader insight into how an XOR algorithm may perform a switch

of two cells.

Original Bytes li = li ⊕ hi ⊕ 6C hi = hi ⊕ li ⊕ A6 li = li ⊕ hi ⊕ A6
h1 54 . . . A5 . . .
h2 65 . . . BF . . .
h3 64 . . . B9 . . .
h4 69 . . . EB . . .
l1 6F 57 . . . 54
l2 75 7C . . . 65
l3 73 7B . . . 64
l4 21 24 . . . 69

Table 3.2: XOR shifting of cells in the IVK encryption/decryption algorithm

Notice in Table 3.2 that after the second decryption of the lower cell in question, it

contains the exact stream of bytes which used to exist in the upper cell. This switch

is performed using strictly XOR statements, and allows a loop to exist within the

IVK while the code within the loop changes positions. This satisfies the obfuscation

3.4. Networks of Checksumming Code 34

requirement of the IVK. Different memory locations are used for different op-codes

(or even data) at different times.

The exact structure of the IVK is determined at compile time and remains unad-

dressed in this thesis. It suffices to say that the encrypted IVK is distributed as part

of the application. The first cell in the IVK must remain unencrypted to start the

flow through cells required to perform the critical operations contained within the

IVK.

3.3.2 IVK Use

Although the IVK is complex, it only incorporates a small section of the application.

The IVK is expensive to run, as it must continually encrypt and decrypt sections of

memory. The operations of the IVK are therefore restricted to those sections critical

for verifying the validity of the application as a whole. The IVK computes the digital

signature of the surrounding application code, which involves computing a single

cryptographic hash of the entire program code area. The digital signature is either

verified within the IVK or sent to a remote system for verification. This use of a hash

function on the program code area is similar to methods used in other self-checking

tamper resistance techniques.

It is possible for a single application to contain several IVKs. Multiple IVKs

have the ability to communicate between each other. Communication between IVK

modules is not relevant for the scope of this thesis, and therefore not discussed.

3.4 Networks of Checksumming Code

If the IVK approach to self-hashing tamper resistance is not used, an alternate method

of protecting the hashing code must be employed. Several proposals have relied on

3.4. Networks of Checksumming Code 35

networked hash functions (as described in Section 3.2.2) for their ability to protect

checksumming code. We explore additional non-cryptographic self-hashing methods

in order to understand how our attack (described in Chapter 4) defeats these methods

of tamper resistance. In this subsection, we review two non-cryptographic alternatives

to self-hashing, namely “testers” [39] and “guards” [19].

3.4.1 Testers

Horne et al. [39] propose a complex network of testers which are designed to detect

modifications of an application. In their paper, testers are constructed and embedded

into the application in a form which is designed to protect against detection and

modification. Storing the correct hash value within the checksumming algorithm

would expose the hash algorithm when comparing similar versions of the software (as

the hash values would have to change to account for variations in the code). Horne

et al. instead choose to use correctors to ensure that the hash value result is always a

constant value, even under changes in the watermark. Their use of correctors can be

represented as 0 = h(x + c) where x is the instruction region being tested and c is a

corrector value. In reality, c is embedded into the instruction region being tested (see

Figure 3.4), and hence is not specially inserted into the hash function computation.

The hash function being used can not be preimage resistant (see Section 3.1). The

corrector value is installed between functions, where spare space typically exists in

executables.

The strength of their algorithm comes from their tester regions being overlapped.

A single byte in the instruction space of an executable is checksummed multiple times.

For an attacker to successfully (without detection) modify a byte, multiple corrector

values must be modified as well to compensate. Furthermore, the testers are also

checksummed since they are part of the instruction address space.

3.4. Networks of Checksumming Code 36

Tester Interval

Function Code Corrector

Figure 3.4: Positioning of the corrector value within the tester interval

This intertwining of testers, where each tester is checksummed by multiple other

testers forms a network3. Individual testers rely on the interconnected properties of

the network for strength. Each tester is verified by other testers within the applica-

tion. The use of networks for non-cryptographic self-hashing tamper resistance has

been used as an alternative to the IVK approach. Using a network of testers for

tamper resistance yields some favourable gains:

1. Redundancy - Since each byte in the instruction address space of an executable

is checked more than once, there is not a single point of failure if the application

is tampered with.

2. Efficiency - Less effort can directed towards securing each individual tester and

can instead be directed towards computing a checksum value. The slowdown of

most network based tamper-resistance methods is around 5%.

3. Automated Protection - Network protection can be inserted into an application

at compile time without additional input from the developer.

3A network is defined as a wide variety of systems of interconnected components [88], also known
as a graph in non-applied mathematics.

3.4. Networks of Checksumming Code 37

3.4.2 Guards

While Horne et al. [39] concentrate on the implementation and insertion of testers

into an application, Chang et al. [19] go into more detail about how testers can protect

an application. Reaction to incorrect checksum results are handed off to other areas

of code called guards. The guards purpose is to react to modifications in a manner

which can not be easily tracked. This is in contrast to the application exiting as soon

as a tester computes a bad checksum. If the application were to exit immediately,

dynamic analysis would yield the location of a testing block, which can subsequently

be circumvented. An alternative approach is to corrupt program structures, causing

the application to behave in an unpredictable manner. Chang et al. use the example

of modifying the base pointer in an incorrect checksum computation.

Repairing Guards

In addition to guards which checksum code to detect modifications, Chang et al. also

propose guards which overwrite broken code during execution of an application [19].

They suggest that tampered code be overwritten with a clean copy located elsewhere

in the application. This approach can also be networked into a complex system of

code replacement blocks. There is one disadvantage of this approach however. Unless

code is copied in from more than one location, there is a single point of failure. If

the clean copy is ever compromised by an attacker, the compromised clean code will

always be used. To overcome this problem, clean code needs to be stored in duplicate

or protected by some other means. Storing code in duplicate results in significant

increase in application size.

Repairing guards are control flow dependant. A repairing guard must execute be-

fore the code it repairs. This additional constraint is not present with checksumming

guards.

3.5. Chapter Summary 38

3.5 Chapter Summary

In this chapter, we introduced hashing, both cryptographic and non-cryptographic.

We then described several self-hashing algorithms. These algorithms include the

Integrity Verification Kernel proposed by Aucsmith (see Section 3.3) and algorithms

by Horne et al. and Chang et al. (see Section 3.4.1 and 3.4.2 respectively). In the next

chapter, we introduce a new attack capable of defeating the self-hashing algorithms

described in this chapter. We discuss a common feature of algorithms described in

this chapter which makes them vulnerable to attack.

Chapter 4

The Attack against Integrity

Self-Hashing

A disconnect has formed in the computer science community. While a lot of computer

programmers are concentrating on ever-increasing levels of abstraction, the hardware

designers have worked at incorporating additional specialized features into the pro-

cessors. Because of this, few programmers realize the full potential of the hardware.

Instead, programmers form an abstract model [58] of how the underlying hardware

operates. Based on this abstract model, applications are developed and distributed.

Most often, application developers rely entirely on the compiler to understand and

use the features available in a specific processor.

In this chapter, which provides the major research contribution of this thesis, we

present a novel attack (and multiple implementations or variations) which exploit a

disconnect which has formed between the common perception of hardware, and the

actual hardware capabilities of a processor. Our attack works on both self-hashing as

described in Section 3.4 and digital signatures verification as described in Section 3.3.

Self-hashing tamper resistance has the potential to work well if processors were iden-

39

40

tical to the stored program architecture [18]1 mental model that security researchers

have developed. Unfortunately, the mental model of a processor has become outdated,

leading to discrepancies between the perceived processor design and actual processor

implementation. While many people still use the stored program architecture model

for describing a processor, the hardware no longer follows the stored program model.

Elements like caching, parallelism, and execute permissions are not accounted for in

the stored program model [64]. Furthermore, new programming paradigms do not

follow the structured programming model [13]. We explore self-hashing tamper re-

sistance as described in Chapter 3 and how it is affected by the complex workings of

many modern processors (as discussed in Section A).

The main flaw in current conceptual models of processors is the incorrect assump-

tion that code and data are indistinguishable by the processor at runtime. This is

not actually the case. By exploiting the ability of processors to distinguish between

instructions and data, we can vector instruction reads and data reads to different sec-

tions of memory. When the ability of the hashing algorithm to read actual executing

code is compromised, the checksum value ceases to depend on the code which is run.

When this dependency is broken, the attacker has the ability to modify the running

code in an application without affecting the checksum value. As long as the checksum

value remains constant, the program defences will not activate, and the change will

go undetected. Because the situation develops from an incorrect mental model, the

reader needs to be familiar with current processor design. This familiarity with real

processor functionality is necessary in order to understand our attack. In this chapter

we explore several variations of an attack. These variations together cause the attack

to be possible on a wide range of modern processors. Readers unfamiliar with recent

processor design are encouraged to see Appendix A.

1Also called the von Neumann architecture

41

Our general method is to split data and instruction accesses. Data accesses are

vectored to a different region of physical memory than instruction accesses, causing

data operations to operate on potentially different machine code than what is executed

as instructions by the processor. All implementations of our attack perform this in

some manor or another. Mathematically, our attack follows the following formula:

Dp(x) =











Ip(x) If program p is not being attacked

I ′

p(x) Otherwise

By manipulating the function I ′

p(x), a data read of address x by program p can

be made to return different results then Ip(x). Since Ip(x) is always executed by the

processor on an instruction fetch, it becomes apparent that Dp(x) 6= Ip(x) when the

program is under attack. All of our attacks modify the function I ′

p(x).

It is useful to note that not all revisions of a line of processor are the same. While

one PowerPC processor with a software controlled MMU exists (MPC7451 [60]), this

processor was not used in the popular Apple line of computers [31]. Our UltraSparc

form of attack (described in 4.3.1) is capable of working on the MPC7451 processor.

The ARM processor line varies between different instances, but most commonly, the

MMU behaves much the same as on the PowerPC line (which allows it to be used

for our generic attack as described in Section 4.2). The instances of attack described

below generally work on the processors listed, but exceptions such as the MPC7451

can occur.

The remainder of this chapter is organized as follows. In Section 4.1 we provide a

preview of our implementations and the processors they work on. In Section 4.2 we

present a generic attack on self-hashing. The generic attack is capable of working on

a wide range of processors. We then present several variations on our attack which

4.1. Summary of Applicability of Attack Variations to Processors 42

are capable of working on specific processors. These variations are for the UltraSparc

(Section 4.3.1) and x86 (Section 4.3.2). We also describe several variations of our

attack which depend on certain features of the processor like microcode (Section

4.3.3) and performance monitoring (Section 4.3.4). Section 4.4 briefly discusses how

a variation of our attack can be used to circumvent stealthy address computation.

Section 4.5 concludes with a brief review of the attack described in this chapter.

4.1 Summary of Applicability of Attack Variations

to Processors

Different processors implement memory management in slightly different ways. In this

section, we preview our results for a large set of modern processors which we have

examined. We start off with a listing of what processors implement what features for

memory management. We focus on those memory management features relevant for

our attack. The differences are shown in Table 4.1.

From Table 4.1, we derive which attacks are possible on each processor. We doc-

ument our results in Table 4.2. Additional variations of our attack as proposed in

Section 4.3.3 (based on modifications to microcode), Section 4.3.4 (based on per-

formance counters) and Section 4.4 (involving locating and disabling code segments

which do the hashing) are omitted from Table 4.2.

2Only on newer versions of the Pentium 4 processor.
3On processors implementing a software TLB load, it is possible to catch and deal with executing

data pages without explicit hardware support of no-execute.
4ARM processors can vary in MMU implementation. Some support software TLB reload [10]

(see Section A.2), while others perform the reload in hardware [9].
5The specification for the PowerPC indicates that performance monitors are optional.
6We have confirmed through a proof of concept the feasibility of a segmentation split on the x86,

as well as the direct modification of the TLB on the UltraSparc. Other entries in this table reflect
our expectation based on a review of architecture documentation, and experience gained through
the implementations actually done.

4.2. A Generic Attack Against Hashing on many Processors 43

No Software Performance Split
Processor Pages Segments Execute TLB Load Counters TLBs

Alpha [27] Yes No Yes Yes Yes Yes
x86 [43] Yes Yes Sometimes2 No Yes Yes

AMD64 [2, 1] Yes No Yes No Yes Yes
ARM [11] Yes No Sometimes3 Sometimes4 Yes Yes

UltraSparc [76] Yes No Yes3 Yes Yes Yes
68k [59] Yes No No No No Yes

MIPS [57] Yes No No Yes No No
PowerPC [85] Yes No Yes No Sometimes5 Yes

Table 4.1: MMU implementations on different processors

Modify TLB Segmentation Generic

Processor Directly (§4.3.1) Split (§4.3.2) Attack (§4.2)

Alpha Yes No Yes
x86 No Yes Yes
AMD64 No No Yes
ARM Sometimes No Yes
UltraSparc Yes No Yes
68k No No Yes
MIPS No No No
PowerPC No No Yes

Table 4.2: Feasibility of our attack on each processor6

It is worth noting that the only modern processor which we examined, and which

is resistant to all of our attacks, is the MIPS [57] – which does not have a separate

TLB for data and instructions.

4.2 A Generic Attack Against Hashing on many

Processors

We first present a generic attack which is capable of working on a wide range of

modern processors. In contrast to attacks described later, this attack relies on very

little functionality from the processor in order to succeed. It depends only on split

processing of instruction and data reads, and separate TLBs (see Section A.2) which

4.2. A Generic Attack Against Hashing on many Processors 44

are loaded correspondingly.

While most processors may present different interfaces to their memory manage-

ment unit (MMU), all modern MMUs operate on the same basic principles. Code and

data accesses are split and corresponding TLBs perform the translation (see Section

A.2). Since processors do not keep track of when a page table entry is modified in

main memory, the TLB entry is manually cleared by the operating system whenever

the corresponding page table entry is modified in main memory. The clearing of the

TLB entry will cause a reload of the modified page table entry into the TLB when

information on the page is next required by the processor. A discrepancy develops

between the TLB cache and page table if the TLB entry is not reloaded when the

page table entry changes in main memory. This common design methodology in the

interaction between the TLB and page table entries in main memory allows a generic

attack on a wide range of modern processors, as we now describe.

Our generic attack exploits the ability for a TLB entry to be different from the

page table entry in main memory, by not reloading the TLB when the page table

entry changes.

This attack works even in the case of a hardware TLB load (as described in

Section A.2). For processors with a software TLB load, a different simpler attack is

also possible (see Section 4.3.1). Regardless of the TLB load mechanism used, an

attacker with kernel-level access to the page table and associated data structures can

implement this generic attack. As explained later in this paragraph, it can be deduced

whether an instruction or data access causes a TLB miss. By forcing a TLB miss to

generate a corresponding page fault, we can ensure the OS to be notified on every

TLB miss. By examining the information related to page table misses coming from

a TLB miss, we can determine which of the instruction or data TLB will be filled

with the page table entry. Since processors split the TLB internally, a data TLB will

4.2. A Generic Attack Against Hashing on many Processors 45

not be affected if the memory access causing the page fault was due to an instruction

fetch. To determine whether an instruction or data access caused the page fault,

we (i.e. our own modified attack kernel) need only examine the current instruction

pointer and virtual address which caused the failure. This is demonstrated through

the following observation.

Observation 1. If the instruction pointer is the same as the virtual address causing

the fault, then an instruction access caused the fault, otherwise a data access caused

the fault.

To implement the attack, we always mark page table entries as not present in the

page table (by clearing the valid flag) for those pages for which we want to distinguish

between instruction and data accesses. When the processor attempts to do a hardware

page table search, a page fault will be delivered to the OS. If the OS determines that

an instruction access caused the page fault, then the page table entry is filled with

appropriate information for the potentially modified program code, otherwise the page

table entry is filled with the information of the unmodified program code (which is

what should be read on a data access). As soon as the instruction execution completes

(which is caught with the single step interrupt), the valid flag on the page table entry

is cleared by the operating system (i.e. the modified kernel) so that subsequent TLB

miss operations will cause the operating system to be notified. While resetting the

page table entry, the TLB is not cleared. This allows the program to operate at full

speed as long as the translation entry remains in the TLB. The instruction completion

can be detected with a single step interrupt. This attack approach is illustrated in

Figure 4.1.

There is one potential case which requires a slight modification to the attack, and

that is if the program under attack branches to an instruction which reads data from

the same page where the instruction is located. In this case, the instruction will cause

4.2. A Generic Attack Against Hashing on many Processors 46

Processor Hardware

Page Fault Interrupt

Return from Interrupt

Single Step Interrupt
If (Clear_Valid Flag is Set)

Set Valid = 0

Process Single Step if Appropriate
End If

Single Step Interrupt

Clear Single_Step Flag

Valid = 0

Page Table Entry

Operating System Software/Memory

Return from Interrupt

Instruction AccessData Access

DTLB Miss ITLB Miss

DTLB Search ITLB Search

DTLB Hit ITLB Hit

Page Table Lookup

Update DTLB Update ITLB

ITLB Entries

ITLB

Search Page Table

Hardware Page Table Search

DTLB

DTLB Entries

If (IP = Address Causing Fault)

Else
Fill the ITLB using NOP

Fill the PTE with information for DTLB

End If
Set Clear_Valid Flag

Page Fault Interrupt

Set Single_Step Flag

Valid = 1

Clear Clear_Valid Flag

Figure 4.1: Implementing a generic attack on processors with hardware TLB load.

4.2. A Generic Attack Against Hashing on many Processors 47

both the data and instruction TLBs (hereafter: DTLB and ITLB) to be filled in the

process of fulfilling the instruction. To properly handle this situation, we must ensure

that each TLB is filled separately. The OS needs to ensure that in filling the ITLB

the DTLB is not also filled with the same information. One way is through the attack

kernel executing a different instruction (NOP is a good candidate) from the same page

beforehand which does not modify the DTLB. The NOP instruction will cause only

the ITLB to be loaded. The OS can insert the NOP instruction anywhere on the page

and after execution replace the NOP with the original instruction at that location.

An alternate approach exists to inserting a NOP which does not require the use

of a single step interrupt. In order to load the page table entry into the ITLB, all

that is required is for the processor to run some instruction from that page. One

way of doing this is through branching to an instruction on the page from within the

kernel. Graphically, this is represented in Figure 4.2. Since the kernel operates in the

virtual address space of the process (but under a different privilege level), this branch

accomplishes a ITLB load with appropriate data.

Process Memory Page

Kernel

jump a a: jump b
b: ...

... ...

...

Figure 4.2: Loading a page into the ITLB for a generic attack

By executing an instruction from the process virtual memory page, the translation

for that page will get loaded into the ITLB. Therefore, the kernel simply needs to

perform the following operations.

1. Modify the page table to include proper translation information for the ITLB.

4.2. A Generic Attack Against Hashing on many Processors 48

2. On the virtual memory page, write a jump instruction to allow the kernel code

to continue running.

3. Branch to the jump instruction installed on the virtual memory page. This

branch will cause the ITLB to be loaded.

4. The installed jump instruction will pass control back to kernel code.

5. Restore the virtual memory page to its original state before the jump instruction

was written.

6. Remove the page table entry.

In order to load the process page into the DTLB, the kernel can simply read data

on that virtual memory page instead of performing a jump.

There is a small caviot in the kernel modifying data on a process memory page

(for the purposes of installing the jump instruction). The virtual memory page may

not be directly written to by the kernel, since that will cause the page to be loaded

into the DTLB. The solution involves the fact that a underlying physical memory

frame associated with a virtual page can be aliased at multiple virtual addresses.

By mapping the physical memory page to a separate virtual address, the data on

the physical page can be updated without the process virtual address translation

information being loaded into the TLB. This technique of running kernel instructions

from the processes virtual memory page allows loading of the TLB without use of the

single step interrupt. It also avoids multiple context switches in and out of the kernel

while properly loading each TLB separately, allowing our attack.

In summary, for processors which have a split memory management unit, this

generic attack is possible. The attack is possible on a wide range of modern processors

since it is common to implement a split TLB for performance reasons. The ability

4.3. Variations on the Attack 49

of the processor to do a hardware TLB reload (also called page table walk) does not

affect the feasibility of this generic attack. While we have not physically implemented

the attack described herein in Section 4.2, we see no reason why it would fail. We

have implemented the related attack described in Section 4.3.1.

A summary of the processors affected by our generic attack is shown in Table 4.3

(see Table 4.1 and Table 4.2 for more information).

Alpha x86 AMD64 ARM UltraSparc 68k MIPS PowerPC

X X X X X X No X

Table 4.3: Applicability of the attack of Section 4.2

4.3 Variations on the Attack

In addition to the attack described above, there are variations which can also be

implemented. These variations are described below. The variations can depend on the

processor and, in some cases, the revision of the processor. The variations described

below are important because they show the breadth of possible approaches which can

be used for attacking self-hashing tamper resistance.

4.3.1 Defeating Self-Checking on the UltraSparc

The UltraSparc processor implements a software load TLB mechanism (see Section

A.2). When the running application requires a translation from a virtual page to

a physical page that can not be done with the current TLB state, the processor

signals the OS to perform a TLB update, which installs the virtual to physical map-

ping for the translation. The processor notifies the kernel through two exceptions,

fast instruction access MMU miss or fast data access MMU miss [77]. Knowing this,

4.3. Variations on the Attack 50

we crafted a tamper resistance attack to take advantage of the information given by

the processor to the operating system on a TLB miss. Depending on whether a data

or instruction fetch (i.e. D(x) or I(x)) caused the fault, we update the corresponding

TLB differently. At a high level, the attack results in the separation of the physical

page containing an instruction for address x from the physical page containing read-

able data for x. Instruction fetches were automatically directed by the modified TLB

to physical page p while reads by the program into the code section were directed to

the physical page p+1 (see Figure 4.3). During an attack, the attacker arranges that

p + 1 contains an unmodified copy of the original code, and that the modified code is

on page p. A read from the virtual address in question results in the expected value

of the unmodified (original) program code on physical page p + 1, even though the

actual instruction which is executed from that same virtual address is a potentially

different instruction on physical page p. In this discussion and for our proof of concept

implementation, an offset of 1 physical page was chosen simply for simplicity, keeping

two related pages close to each other in physical memory. Other page offsets are

equally possible. This thus defeats the protection provided by self-integrity hashing

mechanisms (e.g. including [19, 39]), on the UltraSparc processor.

Like many other processors, the UltraSparc processor’s page table entries do not

use all the available bits. Those bits which are unused by the processor are available

for use by the operating system. We used one of these during kernel development

of the discussed attack. This bit (which we refer to as isSplit) was used to identify

which page table entries had split instruction and data physical pages. When a

fast data access MMU miss exception was triggered by the processor, the proof of

concept exception handler checks the bit and increments the physical page number

for the corresponding page table entry before loading it into the data TLB. This extra

processing required only 6 additional assembly instructions.

4.3. Variations on the Attack 51

Virtual Address

Instruction Fetch

Data Fetch

Physical Memory

Instruction TLB

Data TLB

Original Program Code

Modified Program Code

Figure 4.3: Separation of virtual addresses for instruction and data fetch

The kernel side of the implementation in our proof of concept implemented the

split instruction and data pages. Two adjacent pages in physical memory were allo-

cated, with page p holding the modified (attacked) and p+1 holding the un-modified

application code. The page table entry for each page that implemented the split had

the isSplit bit set. Swapping was not considered in the proof of concept implementa-

tion (but we would not expect this to introduce any complication).

The end result of our proof of concept is that the data TLB was always loaded with

address mappings that mapped a virtual address onto the physical address containing

the un-modified application code for the application being attacked. The instruction

TLB was always loaded with translations which mapped to physical pages containing

the modified application code. Our proof of concept implementation was tested with a

program employing checksumming of the code section. We were able to easily change

program flow of the original program without being detected by a representative

hashing tamper resistance algorithm. For more information, including code used in

the attack on the UltraSparc processor, the reader is encouraged to see Appendix

B. For more information on supporting code required for a complete attack, refer to

4.3. Variations on the Attack 52

Chapter 5.

A summary of the processors affected by our UltraSparc variation is shown in

Table 4.4 (see Table 4.1 and Table 4.2 for more information).

Alpha x86 AMD64 ARM UltraSparc 68k MIPS PowerPC

X No No Sometimes X No No No

Table 4.4: Feasibility of a software TLB load attack on each processor

4.3.2 Defeating Self-Checking on the x86

Our attack can also be mounted on the popular x86 architecture [42] by manipulating

two different aspects of memory management as described below. While the generic

attack (described in Section 4.2) is a much cleaner attack, the x86 specific attack is

included for completeness and to show breadth (as explained in Section 4.3). Although

separate code and data TLBs exist on the x86, the processor uses a hardware TLB

load process and thus the specific implementation of the attack in Section 4.3.1 can

not be used. We show here an alternate variation of the attack which exploits the

processor segmentation features of the x86.

In addition to supporting memory pages, the x86 can also manage memory in

variable sized chunks known as segments. Associated with each segment is a base

address, size, permissions, and other meta-data. Together this information forms a

segment descriptor. To use a given segment descriptor, its value is loaded into one

of the segment registers. Other than segment descriptor numbers, the contents of

these registers are inaccessible to all software. In order to update a segment register,

the corresponding segment descriptor must be modified in main memory and then

reloaded into the segment register.

A logical address consists of a segment register specifier and offset. To derive a

4.3. Variations on the Attack 53

linear address, a segment register’s segment base (named by the segment specifier) is

added to the segment offset. An illustration of the complete translation mechanism

for the x86 architecture is shown in Figure 4.4. Code reads are always relative to the

code segment (CS) register, while normally, if no segment register is specified data

reads use the data segment (DS) register. Through segment overrides a data read

can use any segment register including CS. After obtaining a linear address, normal

page table translation is done as shown in Figure 4.4 and Figure 4.5.

Linear Address Page Data Page Offset

Page Table

Translation Algorithm

Physical Address Frame Number Frame Offset

Logical Address Segment Offset

Segment

Translation Algorithm

Segment Number

Figure 4.4: Translation from virtual to physical addresses on the x86

Unlike pages on the x86, segments can be set to only allow instruction reads

(execute-only). Data reads and writes to an execute-only segment will generate an

exception. This execute-only permission can be used to detect when an application

attempts to read memory relative to CS. As soon as the exception is delivered to

an OS modified for our attack, the OS can automatically modify the memory map

(similar to as in Section 4.3.1 but see Figure 4.6) to make it appear as if the unmodified

data was present at that memory page.

Most operating systems for x86, however, now implement a flat memory model.

This means that the base value for the CS and DS registers are equal; an application

need not use the CS register to read its code. A flat memory model will ensure that

both linear addresses are the same, resulting in the same physical address (as denoted

4.3. Variations on the Attack 54

get from CS:0x1000

get from DS:0x1000

Physical Memory

Segment Start

Segment Start

CS Information:

DS Information:

Page Table Translation
Linear Address

Linear Address

Logical Address

Logical Address

Physical Address

Using CS Segment Override

Without CS Segment Override

Figure 4.5: Translation of a get using segment overrides

by the dash-dot-dot line in Figure 4.5).

On the surface, it appears that our attack, based on this first aspect – the execute-

only feature – would be thwarted by the flat memory model. However, although

modern operating systems present a flat memory model to the application, an OS

modified to contain attack code need not obey the flat memory model. It may “ap-

pear” to present a flat memory model, even though segmentation is being used (see

Figure 4.6).

To implement the attack, store two copies of the program in the logical address

space. Let Code contain the original unmodified program code while Code′ contains

the modified program code. Then set the CS segment to point to the start of Code′

and set all other segment descriptors, including the DS, to point to the beginning of

Code (see Figure 4.6). Also, set the CS segment to execute-only. If the application

attempts to perform an ordinary data read of its code, it will access the unmodified

version at Code. If the application instead uses a CS override to access data relative

to CS, it will cause an exception because CS is execute only. The modified kernel

can then take steps (e.g. temporarily swapping Code and Code′ in the page table) to

4.3. Variations on the Attack 55

Linear Address Map

Code’

CS Base

DS Base

Code

Data

Stack

Figure 4.6: Splitting the flat memory model to allow a tamper resistance attack

ensure that the read is directed to Code. Code′ is thus not accessible via data reads

by the application.

While it may appear as if the entire usable linear address space is halved by the

requirement to store code, data, and stack, only a second copy of the code must be

mapped into the targeted application’s address space. All that is required, then, is

sufficient consecutive linear memory to address the second copy of the code.

We note that our segment implementation for the x86 as described in this subsec-

tion is not applicable to any other processor architecture that we are aware of.

Linear Address Calculation Overflow

Thus far, we have only discussed the base part of a segment descriptor in the x86

architecture. The x86, however, supports overflow when calculating the linear address.

On initial inspection, this may appear to be a loophole through which the creator of

a software application can access Code′ (e.g. If a segment base is set to 0x00100000

by an attacker and the code performs a read at DS offset 0xFFF01000 then the linear

address used is 0x00001000). It may appear that this technique could be used to

4.3. Variations on the Attack 56

access Code′ which is located in the low linear address range. This defence technique,

however, is flawed. If the limit is set on DS correctly, a read from offset 0xFFF01000

will again generate a trap. On interception of this trap, a kernel modified to implement

the attack can vector the read appropriately.

4.3.3 Microcode Variation of Attack

Some processors (e.g. the x86 [43] and Alpha [28]) support the software loading of

microcode into the processor at boot. In this section, we discuss an alternate form of

attack using the microcode related functionality of a processor.

Microcode is designed to alter the functioning of the processor. Different pro-

cessors support microcode in varying forms. It is unknown to us to what extent a

specific processor can be controlled through microcode. With information from a

processor manufacturer, it may be possible to implement an attack similar to Section

4.3.1 directly on the processor using microcode without ever calling out to additional

operating system functionality during the attack. This would make the attack even

harder to detect, as microcode is not accessible even by the operating system. Mi-

crocode format, however, is not commonly available to the general public, and hence

it may be more difficult to obtain the documentation required to implement a suc-

cessful attack using microcode. There is, however, a variation of microcode which

exists on the Alpha processor (and possibly also on others).

The Alpha processor has the ability to execute PALcode (Privileged Architecture

Library) [28]. PALcode is similar to microcode except that it is stored in main

memory and modifiable by the operating system. PALcode is used to implement

many of the functions which would be hard to implement in hardware. These features

include memory management control. By modifying the PALcode which is run by

the processor on a TLB miss, we can directly influence the state of both the data and

4.3. Variations on the Attack 57

instruction TLB. PALcode uses the same instruction set as the rest of the applications

on the system, but is given complete control of the machine state. Furthermore,

implementation-specific hardware functionality is enabled for use by PALcode. This

results in a possible attack which is similar to the UltraSparc (see Section 4.3.1). The

difference with PALcode is that the code itself is designed to run outside the operating

system. The operating system, however, has the ability to modify the PALcode, or

replace it with a version specific to the operating system should it wish. Replacing

the PALcode for the TLB miss scenario thus appears to offer yet another alternative

variation of our attack using microcode on the Alpha processor (in addition to the

attack described in Section 4.2).

4.3.4 Performance Monitoring

In this subsection, we present yet another proposed attack variation. This variation

involves the use of performance monitoring functionality.

As described in Section A.5, performance counters have the ability to deliver

interrupts to the operating system whenever a certain event occurs. If we can cause

an interrupt to be delivered on a TLB miss, then we (i.e. as the attack kernel) can

track and modify the memory space of the application. The implementation of an

attack variation based on this observation is similar to that described in Section 4.2.

We believe it will work on any processor which allows both data and instruction TLB

accesses to be tracked separately with performance counters. It requires that the

processor notify the OS of an overflow in a performance counter immediately before

the instruction causing the overflow is executed.7 Performance monitoring, however,

varies even between different processor revisions. It is unknown to us how much

the use of performance counters would slow down the effective processing power of a

7The x86 processor is an example of a processor fitting these constraints.

4.3. Variations on the Attack 58

processor.

Performance counters can deliver an interrupt to the operating system when a

specific counter wraps (overflows). Performance counters also (conveniently for an

attacker) have the ability to track both DTLB and ITLB misses. If these can be

tracked independently, then we expect that we can ensure that the DTLB and ITLB

will be loaded with different data, even though they both examine the same page

table entry. In Section 4.2, we set the valid bit to 0 to produce an interrupt. Since we

are generating the interrupt through the performance counter instead for this attack,

the valid bit can be left alone. For this attack, we use the same method of splitting

pages as for the UltraSparc attack in Section 4.3.1. Data for a split virtual page is

contained on the next physical page. Tracking the split is accomplished through the

same isSplit bit as described in Section 4.3.1. We denote the isSplit bit with s. We

also add another new software bit called lastLoad (denoted by l). This bit specifies

whether the page was last loaded into the data (= 1) or instruction(= 0) TLB.

The first step in implementing this attack using the performance counters is mod-

ifying the interrupt handler for the performance counter. Algorithm A.1 is modified

and shown below as Algorithm 4.1 (pte.s is the split flag, pte.l is the last type of access

flag, and pte.ppn is the physical page number pointed to by the page table entry. IP

is the instruction pointer, and memaddr is the memory address which caused a DTLB

miss). The updated algorithm uses the ITLB and DTLB miss counters to generate

an interrupt on every miss. For a DTLB miss, the page table entry is updated to

point to the physical page number of the original code. For a ITLB miss, the page

table entry is updated to point to the physical page of the modified code. Notice

that both ci and cd are set to −1, which will cause an overflow (and hence interrupt)

to occur on every TLB miss, ensuring the attack kernel will be notified whenever a

miss occurs in either the ITLB or DTLB. The performance counter can be set to

4.3. Variations on the Attack 59

only generate interrupts when running in user level, which avoids unnecessary TLB

miss interrupts for operating system functions. Page table entries are initially set to

contain the physical page number address of the page containing instructions for a

split page (pte.l = 0 for all pte.s = 1). memaddr is determined based on examination

of the instruction which caused the DTLB miss counter to trigger an exception.

Algorithm 4.1 TLB Miss Performance Counter Interrupts
1: cd ← 0
2: ci ← 0
3: procedure DTLB Counter Interrupt

4: cd ← 0
5: i ← page(memaddr)
6: if pte[i].s = 1 and pte[i].l = 0 then
7: pte[i].ppn ← pte[i].ppn + 1
8: pte[i].l ← 1
9: end if

10: end procedure
11: procedure ITLB Counter Interrupt

12: ci ← 0
13: i ← page(IP) . IP ≡ Instruction Pointer
14: if pte[i].s = 1 and pte[i].l = 1 then
15: pte[i].ppn ← pte[i].ppn − 1
16: pte[i].l ← 0
17: end if
18: end procedure

Because the performance counter will fire before any instruction completes which

causes a TLB miss (see [41]), after the interrupt, data contained in the PTE will be

appropriate for the type of TLB load that the processor was attempting to accomplish.

This modification of the physical page number on each TLB miss results in different

data being loaded into each TLB. The processor will therefore transform virtual

addresses for data and instructions differently, as required for a successful attack.

By catching every TLB miss using performance counters, we expect that it is

possible to anticipate the loading of a particular TLB. If we can anticipate which

4.4. Locating the Hashing code 60

TLB will be loaded next, the page table entry can be modified so that when the

TLB load happens (including those TLB loads done by hardware) the page table

entry will contain appropriate information for that type of TLB. In this way, our

proposed variation of the attack using performance counters should be able to track

the loading of each TLB and respond accordingly, enabling a variation of our attack

using performance counters.

4.4 Locating the Hashing code

In this section, we comment on a variation of our attack with a different end goal.

Instead of vectoring data and instruction reads to different physical memory locations,

this variation instead is designed to pinpoint those areas of program code which

perform a data read of the code section. In doing this, it helps to circumvent stealthy

address computations as proposed by [52]. The variation described in this section is

not generic, and potentially requires significant resources on the part of the attacker

(especially if code obfuscation is used). This variation, like all others described in this

thesis, requires the ability to distinguish between code and instruction reads. The

advantage of this attack is that hashing blocks might possibly be actually disabled,

and hence the modified binary can be distributed without the kernel module required

for an attack. Additional protection is therefore needed on the hashing blocks to

prevent reverse engineering even after they are found.

One of the challenges in self-hashing tamper resistance is successfully hiding the

location of reads into the code segment [52]. Several techniques are used to accomplish

this, but they are only good against static analysis. Given our powerful attack against

self-hashing at the processor level, it is possible to use the attack to locate the hashing

blocks because of their read of the code segment. Whenever a read occurs into the

4.5. Chapter Summary 61

code segment, a kernel modified for our attack can record the location of the read

instruction. By running an application under a kernel designed to record the location

of reads into the code segment, an attacker can quickly build up a list of possible

locations for hashing code. Further attack may then be possible on those specific

areas of code. Because of the potential difficulty of disabling hashing blocks protected

by obfuscation, this attack might be thwarted through the use of strong obfuscation

algorithms which hide the use of the hash result (including obfuscation algorithms

designed to hide data dependencies).

4.5 Chapter Summary

In this chapter we introduced a generic attack against self-hashing software tamper

resistance. We described an attack capable of working on a wide range of modern

processors (see Section 4.2) and several variations on the attack which are capable

of working on specific processors. The attack works by exploiting the difference

between an instruction and data read on a modern general-purpose processor. Data

reads into the code area of a program are made to return unmodified code, while

instruction reads return potentially modified program code. This results in self-

hashing algorithms calculating unmodified hash results even though program code

may be modified. In the next chapter, we discuss additional support code required

to fully implement the attack. The additional code is not processor dependant like

implementations given in this chapter.

Chapter 5

Other Issues Related to the Attack

Chapter 4 discusses how the splitting of an instruction and data page can be accom-

plished on many different processors. Splitting instruction and data pages, however,

is insufficient to completely implement an attack on self-hashing tamper resistance.

Several additional elements must be implemented. The page table of the application

under attack must be modified so that the isSplit bit is initialized correctly (see Sec-

tion 4.2, 4.3.1 and 4.3.4). Also, both sets of physical pages used during the attack (the

original and modified code pages) must be allocated and filled with appropriate data.

In order to fill the original code pages with unmodified program code, the program

code must be extracted from the original (unmodified) executable. These additional

elements required for a complete attack are not processor dependant. They are re-

quired (in one form or another) regardless of the variation of attack used in Chapter 4.

In this chapter, we explore a number of these elements with a focus on our particular

proof-of-concept implementation on the UltraSparc processor (see Section 4.3.1).

In order to accurately test our UltraSparc processor implementation, we crafted

an application employing simple checksumming of the entire code segment1. By

1There is currently a lack of easy access to algorithms which perform self-hashing

62

5.1. Setting up the Split Pages 63

purposely not modifying either the checksumming code or correct checksum result

contained within the application, our simple application was made to be representa-

tive of real self-hashing techniques, including those proposed by Aucsmith [12], Horne

et al. [39], and Chang et al. [19]. Our challenge was to modify the code of the applica-

tion to change control flow without being detected by the checksumming code. This

chapter references our test application when describing extraction of code pages, since

it is representative of a program protected by hashing (where neither the self-hashing

code or checksumming value can be easily modified).

The remainder of Chapter 5 is organized as follows. In Section 5.1 we document

what must be done to set up the kernel level structures required to support the split

instruction and data page. Section 5.1.1 documents extracting the unmodified code

pages from an application. Section 5.1.2 documents how the kernel can be notified

of which pages are to be split during the attack. Section 5.1.3 documents how the

kernel installs the split code pages into the application being attacked. Finally, we

discuss some limitations of our proof of concept in 5.2.

5.1 Setting up the Split Pages

Most of the attack variations proposed in Chapter 4 rely on the page table entry

format having room for a new bit defining whether or not the page should actually

be split. We used one of these bits for an isSplit flag. While the implementation is

much simpler if the flag is set in the page table (we do not have to store the flag

elsewhere), it does not need to be. Furthermore, the setup of physical memory does

not necessitate that modified instructions sit on page p and original code sit on page

p + 1. The minimal requirements to support an attack of Chapter 4 are as follows:

• A separate page of physical memory for each page containing potentially modi-

5.1. Setting up the Split Pages 64

fied program instructions. This separate page of physical memory must contain

the original program code.

• A method of tracking the location of each separate page of physical memory.

The isSplit flag used in our implementation is not directly required by the above

requirements. If all program code pages are split, then the flag is redundant. This

splitting of all code pages is a distinct possibility under alternative implementations

of the attack.

We now discuss some of the aspects of our particular implementation on the

UltraSparc processor (see Section 4.3.1). We use our proof-of-concept application as

an example in order to demonstrate the sequence of steps which must be performed

in order to implement a full attack. All our work is with the executable and linkable

file format (ELF – see [87]), the common executable file format on Unix.

5.1.1 Extracting the Code Pages

For any given software application binary, there are a number of different segments

contained in the executable. Each segment holds a different type of data. The segment

we are concerned about is the one containing the block of data labelled .text. This

block contains the instructions of a given application. The layout of segments can

not be hidden; it must be available to the OS. The segment layout for an example

program is shown in Table 5.1.

Segment Offset VirtAddr PhysAddr FileSize MemSize Flags

0 (LOAD) 0x000000 0x00010000 0x00010000 0x68558 0x68558 R E

1 (LOAD) 0x068558 0x00088558 0x00088558 0x02a58 0x02a6c RW

2 (NOTE) 0x0000b4 0x000100b4 0x000100b4 0x00020 0x00020 R

3 (STACK) 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW

Table 5.1: Sample program memory map based on ELF file information

It can be seen by looking at Table 5.1 that the only segment with executable per-

5.1. Setting up the Split Pages 65

mission is the first one (segment 0). This segment starts at virtual address 0x00010000

and goes for a length of 0x68558. Since the length of a page on the UltraSparc pro-

cessor is 0x10000, the instructions of the application span a total of 6 pages. From

the application binary we can also determine the data stored in those pages. The

data for the 6 pages is stored in the binary starting at the offset given in the above

table.

Because any application binary will contain information for the operating system

on the layout of its memory map, it is possible to extract the data from the binary

which will be loaded into the executable region of an application. For our attack,

we extract from the original application the data which will reside on the executable

pages (see Section 5.2.3). Once a copy of the data for code pages is extracted, the

application can be modified as necessary by the attacker.

5.1.2 Notifying the OS of the Split Code Pages

When it comes time to run the modified binary, the operating system must be notified

of both the modified and original code pages. In our attack, we only modified the

instructions on the first code page, and hence only made a copy of page 1. We

implemented a system call inside the operating system which accepts a page of data

and a virtual address to install it to. The code for this system call is documented in

Appendix B.1.3. The system call can be called repeatedly to build up a list of pages to

replace. In this way, all 6 pages of the application could be split if required. For this

example, we only call the system call once. We pass into the kernel the 8 kilobytes of

data which is the original page of the application, along with a virtual offset where

it should be installed (in this example, the virtual address is 0x00010000). Because

the modified application binary will be run by the operating system, we rely on the

operating system’s ability to read an application binary and extract the modified code

5.1. Setting up the Split Pages 66

page when we initialize the split.

If the application under attack was running when the split pages were configured, it

may be possible for the application to access a page before the OS had been informed

of the split. A potential resolution to this is to load the attacked application and

stall its running until all pages have been modified as necessary. We chose a third

alternative, notifying the OS of the split pages before the application being attacked

is loaded. A wrapper program was used to initialize the OS, notifying it of all split

pages. When the wrapper program had finished its task of notifying the OS, the

application under attack was started. The OS is always involved in the starting of a

new process and hence can install the split pages as a part of the process initialization.

The OS performs the initialization steps before the attacked application is run.

We wrote and used a wrapper program (documented in Appendix B.2) to set up

the kernel level structures and start the program under attack. The wrapper program

notifies the kernel of the associated data pages for specific virtual addresses which are

to have split processing of data and instruction reads. The wrapper program replaces

itself (using execve) with the application binary when it has finished initialization. In

order for our wrapper program to communicate with the kernel modified to perform

our attack, a new system call was implemented. This system call (shown in Appendix

B.1.3) was used by the wrapper program to set up various elements required for a

tamper resistance attack against an application.

5.1.3 Installing the Split Code Pages

When the execve system call is activated from within the wrapper program, the OS

must begin the process of loading the attacked application binary and installing the

split code pages. While the wrapper application was running, a list of pages to split

was built up by repeated invocation of our system call. Each entry in the list of split

5.2. Limitations of our Proof of Concept 67

pages contained the virtual address where the split page was to be installed, as well

as the unmodified code which should be returned on a data read into that code page.

The code in Appendix B.1.3 documents the installation process when the new

binary is called. Prior to tamper modify pagetable being called, the OS has loaded

the application binary and initialized the memory map of the attacked application as

if it were a regular application. We now modify the memory map to split pages as

required for the attack. Algorithm 5.1 presents pseudo-code for initialization of the

split pages. It takes as input split (the list of split pages) and pte, the page table

entries of the application as they were set up by the executable loader contained

within the kernel.

Algorithm 5.1 Install Split Pages in an Application Address Space

1: procedure Install(split, pte)
2: for i = 0 → length(split) do
3: physPage = physAllocate(2 pages)
4: memcpy(physPage[0], pte[split.vaddr].physPage)
5: memcpy(physPage[1], split.data)
6: pte[split.vaddr].isSplit = 1
7: free(pte[split.vaddr].physPage)
8: pte[split.vaddr].physPage = physPage[0]
9: end for

10: end procedure

As can be seen, the original code is copied in from the list of split pages into

physical page physPage[1] while the modified code contained within the binary is

stored on physical page physPage[0].

5.2 Limitations of our Proof of Concept

Since our implementation was a proof of concept, and not intended to be a full scale

implementation, it had several limitations. We expect that a determined attacker

would be able to overcome all of these.

5.2. Limitations of our Proof of Concept 68

5.2.1 Additional Allocation of Executable Memory Regions

A potential limitation of our implementation is that it does not deal with runtime al-

location of additional code segments. A program which copies its entire code segment

to an alternate region after start and runs from there would not be thwarted by the

sample implementation. It should be possible for the kernel to deal with allocation

of additional executable regions of memory and perform a split on those sections as

necessary.

5.2.2 Page Swapping

Because we are allocating more physical pages of memory, and not conforming to the

traditional view of a page table (where a page table entry points to a single physical

page), modifications to the page swapping algorithms need to be made to account for

the second physical page associated with the same page table entry. Changes to the

swapping algorithm do not directly affect the feasibility of splitting code and data,

and are therefore left out of our discussion.

5.2.3 Extracting the Code Pages

For our proof of concept, the extraction of code pages (as described in Section 5.1.1)

was performed manually. Because, however, all data on code pages is contained within

the application, it would be simple to write a more complex wrapper which automat-

ically determines the size of the code segment for a given application and extracts all

code pages. An alternative approach would be to implement the functionality inside

the kernel during application load, having the kernel automatically read the unmod-

ified binary from an alternate location and set up the pages. If the implementation

were contained solely within the kernel, the system call would not be required.

5.3. Chapter Summary 69

5.3 Chapter Summary

In this chapter, we discussed additional software functionality required to support the

attack of Chapter 4. We centred our discussion around the proof-of-concept imple-

mentation. We briefly discussed limitations of our proof-of-concept implementation.

In the next chapter, we complete our discussion and detail conclusions for the area

of self-hashing software tamper resistance based on our results.

Chapter 6

Further Discussion and Concluding

Remarks

We now make some further observations regarding the attack (and its variations)

described in this thesis, and their implications on software tamper resistance. We

then offer concluding remarks.

6.1 The Mental Model of a Modern Processor

The main oversight of the algorithms used for self-hashing tamper resistance is the

flawed (implicit) assumption of instructions and data being indistinguishable by the

processor. This is not the case on modern processors. It is important that the mental

models [58] developed of complex computer systems accurately represent the actual

workings of the system. As computer systems become more complex, the likelihood

for a disconnect to form between different system designers, researchers and program-

mers increases. In our case, since most operating systems treat read-only data and

instructions equivalently, the difference is not apparent to most developers. This

70

6.2. Noteworthy Features of our Attack 71

helps to strengthen an incorrect mental model (as a picture of the true operation of

a processor is not required for many situations). It is interesting to note that the

algorithm design community has already started to address the issue of complex sys-

tem architecture when designing algorithms. New models of a system for the purpose

of algorithm design attempt to incorporate the effects of caching and bottlenecks to

main memory (see [3, 48]).

6.2 Noteworthy Features of our Attack

We now discuss several features which make the attack of Chapter 4 particularly

noteworthy.

6.2.1 Difficulty of Detecting the Attack Code

Our attack (and associated variations) operates at a different privilege level than the

application process being attacked. This separation of privilege levels results in the

application program being unable to access the memory or processor functionality

being used in the attack. The page tables of a running process are not available to

the process, and hence the process has no obvious indication that tamper resistance

is being attacked. Furthermore, the kernel code is also not available to the process.

In current computer systems, it is a realistic assumption that the attacker has kernel-

level control over the machine, since trusted operating systems are not widely deployed

(see Section 2.5).

While a specific implementation of the attack may be detectable by the application

because of specific files or signatures from the kernel, attempting to detect every

form of implementation leads to a classical arms race in terms of detection and anti-

detection techniques. Traditionally, these arms races favour the attacker, who is

6.2. Noteworthy Features of our Attack 72

happy to update his attack (and has the “last move” on a fixed implementation),

whereas a software vendor is typically less happy or able to regularly update software

defences. The ability to detect a kernel rootkit1 (see [62]) is normally associated

with a defender, where the rootkit is limited in updates. Our attack (and associated

variations) introduces the opposite problem, where the rootkit can consistently change

and the detection strategies are fixed. Detecting rootkits which can change while the

detection code remains constant is an even harder problem than detecting rootkits

which are fixed while the detection code varies. Detecting a fixed rootkit is believed

to be difficult for an active defender [68], giving strength to feasibility of our attack

remaining hidden.

6.2.2 Feasibility where Emulator-Based Attacks would Fail

While the use of an emulator by an attacker would be able to defeat those forms

of self-checking tamper resistance which rely on hashing (since emulators can easily

distinguish between an instruction and data read), emulators are much slower than

native processors. Chang et al. [19] document the performance impacts of tamper-

proofing and come to the conclusion that their protection methods (largely involving

code obfuscation transformations) only result in a “slight increase” in execution time.

The tamper resistance methods of Chang et al. are therefore appropriate even for

many speed-sensitive applications (see [38]). Emulation attacks on speed sensitive

applications are not feasible. In contrast, our attack imposes only negligible slow-

down, and is therefore also possible even on speed-sensitive applications. With the

UltraSparc attack variation (see Section 4.3.1), the only increased delay is when the

initial data access occurs, and requires the page be loaded into the data TLB (in our

1A kernel rootkit contains a kernel module installed by a remote attacker onto a system to hide
the attackers presence from the owner of the system

6.3. Implications of the Attack 73

test implementation, 6 additional assembly instructions were required – see Appendix

B.1.1). Subsequent reads to the code section are translated by the TLB.

6.2.3 Generic Attack Code

The attack code, as implemented, is not program dependant. The same kernel level

routines can be used to attack all programs implementing self-hashing as the form of

tamper resistance, i.e. the attack code needs only be written once for an entire class

of self-hashing defences. Even the extraction of the original code before modification

(see Section 5.1.1) can be automated, being a simple matter of making a copy of the

application executable before modification begins.

6.2.4 Breadth of Variations

The attack described in this thesis can take a number of different forms, as discussed

in Chapter 4. Even if processor design changed sufficiently to guard against one

variation of the attack, there are other variations which can be implemented. It is

not merely a particular feature which causes the attack to be possible, but an entire

methodology of processor design. We thus believe that it is unlikely all variations will

be guarded against in future processor revisions, since the performance and security

gains from separating code and data are significant.

6.3 Implications of the Attack

The attack strategy outlined in this thesis (Chapter 4) is devastating to the general

approach of integrity protection by self-hashing, including even the advanced and

cleverly engineered tamper-resistance methods recently proposed by Chang et al. [19]

and Horne et al. [39]. Attempts to increase the security of non-cryptographic self-

6.3. Implications of the Attack 74

hashing approaches through stealthy address space calculations (see [52]) provide no

additional protection against our attacks. Furthermore, digital signatures as proposed

by Aucsmith [12] and computed within an IVK are susceptible to attack. Indeed, on

CPU architectures used by most workstations, desktop, and laptop computers, one

operating-system specific attack tool can be used to defeat any implementation of

these defence mechanisms. We now discuss whether these methods can be modified

so as to make them resistant to the attack, and whether there are other integrity-based

tamper resistance mechanisms that can be easily added to existing applications, and

which have minimal runtime performance overhead.

It is not sufficient to simply intermingle instructions and runtime data to prevent

against our attack strategy (as proposed by [19]), because such changes do not prevent

the processor from determining when a given virtual address is being used as code or

as data. For a self-checking tamper resistance mechanism to be resistant to our attack

strategy, it would appear that it must either not rely on treating code as data, whether

for hashing or other purposes, or it must make the task of correlating code and data

references prohibitively expensive. Thus, integrity checks that examine intermediate

computation results appear to be immune to our attack strategy (e.g. the partially

described mechanism proposed in [20]); further, systems that dynamically change the

relative locations of code and data (while encrypting, decrypting, and obfuscating)

are resistant to our attack. Unfortunately, these alternatives are typically difficult

to add to existing applications or impose significant runtime performance overhead,

making them unsuitable for many situations where hashing-based integrity checks are

feasible.

There are many other alternatives to self-hashing as a defence against tampering,

if one is willing to change the requirements and have applications depend on some

type of trusted third party. For example, an application could rely on a custom

6.3. Implications of the Attack 75

operating system extension (e.g. a kernel module) to verify the integrity of its code.

Implementation complexity, lack of portability, stability, and security concerns that

arise when changing the underlying operating system make such an approach less

appealing.

Another alternative to self-hashing protection is to assume that an application has

access to some type of trusted platform, whether in the form of an external hardware

“dongle” [35], a trusted remote server [45], or a trusted operating system [54, 63].

To summarize, we do not know of any invulnerable alternatives to hashing in the

self-checking tamper resistance space that combine the ease of implementation, plat-

form independence, and runtime efficiency of non-cryptographic self-hashing. Ad-

vances in static and run-time analysis may enable the development of alternative

systems that verify the state of a program binary by checking run-time intermedi-

ate values. These checks could be inserted into an application at compile time, and

designed to impose little run-time overhead. We believe that our work provides sig-

nificant motivation for the research and development of such methods.

6.3.1 Differential Attacks

One particularly potent attack which affects all areas of computer security is differen-

tial analysis. Differential analysis attacks were demonstrated as early as WWII [81].

These days, such attacks are useful in more areas than standard cryptography. The

attacks can be performed on applications employing tamper resistance [39]. Slightly

different versions of the same application can be compared to possibly locate check-

sum values. In patching an application which uses tamper resistance, the developer

must ensure that enough of the program is changed to hide the location of the check-

sum values. As an example, suppose a digital rights management application which

used self-checking was updated with the ability to read new types of files. Normally,

6.3. Implications of the Attack 76

the code for processing a particular file type is all related and hence contained close

together within an executable. Suppose an analysis of the application before and

after the upgrade yielded the differences as shown in Figure 6.1. It is easy to spot

the updates related to non-cryptographic self-hashing tamper resistance. Because

of differential analysis attacks, non-cryptographic self-hashing tamper resistance al-

gorithms must take care to not distribute two copies of an application which are

similar, posing an even greater challenge. An arms race against an attacker can not

be thwarted by simply updating the application, since the updates themselves have

the potential to give additional information to the attacker.

Figure 6.1: Possible differential of program versions where network tamper resistance
is used.

6.3.2 Processor Modifications Preventing an Attack

All attacks presented in this thesis depended on the separation of code and data at the

processor level, and the presentation of this information to the end-user (or attacker).

If the processor provided no information to the software on the system about code

and data, the attack described in this thesis would be impossible. It is possible

for a processor to be modified such that consistent data is loaded into each TLB,

which would render most implementations infeasible. Furthermore, by removing the

segmentation ability from a processor, our x86 variation of attack is not possible2.

2This is already happening, as can be seen by the AMD64 processors

6.4. Concluding Remarks 77

Even if future processors are changed, however, processors currently on the market

can be used to implement our attack; making self-hashing currently insecure. It would

take many years to phase out vulnerable processors even if the change was made to

every processor architecture. It is unlikely that the distinction between code and data

will ever be fully removed, since there are many other benefits to separating code and

data at the processor level. Appendix A.2 points to the caching benefits of separating

code and data. Furthermore, there are security benefits in protecting against such

attacks as code injection by treating code and data separately (see Appendix A.4).

Because of the many benefits of treating code and data distinctly, it is unlikely that

processors will ever completely remove the distinction between code and data.

6.4 Concluding Remarks

A few lessons can be learned from these attacks on self-hashing. The first is that

incorrect mental models of a computer system can lead to a security vulnerability.

We must ensure as security professionals that the mental model we have of a system

is representative of the complexities of the real system. Often this means that a com-

puter security professional will be required to know much more about the system than

an application developer would in order to make it secure against possible attacks.

The attack described in this thesis is possible due to the fact that self-hashing algo-

rithms were designed based on the stored program architecture model which assumes

that a processor does not distinguish between code and data. Years ago, this would

have been the case. Today’s landscape of processor design has changed drastically

from what it was even 20 years ago. While some security algorithms have benefited

from increased complexity (see [45]), others have become susceptible to attack.

Stemming from the stored program architecture model, security algorithms have

6.4. Concluding Remarks 78

been developed which rely on the difference between a code and data read being

undetectable at runtime. This assumption of indistinguishable code and data reads

is incorrect. Algorithms which rely on this fact for security are therefore vulnerable

to attack.

We have shown that the use of hashing for self-checking tamper resistance does

not guarantee the security previously believed on many of today’s prominent com-

puter processors. The attacks described in this thesis should therefore be carefully

considered before choosing to use hashing for tamper resistance. As noted earlier,

other forms of tamper resistance exist which are not susceptible to our attack, but

these typically have their own disadvantages (see Section 6.3). We encourage further

research into other forms of self-checking tamper resistance, such as new security

paradigms possible through execute-only page table entries [50].

Memory management functionality within a processor plays an important role in

determining how vulnerable current implementations are to our attack. If a processor

does not distinguish between code and data reads, then the attacks in this thesis fail.

Because of the performance and general security benefits of code/data separation at

a processor level, it is unlikely that processors will revert to treating code and data

the same. Tamper resistance mechanisms which are not impacted by the separation

of code and data should be used.

Appendix A

Hardware Architecture

Background

In order to examine self-hashing in detail, a knowledge of some of the aspects of pro-

cessor design is required. The design aspects discussed below are conventional, being

common among many different processors. This material covered in this appendix

can be found primarily in [73, 43].

This appendix includes several sections having to do with memory management, as

well as other concepts important for understanding the attack of Chapter 4. We start

off with an introduction to page table translation in Section A.1. Speed improvements

to the page table translation are discussed in A.2. Swapping of pages is discussed in

A.3. We document the access controls which are possible on pages in Section A.4.

We follow up discussion with hardware performance counters in Section A.5.

79

A.1. Page Table Translation 80

A.1 Page Table Translation

Modern processors do much more than execute a sequence of instructions. Advances

in processor speed and flexibility have resulted in a very complex architecture. A

significant part of this complexity comes from mechanisms designed to efficiently

support virtual memory. Virtual memory, first introduced in the late 1950’s, involves

splitting main memory into an array of frames (pages) which can be subsequently

manipulated. Virtual addresses used by an application program are mapped into

physical addresses by the virtual memory system (see Figure A.1).

Virtual Address Page Data Page Offset

Page Table

Translation Algorithm

Physical Address Frame Number Frame Offset

Figure A.1: Translation of a Virtual Address into a Physical Address

Even though the page table translation algorithm may vary slightly between pro-

cessors and may sometimes be implemented in software, modern processors all use

roughly the same method for translating a virtual page number to a physical frame

number. Specifically, this translation is performed through the use of page tables,

which are arrays that associate a selected number of virtual page numbers with phys-

ical frame numbers. Because the virtual address spaces of most processes are both

large and sparse, page table entries are only allocated for the portions of the address

space that are actually used. To determine the physical address corresponding to a

given virtual address, the appropriate page table, and the correct entry within that

page table must be located.

For systems that uses 3-level page tables, a virtual address is divided into four

A.1. Page Table Translation 81

fields, x1 through x4. The x1 bits (the directory offset) specify an entry in a per-

process page directory. The entry contains the address of a page map table. The

x2 bits (the map offset) are used as an offset within the specified page map table,

giving the address of a page table. The x3 bits (the table offset) index into the chosen

page table, returning the number of a physical page frame. x4, then, specifies the

offset within a physical frame that contains the data referred to by the original virtual

address. This resolution process is illustrated in Figure A.2. Note that if memory

segments are used, segment translation typically occurs before operations involving

the page table.

Base Pointer

Page Directory Page Map Page Table

Directory Offset Map Offset Table Offset Page Offset

Page OffsetPhysical Frame

Virtual Address

Physical Address

Page Table

Figure A.2: Translation of a Linear Address into Physical Address through Paging

A page table translation does not have to be hierarchical as described above. Some

processors use a hash function to determine the page table entry to reference. This

is the case with the PowerPC processor [85]. Part of the page table entry contains

the virtual address which can be used for the hashing algorithm.

A page table entry is a data structure (specific to the processor) which is contained

in the page table. We reserve the term “page table entries” to specify only entries

which are actually sitting in the page table at the current moment. Translation entries

which are not currently installed in the page table are not page table entries. While

A.1. Page Table Translation 82

Size
NFO (No Fault Only)
IE (Invert Endianness)
Soft2 (Software-Defined Field)
Reserved
PA (Physical Page Number)
Soft (Software-Defined Field)
L (Lock Entry in TLB)
CP (Cacheable-In-Physically-Indexed-Cache)
CV (Cacheable-In-Virtually-Indexed-Cache)
E (Side-Effect)
P (Privlidged)
W (Writable)
G (Global)

V (Valid)63
62-61
60
59
58-50
49-43
42-13
12-7
6
5
4
3
2
1
0

Figure A.3: Page table entry format for the UltraSparc64 processor [77]

the exact structure of a page table entry depends on the processor, there are a number

of common features across processors. We will examine the page table entry on the

PowerPC processor. The page table entry format for the PowerPC is shown in Table

A.1. For a comparison, the UltraSparc64 page table entry is shown in Figure A.3.

DWORD Bit(s) Name Description
0 0:56 AVPN Abbreviated Virtual Page Number

57:60 SW Available for Software Use
62 H Hash function identifier
63 V Entry Valid (= 1) or Invalid (= 0)

1 2:51 RPN Real Page Number
54 AC Address Compare Bit
55 R Reference Bit
56 C Change Bit
57:60 WIMG Storage Control Bits
61 N No-execute page if N = 1
62:63 PP Page Protection Bits (allows read, write, or both)

Table A.1: Page table entry (PTE) format for the PowerPC processor [85]

There are several elements of the page table entry which are of interest to us

in this thesis. They include the real page number and valid bit. The real page

number dictates which frame of physical memory the processor should reference when

a request is made for the virtual address range mapped by the page table entry. It is

the core of the translation between virtual and physical addresses. The valid bit lets

A.2. TLBs (Translation Lookaside Buffers) 83

the processor know whether the rest of the data contained in the page table entry

points to a valid page. If the valid bit is set to 0, the page table entry is considered

as not-present by the processor. If an attempt is made to read a page table entry

which is marked as not present, the processor will notify the operating system that

the read occurred. It is then up to the OS to fill in the entry with valid data or abort

execution of the application (in the case of a bad memory reference).

A.2 TLBs (Translation Lookaside Buffers)

Because multiple memory locations must be accessed to resolve each virtual memory

address, virtual address translation using page tables is a relatively expensive opera-

tion. To speed up these mappings, a specialized high-speed associative memory store

called a translation look-aside buffer (TLB) is used. A TLB caches recently used

mappings of virtual page numbers to physical page frames. On every virtual mem-

ory access, all entries in a TLB are checked to see whether any of them contain the

correct virtual page number. If an entry is found for the virtual page number, a TLB

hit has occurred, and the corresponding physical page frame is immediately accessed.

Otherwise, we have a TLB miss, and the appropriate page tables are consulted in

the fashion discussed previously (Figure A.2). The mapping so determined is then

added to the TLB by replacing the mapping that was least recently used. Figure A.4

illustrates what happens on a TLB hit, using a TLB translation mechanism instead

of the page table translation of Figure A.2.

Because of the principal of locality, TLB translation works very well in practise.

System designers have noticed, however, that code and data exhibit different patterns

of locality. To prevent interference between these patterns, caches of code and data

are often separated; for similar reasons, most modern CPUs have separate code and

A.2. TLBs (Translation Lookaside Buffers) 84

Directory Offset Map Offset Table Offset Page Offset

Page OffsetPhysical Frame

Virtual Address

Physical Address

TLB Translation Mechanism

Figure A.4: Virtual Address to Physical Address using a TLB

data TLBs. CPU caches mark referenced memory as code or data depending upon

whether it is sent to an instruction decoder. Whenever an instruction is fetched from

memory, the instruction pointer is translated via the instruction TLB into a physical

address. When data is fetched or stored, the processor uses a separate data TLB

for the translation. Using different TLB units for code and data allows the proces-

sor to maintain a more accurate representation of recently used memory. Separate

TLB’s also protect against frequent random accesses of code (data) overwhelming

both TLB’s. Because most code and data references exhibit high degrees of locality,

a combination of small amounts of fast storage (e.g. on-chip memory caches) and more

plentiful slower storage (DRAM memory) can together approximate the performance

of a larger amount of fast storage.

The actual process required to update the TLB with a new translation depends

on the processor. Some processors are capable of examining the page table directly in

hardware (a hardware page table search) in order to update the TLB (a hardware TLB

load) when a new entry is required. Other processors rely on the operating system

to update the TLB with correct data. All processors give the operating system a

A.3. Page Swapping 85

method to invalidate entries. The processor does not keep track of changes to the

page table in main memory. It is up to the operating system, therefore, to notify the

processor when the page table entry changes in main memory. The operating system

notifies the processor by invalidating the TLB entry corresponding to the page table

entry which has been updated. The next time information is required from that page,

the TLB will be forced to reload the page table entry from main memory. The TLB

and main memory can become inconsistent if the page table entry in main memory

is updated without flushing the TLB entry.

A.3 Page Swapping

Because the memory management unit presents a virtual address space to the appli-

cation running, the application need not be aware of the physical sections of memory

which it actively uses. Thus even though the virtual address space of a program is

contiguous, the physical regions of memory it uses may not be. This presents a great

opportunity for the operating system. Not only does it allow multiple applications

to be run on the system (each with its own unique virtual address space, mapping to

different physical pages), but it allows the operating system to only keep in physical

memory those parts of each application required at the current time. Since not all

pages of virtual memory may map to a physical page, there must be some way for the

processor to inform the OS when a virtual address does not have a physical mapping.

The processor does this through the use of a page fault interrupt. The processor will

store the virtual address which caused the page fault in a register, and then signal

the operating system through an interrupt handler. The operating system updates

the mapping of virtual to physical addresses, so that the requested virtual address

can be mapped to a physical address. This is done by modifying the page table entry

A.4. Access Controls on Memory 86

(including setting the valid bit). This may mean bringing the section of the program

into physical memory from disk or some other external storage. The OS then signals

the processor to retry the instruction by returning from the interrupt. The OS also

has the choice of aborting execution of the application if it determines that the vir-

tual address is invalid, e.g. if the virtual address refers to memory that has not been

allocated.

A.4 Access Controls on Memory

Along with the translation of a virtual to physical address, the processor may im-

plement access protection on memory regions. Since the virtual memory subsystem

already splits physical memory into small areas (frames), it makes sense that the

same memory management unit would also implement access control on a per-frame

basis. The most important protection is that only pages that an application is allowed

to access are mapped into its page table. To prevent an application from manually

mapping a page into its address space, the page directory base pointer is stored in

a read-only register, and the frames containing a process’s page table are themselves

not accessible by the process.

In addition, there are protection mechanisms for pages which are in a process’s

address space. Each mapped page is restricted in the types of operations that may

be performed on its contents: read, write, and instruction fetch (also called execute).

Permitted operations are specified using control bits associated with each page table

entry. Read and write are common operations on data pages, while executing code is

commonly associated with a page containing executable code.

Modern operating systems take advantage of the protection mechanisms imple-

mented by the processor to distinguish various types of memory usage. As mentioned

A.5. Performance Monitoring 87

in Section A, the ability to set no-execute permission on a per-page basis produces

the restriction that many programs are confined to executing code from their code

segment, unless they take specific action to make their data executable. Although

such changes can interfere with systems that generate machine code at runtime (e.g.

modern Java Virtual Machines), many types of code injection attacks can be defeated

by non-executable data pages. While not currently supported on all processors, we

expect this technology to appear in an increasing number of new processors.

Segment Permissions
Read Write Execute

Code X X X

Data X X X
Executable Data X X X

Stack X X X

Table A.2: Separation of access control privileges for different page types

Table A.2 shows the ideal separation of privileges for different sections of an appli-

cation. This separation of privileges is currently assumed in executable file formats.

All processors implementing page level access controls must check for disallowed op-

erations and signal the operating system appropriately. Most often, the operating

system is signalled through the page fault interrupt, which indicates the memory

reference which caused the invalid operation.

A.5 Performance Monitoring

In order to understand the attack of Section 4.3.4 we must explore the design and

use of hardware performance counters.

Some processors have the ability to do performance monitoring (e.g. the Alpha

[29] and x86 [41]). Performance monitoring is useful in software development for

A.5. Performance Monitoring 88

pinpointing potential bottlenecks in software. By including hardware features into

the processor, it is possible for the developer to gain a better understanding of where

their software could be improved. The breadth of performance monitoring depends

on the specific processor, but some common traits exist. Processors will implement

a hardware counter which can be set up to track a specific type of event. Every time

the event happens, the event counter is incremented. When the counter overflows, an

interrupt is delivered to the operating system. The operating system can then reset

the counter to any appropriate value.

One example of performance counters is branch prediction. Modern processors

have the ability to predict whether a specific branch instruction will be taken. If the

prediction is correct, then the program will end up being able to run much faster on

the processor than if the prediction is incorrect. Because of this, one of the potential

optimizations in an application is structuring it in such a manner that the predictions

will most often be correct. In order to measure the success of branch prediction, the

number of mispredicted branches can be counted by the processor and minimized by

the developer.

Because the size of the counter in the processor is limited, there exists the likely

scenario for an application to overflow the counter. Because of this, the processor

incorporates some method of notifying the OS when the counter overflows. This is

usually done through the use of an interrupt. Algorithm A.1 shows an example of

how the operating system may interpret the overflow of the counter, tracking the

total number of ticks (t) of the counter in software. We use a count of 100 events

between OS notifications, but any other number could be used as required.

There are a number of different events which can be tracked by the processor.

While the list of performance counter events depends on the type and version of the

processor, some performance counters include:

A.5. Performance Monitoring 89

Algorithm A.1 Branch Prediction Performance Counter Interrupt
1: t ← 0
2: c ← −100
3: procedure Counter Interrupt . Occurs when c = 0
4: t ← t + 100
5: c ← −100
6: end procedure

• Integer/Floating point operations performed

• Loads/Stores issued

• ITLB/DTLB hits/misses

• Instruction/Data cache hits/misses

• Branch Prediction successes/failures

The processor also has the ability to track performance counters depending on

the privilege level of the processor. This makes it possible to isolate the performance

of an application from the performance of the underlying operating system. The

performance counter will not be incremented when running within the operating

system. Because the performance counter is not incremented when working from

within the operating system, interrupts will also not be generated for performance

counter overflows from within the operating system.

Appendix B

The UltraSparc Processor Attack

Code

In this section, we detail our implemented attack code for the UltraSparc processor.

Source code reproduced here should serve as an indication of the possible methods

which can be used in implementing an attack. As discussed in Section 4.3, there

are many different software attack implementations possible. The attack code docu-

mented here is relatively simple, and should be viewed only as a starting point from

which a more robust attack can be designed. This implementation is not guaranteed

to be correct or complete. It is known to not handle low memory conditions.

B.1 Kernel Source Code

Our attack was implemented using the Linux kernel version 2.6.8.1 [53] on the Sparc64

version of the kernel. The attack code included below accounts for the ability of the

Sparc64, which is a 64 bit processor, to execute 32 bit code. Because of this ability to

execute 32 bit code, there are two different system call tables. Both the 64 bit and 32

90

B.1. Kernel Source Code 91

bit system call tables needed to be modified in order to fully implement the attack on

the given UltraSparc processor. The tests were run on a SunBlade 150 workstation.

There are several files in the attack which have only a few lines added. These files

are not reproduced here. Instead, changes to these files are documented. Source files

with significant changes are reproduced inline.

B.1.1 The data TLB Miss Interrupt Handler

Our attack on the UltraSparc (see Section 4.3.1) required 6 additional assembly in-

structions. While the code below may appear to contain a total of 9 additional

assembly instructions in loading a different physical page, there are other instruc-

tions which were removed in implementing our code. Therefore, the increase in size

of the interrupt handler is only 6 instructions.

/* $Id: dtlb base.S,v 1.17 2001/10/11 22:33:52 davem Exp $

* dtlb base.S: Front end to DTLB miss replacement strategy.
* This is included directly into the trap table.
*
* Copyright (C) 1996,1998 David S. Miller (davemredhat.com)
* Copyright (C) 1997,1998 Jakub Jelinek (jjultra.linux.cz)
*/

#include <asm/pgtable.h>

#include <asm/mmu context.h> 10

/* %g1 TLB SFSR (%g1 + %g1 == TLB TAG ACCESS)
* %g2 (KERN HIGHBITS | KERN LOWBITS)
* %g3 VPTE base (0xfffffffe00000000) Spitfire/Blackbird (44-bit VA space)
* (0xffe0000000000000) Cheetah (64-bit VA space)
* %g7 pa(current->mm->pgd)
*
* The VPTE base value is completely magic, but note that
* few places in the kernel other than these TLB miss
* handlers know anything about the VPTE mechanism or 20

* how it works (see VPTE SIZE, TASK SIZE and PTRS PER PGD).
* Consider the 44-bit VADDR Ultra-I/II case as an example:
*
* VA[0 : (1<<43)] produce VPTE index [%g3 : 0]
* VA[0 : -(1<<43)] produce VPTE index [%g3-(1<<(43-PAGE SHIFT+3)) : %g3]
*

B.1. Kernel Source Code 92

* For Cheetah’s 64-bit VADDR space this is:
*
* VA[0 : (1<<63)] produce VPTE index [%g3 : 0]
* VA[0 : -(1<<63)] produce VPTE index [%g3-(1<<(63-PAGE SHIFT+3)) : %g3] 30

*
* If you’re paying attention you’ll notice that this means half of
* the VPTE table is above %g3 and half is below, low VA addresses
* map progressively upwards from %g3, and high VA addresses map
* progressively upwards towards %g3. This trick was needed to make
* the same 8 instruction handler work both for Spitfire/Blackbird’s
* peculiar VA space hole configuration and the full 64-bit VA space
* one of Cheetah at the same time.
*/

40

/* Ways we can get here:
*
* 1) Nucleus loads and stores to/from PA–>VA direct mappings.
* 2) Nucleus loads and stores to/from vmalloc() areas.
* 3) User loads and stores.
* 4) User space accesses by nucleus at tl0
*/

#if PAGE SHIFT == 13
/* 50

* To compute vpte offset, we need to do ((addr >> 13) << 3),
* which can be optimized to (addr >> 10) if bits 10/11/12 can
* be guaranteed to be 0 . . . mmu context.h does guarantee this
* by only using 10 bits in the hwcontext value.
*/
#define CREATE VPTE OFFSET1(r1, r2)
#define CREATE VPTE OFFSET2(r1, r2) \

srax r1, 10, r2
#define CREATE VPTE NOP nop
#else 60

#define CREATE VPTE OFFSET1(r1, r2) \
srax r1, PAGE SHIFT, r2

#define CREATE VPTE OFFSET2(r1, r2) \
sllx r2, 3, r2

#define CREATE VPTE NOP
#endif

/* DTLB ** ICACHE line 1: Quick user TLB misses */
ldxa [%g1 + %g1] ASI DMMU, %g4 ! Get TAG ACCESS
andcc %g4, TAG CONTEXT BITS, %g0 ! From Nucleus? 70

mov 1, %g5 ! For TL==3 test
from tl1 trap:

CREATE VPTE OFFSET1(%g4, %g6) ! Create VPTE offset
be,pn %xcc, 3f ! Yep, special processing
CREATE VPTE OFFSET2(%g4, %g6) ! Create VPTE offset

cmp %g5, 4 ! Last trap level?
be,pn %xcc, longpath ! Yep, cannot risk VPTE miss

B.1. Kernel Source Code 93

ldxa [%g3 + %g6] ASI S, %g5 ! Load VPTE

/* DTLB ** ICACHE line 2: User finish + quick kernel TLB misses */ 80

1: brgez,pn %g5, longpath ! Invalid, branch out
srlx %g5, PAGE ALTDATA SHIFT, %g6 ! Load in preparation for TR check.

/* Added to allow Tamper Resistance Attack */
andcc %g6, 1, %g0 ! Are we looking at a different I vs D page?
bz %xcc, dtlb finish ! Nope, branch directly to the load
srlx %g5, PAGE SHIFT, %g6 ! Shift for Data page physpage calc

addx %g6, 1, %g6 ! Do dataphys = physpage + 1
sllx %g6, PAGE SHIFT, %g6 ! Shift back
sllx %g5, 64−PAGE SHIFT, %g5 ! Wipe out the high bits 90

srlx %g5, 64−PAGE SHIFT, %g5 ! And put the low bits back

/* DTLB ** ICACHE line 3: winfixups+real faults */
or %g5, %g6, %g5 ! Recombine to form TLB entry

/* End of Tamper Resistance Attack */

dtlb finish:
stxa %g5, [%g0] ASI DTLB DATA IN ! Reload TLB
retry ! Trap return

3: brlz,pt %g4, dtlb finish ! Kernel virtual map? 100

xor %g2, %g4, %g5 ! Finish bit twiddles
ba,a,pt %xcc, kvmap ! Yep, go check for obp/vmalloc

longpath:
rdpr %pstate, %g5 ! Move into alternate globals
wrpr %g5, PSTATE AG|PSTATE MG, %pstate

/* DTLB ** ICACHE line 4: Unused. . . */
rdpr %tl, %g4 ! See where we came from.
cmp %g4, 1 ! Is etrap/rtrap window fault? 110

mov TLB TAG ACCESS, %g4 ! Prepare for fault processing
ldxa [%g4] ASI DMMU, %g5 ! Load faulting VA page
be,pt %xcc, sparc64 realfault common ! Jump to normal fault handling
mov FAULT CODE DTLB, %g4 ! It was read from DTLB

ba,a,pt %xcc, winfix trampoline ! Call window fixup code
/* CREATE VPTE NOP */

#undef CREATE VPTE OFFSET1
#undef CREATE VPTE OFFSET2 120

#undef CREATE VPTE NOP

B.1.2 Tamper Resistance Attack Include File

#ifndef LINUX TAMPER H

B.1. Kernel Source Code 94

#define LINUX TAMPER H

#include <asm/ptrace.h>

#include <asm/page.h>

#include <asm/pgtable.h>

#include <asm/compat.h>

struct tamper page replace {
struct tamper page replace * next; 10

unsigned long address;
struct page * pagePtr;

};

struct tamper resistance {
// Is tamper resistance hidden from the current app?
int hide;

// And the pages that need to be shuffled?
struct tamper page replace * pages; 20

};

enum tamper op {
TAMPER CHECK = 0,
TAMPER ENABLE,
TAMPER HIDE,
TAMPER ADDPAGE,
TAMPER GETPAGESIZE

};
30

struct tamper arg {
unsigned long address;
unsigned long data;

};

struct compat tamper arg {
compat ulong t address;
compat ulong t data;

};
40

extern void tamper free struct(struct tamper resistance * tamper);

extern void tamper modify pagetable(void);

#endif /* LINUX TAMPER H */

B.1. Kernel Source Code 95

B.1.3 Tamper Resistance Attack System Call and Initializa-

tion

#include <linux/smp.h>

#include <linux/gfp.h>

#include <linux/vmalloc.h>

#include <linux/highmem.h>

#include <asm/tamper.h>

#include <asm/pgtable.h>

#include <asm/uaccess.h>

#include <asm/pgalloc.h>

10

#include <asm/smp.h>

void tamper free struct(struct tamper resistance * tamper) {
if(tamper) {

printk("Freeing tamper structure.\n");
while(tamper−>pages) {

struct tamper page replace * tmp;
tmp = tamper−>pages−>next;
vfree(tamper−>pages);
tamper−>pages = tmp; 20

}
kfree(tamper);

}
}

void tamper modify pagetable() {
struct tamper page replace * cur;
int retVal;

if(current−>tamper) { 30

printk("Inserting Tamper Resistance Pages into page table.\n");
cur = current−>tamper−>pages;
for(cur = current−>tamper−>pages; cur != NULL; cur = cur−>next) {

struct page * curPage;
void * kaddrto;

pgd t * pgd;
pmd t * pmd;
pte t * ptep, pte;

40

printk(" Inserting page at 0x%lX into page table.\n", cur−>address);

pgd = pgd offset(current−>mm, cur−>address);
if(pgd none(*pgd) | | pgd bad(*pgd)) {

printk("Could not read entry in page directory.\n");
continue;

B.1. Kernel Source Code 96

}

pmd = pmd offset(pgd, cur−>address);
if(pmd none(*pmd) | | pmd bad(*pmd)) { 50

printk("Could not read entry in page map.\n");
continue;

}

ptep = pte index(pmd, cur−>address);
if(!ptep) {

printk("Could not read entry in page table.\n");
continue;

}
60

curPage = pte page(*ptep);
if(!curPage) {

printk("Could not find page entry at address %lX.\n", cur−>address);
continue;

}

/* Copy over the data from the original page. To do this,
* we must ensure the page is actually in memory! */

retVal = verify area(VERIFY READ, (void user *)cur−>address, PAGE SIZE); 70

if(retVal) {
printk("Could not determine what process has at that address.\n");
continue;

}

kaddrto = kmap(cur−>pagePtr);
retVal = copy from user(kaddrto, (void user *)cur−>address, PAGE SIZE);
if(retVal) {

printk("Could not copy instruction page from user space.\n");
continue; 80

}

kunmap(kaddrto);

/* Now, we can nuke the old page entry. */
free pages(curPage, 0);

/* And insert the new page entry into the process data space. */
pte = mk pte(cur−>pagePtr, P101);
pte |= PAGE ALTDATA; 90

set pte(ptep, pte);
cur−>pagePtr−>mapcount++;

}
}
return;

}

B.1. Kernel Source Code 97

static long do tamper config(int op, struct tamper arg * dataPtr) {
struct tamper resistance * tmp;

100

if(current−>tamper) {
if(current−>tamper−>hide == 1) {

return −ENOSYS;
}

}

switch(op) {
case TAMPER CHECK:

return 0;
case TAMPER ENABLE: 110

if(!current−>tamper) {
if(PAGE SIZE < sizeof(struct tamper resistance)) {

printk("ERROR: tamper_resistance structure larger than a page.\n");
return −ENOMEM;

}
tmp = kmalloc(sizeof(struct tamper resistance), GFP KERNEL);

} else {
return −EPERM;

}
if(!tmp) { 120

return −ENOMEM;
}
memset(tmp, 0x00, sizeof(struct tamper resistance));
current−>tamper = tmp;
break;

case TAMPER HIDE:
if(!current−>tamper) {

return −EPERM;
}
current−>tamper−>hide = 1; 130

break;
case TAMPER ADDPAGE:
{

struct tamper page replace * data;
char * kaddr;
int retVal;

if(!current−>tamper) {
return −EPERM;

} 140

if(!(data = vmalloc(sizeof(struct tamper page replace))))
return −ENOMEM;

memset(data, 0x00, sizeof(struct tamper page replace));

if(!dataPtr)
return −EINVAL;

B.1. Kernel Source Code 98

data−>address = dataPtr−>address & PAGE MASK;
150

if((retVal = verify area(VERIFY READ, (void user *)dataPtr−>data, PAGE SIZE)))
return retVal;

if(!(data−>pagePtr = alloc pages(GFP USER, 1))) {
vfree(data);
return −ENOMEM;

}

kaddr = kmap(data−>pagePtr + 1);
retVal = copy from user(kaddr, (void user *)dataPtr−>data, PAGE SIZE); 160

kunmap(data−>pagePtr);
if(retVal) {

printk("Could not copy page from user space.\n");
free pages(data−>pagePtr, 1);

vfree(data);
return −EFAULT;

}

data−>next = current−>tamper−>pages; 170

current−>tamper−>pages = data;
break;

}
case TAMPER GETPAGESIZE:

return PAGE SIZE;
default:

return −EINVAL;
}
return 0;

} 180

asmlinkage long sys32 tamper config(int op, struct compat tamper arg user * dataPtr) {
struct tamper arg data;
int retVal;

if(!dataPtr) {
return do tamper config(op, NULL);

} else {
if((retVal = verify area(VERIFY READ, dataPtr, sizeof(struct compat tamper arg))))

return retVal; 190

if((retVal = get user(data.address, &dataPtr−>address)))
return retVal;

if((retVal = get user(data.data, &dataPtr−>data)))
return retVal;

return do tamper config(op, &data);
}

}

asmlinkage long sys tamper config(int op, struct tamper arg user * dataPtr) {

B.1. Kernel Source Code 99

struct tamper arg data; 200

int retVal;

if(!dataPtr) {
return do tamper config(op, NULL);

} else {
if((retVal = verify area(VERIFY READ, dataPtr, sizeof(struct compat tamper arg))))

return retVal;
if((retVal = get user(data.address, &dataPtr−>address)))

return retVal;
if((retVal = get user(data.data, &dataPtr−>data))) 210

return retVal;
return do tamper config(op, &data);

}
}

B.1.4 Small Modifications to Other Source Files

Modify the System Call Table

In order for the system call to be recognized, the system call table had to be modified

to include the new system call. Because the Sparc64 Linux kernel supports both 32

and 64 bit applications, there were two system call tables which needed to be modified.

They are the sys call table32 and sys call table64 (also called sys call table)

structures. The functions sys32 tamper config and sys tamper config were added

respectively. In the test implementation, these system calls were positioned to replace

a sys ni syscall (which indicates the particular system call is not implemented).

In addition to placing the calls in the system call table, the function prototypes

had to be declared. This was done in include/linux/syscalls.h file. The function

prototypes are those seen in the file containing the system calls.

Modifying the Page Tables on Program Start

In starting a new application with exec, the page tables need to be modified im-

mediately before the application starts executing. This was done in the ELF loader

B.1. Kernel Source Code 100

(contained in fs/binfmt elf.c). The following lines were inserted directly before

the thread starts executing (the start thread call).

#ifdef CONFIG TAMPER RESISTANCE

tamper modify pagetable();

#endif

Modifications on Program Termination

Since the tamper resistance attack requires extra structures to be allocated in the

kernel, these structures need to be freed when a process exits. This is done inside the

free task function inside kernel/fork.c.

#ifdef CONFIG TAMPER RESISTANCE

tamper free struct(tsk−>tamper);

tsk−>tamper = NULL;

#endif

Modifications to the Page Table

The Linux kernel does not use all of the bits in a page table entry which are available

to software. One of the unused bits in the standard Linux kernel was dedicated to de-

noting a split page. Extra defines were included in include/asm-sparc64/pgtable.h

which denoted the extra defines.

B.2. Application Wrapper 101

#define PAGE ALTDATA SHIFT 50

#define PAGE ALTDATA AC(0x0004000000000000,UL)

B.2 Application Wrapper

In addition to the kernel level code, an application was written which sets up the

kernel level data structures required for an attack. For each page in the application

being attacked, two pages have to be given. The first is the unmodified original code

page. This code page is stored in a separate file apart from the application. The

wrapper program implemented opened these files from storage and loaded them into

the kernel. The modified pages are contained directly in the application space and do

not need to be loaded by the wrapper. The wrapper works on a per-page basis. An

individual page in an application can be split as required by the attacker. After the

kernel has been informed of the original code on all pages which are to be split for

the purposes of the attack, the original application was run. On running the original

application, the kernel automatically adjusted the data TLB for split memory pages

dictated previously by the wrapper.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#define SYSCALL TAMPER 282
enum tamper op {

TAMPER CHECK = 0, 10

TAMPER ENABLE,
TAMPER HIDE,
TAMPER ADDPAGE,
TAMPER GETPAGESIZE,

B.2. Application Wrapper 102

};

struct tamper arg {
unsigned long address;
void * data;

}; 20

int main(int argc, char **argv, char **envp) {
int error;
struct tamper arg arg;
int pageSize;
int argoff = 2;
char * curFunction = NULL;

curFunction = "Check for tamper resistance existance";
error = syscall(SYSCALL TAMPER, TAMPER CHECK, 0x00); 30

if(error) goto errorexit;

if(argc <= 1) {
printf("No program to run. . .\n");
return 0;

}

curFunction = "Enable tamper checking";
error = syscall(SYSCALL TAMPER, TAMPER ENABLE, 0x00);
if(error) goto errorexit; 40

curFunction = "Get Page Size";
pageSize = syscall(SYSCALL TAMPER, TAMPER GETPAGESIZE, 0x00);
if(error) goto errorexit;

while(argoff < argc && argv[argoff][0] == ’-’ && argv[argoff][1] != ’-’) {
arg.address = strtol(argv[argoff] + 1 , NULL, 0);

curFunction = "Allocating memory for page data";
arg.data = (void *)malloc(pageSize); 50

if(!arg.data) goto errorexit;

/* Here is where we open the data file and figure out what the
* memory should be there. . . */
{

char filename[1000];
int fileno;

snprintf(filename, sizeof(filename), "%s.0x%lX.mem", argv[1], arg.address);
fileno = open(filename, O RDONLY); 60

if(fileno == −1) {
printf("Failed to open input file \"%s\".\n", filename);
return −1;

}

B.2. Application Wrapper 103

error = read(fileno, arg.data, pageSize);
if(error != pageSize) {

printf("Failed reading %d bytes from \"%s\".\n", pageSize, filename);
return −1;

} 70

close(fileno);
}

printf("Adding page: Address 0x%lX (%d byte ptr), data at %08lX.\n",
arg.address, sizeof(arg.address), (unsigned long)arg.data);

curFunction = "Adding page to translation map";
error = syscall(SYSCALL TAMPER, TAMPER ADDPAGE, &arg);
if(error) goto errorexit; 80

free(arg.data);
argoff++;

}

curFunction = "Hide tamper syscall";
error = syscall(SYSCALL TAMPER, TAMPER HIDE, 0x00);
if(error) goto errorexit;

error = syscall(SYSCALL TAMPER, TAMPER CHECK, 0x00); 90

if(!error) {
printf("Tamper Syscall not properly hidden.\n");
return −1;

}

{
int cntr;
char ** data;
data = malloc(sizeof(char *) * (argc + 1));
if(!data) { 100

printf("Failed to allocate memory for child command line.\n");
return −1;

}

data[0] = argv[1];
for(cntr = 1; cntr + argoff < argc; cntr++) {

data[cntr] = argv[cntr + argoff];
}
data[cntr] = NULL;

110

for(cntr = 0; data[cntr]; cntr++) {
printf("%s ", data[cntr]);

}
printf("\n");

curFunction = "Running program";

B.2. Application Wrapper 104

error = execve(data[0], data, envp);
}

errorexit: 120

printf("Failed System call: %s - result %d.\n",
curFunction, error);

error = errno;
printf("System Error message (%d), \"%s\".\n",

error, strerror(error));
return −1;

}

Bibliography

[1] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual, vol-

ume 2: System Programming. Advanced Micro Devices, Inc., Sep 2003.

[2] Advanced Micro Devices, Inc. BIOS and Kernel Developer’s Guide for AMD

Athlon 64 and AMD Opteron Processors, 3.06 edition, Sep 2003.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy

model of computation. Algorithmica, 12(2/3):72–109, 1994.

[4] B. Anckaert, B. D. Sutter, and K. D. Bosschere. Software piracy prevention

through diversity. In Proceedings of the 4th ACM Workship on Digital Rights

Management (DRM 2004), pages 63–71, Oct 2004.

[5] D. Anderson. Boinc: A system for public-resource computing and storage. In

Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04), pages

4–10, Pittsburgh, PA, Nov 2004. IEEE Computer Society (CS) Press.

[6] D. Anderson. SETI@home: Search for extraterrestrial intelligence at home, Jan

2005. http://setiathome.ssl.berkeley.edu/.

[7] T. Anderson and P. Lee. Fault Tolerance, Principles and Practice. Prentice/Hall

International, London, 1981.

105

BIBLIOGRAPHY 106

[8] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable boot-

strap architecture. In Proceedings of the 1997 IEEE Symposium on Security and

Privacy, page 65. IEEE Computer Society, 1997.

[9] ARM. ARM1022E Technical Reference Manual, 1 edition, Nov 2001. http:

//www.arm.com/pdfs/DDI0237A_1022E.pdf.

[10] ARM. ARM1020E Technical Reference Manual, r1p7 edition, Jun 2003. http:

//www.arm.com/pdfs/DDI0177E_1020e_r1p7_trm.pdf.

[11] ARM. ARM documentation - ARM processor cores. Website, Feb 2005. http:

//www.arm.com/documentation/ARMProcessor_Cores/index.html.

[12] D. Aucsmith. Tamper resistant software: An implementation. In R. Anderson,

editor, Proceedings of the First International Workshop on Information Hiding,

volume 1174 of Lecture Notes in Computer Science, pages 317–333. Springer-

Verlag, May 1996.

[13] J. Backus. Can programming be liberated from the von neumann style?: a

functional style and its algebra of programs. Communications of the ACM,

21(8):613–641, 1978.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and

K. Yang. On the (im)possibility of obfuscating programs. In Advances in Cryp-

tology - CRYPTO ’01, volume 2139 of Lecture Notes in Computer Science, pages

1–18. Springer-Verlag, Aug 2001. Santa Barbara, CA, August 19-23, 2001.

[15] D. P. Bertsekas. Data networks. Prentice-Hall, 1987.

[16] D. Brezinski and T. Killalea. RFC3227 - Guidelines for evidence collection and

archiving. Technical report, Network Working Group, Feb 2002.

BIBLIOGRAPHY 107

[17] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In

B. Pfitzmann and P. Liu, editors, Proceedings of the 11th ACM Conference on

Computer and Communications Security, pages 132–144. The Association for

Computing Machinery, Oct 2004.

[18] P. Ceruzzi. Crossing the divide: Architectural issues and the emergence of the

stored program computer, 1935-1955. IEEE Ann. Hist. Comput., 19(1):5–12,

1997.

[19] H. Chang and M. Atallah. Protecting software code by guards. In Proceedings of

the 1st ACM Workship on Digital Rights Management (DRM 2001), volume 2320

of Lecture Notes in Computer Science, pages 160–175. Springer-Verlag, 2002.

[20] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinba, and M. Jakubowski. Obliv-

ious hashing: A stealthy software integrity verification primitive. In Proc. 5th

Information Hiding Workship (IHW), volume 2578 of Lecture Notes in Computer

Science, pages 400–414, Netherlands, Oct. 2002. Springer-Verlag.

[21] J. Claessens, B. Preneel, and J. Vandewalle. (How) can mobile agents do secure

electronic transactions on untrusted hosts? A survey of the security issues and

the current solutions. ACM Trans. Inter. Tech., 3(1):28–48, 2003.

[22] F. B. Cohen. Operating system protection through program evolution. Comput-

ers and Security, 12(6):565–584, 1993.

[23] C. Collberg and C. Thomborson. Software watermarking: models and dynamic

embeddings. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 311–324. ACM Press, 1999.

[24] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscat-

ing transformations. Technical Report 148, University of Auckland, July

BIBLIOGRAPHY 108

1997. http://www.cs.auckland.ac.nz/~collberg/Research/Publications/

CollbergThomborsonLow97a/index.html.

[25] C. Collberg, C. Thomborson, and D. Low. Breaking abstractions and unstruc-

turing data structures. In Proceedings of the 1998 International Conference on

Computer Languages, pages 28–38. IEEE Computer Society, 1998.

[26] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfus-

cation: Tools for software protection. IEEE Transactions on Software Engineer-

ing, 28(8):735–746, 2002.

[27] Compaq Computer Corporation. Alpha Architecture Handbook, 4th edition, Oct

1998.

[28] Compaq Computer Corporation. Alpha Architecture Handbook, chapter 6 - Com-

mon PALcode Architecture. Number EC-QD2KC-TE. 4th edition, Oct 1998.

[29] Digital Equipment Corporation. Alpha 21164 Microprocessor Data Sheet, chapter

8 - Internal Processor Registers, pages 87–90. Number EC-QAEPD-TE. Digital

Equipment Corporation, Jul 1996.

[30] D. Eastlake. RFC3174 - US secure hash algorithm 1 (SHA1). Technical report,

Network Working Group, Sep 2001.

[31] EveryMac.com. Apple Macintosh Systems. Website, Oct 2004. http://www.

everymac.com/systems/apple/.

[32] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In

Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-

VI), page 67. IEEE Computer Society, 1997.

BIBLIOGRAPHY 109

[33] S. Furino. Network Flows - Course Notes for C&O 351. Department of Combi-

natorics and Optimization, University of Waterloo, Jan 2003.

[34] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and

hash trees for efficient memory integrity verification. In Proceedings of the The

Ninth International Symposium on High-Performance Computer Architecture

(HPCA’03), page 295. IEEE Computer Society, 2003.

[35] J. Gosler. Software protection: Myth or reality? In Advances in Cryptology –

CRYPTO’85, volume 218 of Lecture Notes in Computer Science, pages 140–157.

Springer-Verlag, 1985.

[36] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An approach to the objec-

tive and quantitative evaluation of tamper-resistant software. In J. S. J. Pieprzyk,

E. Okamoto, editor, Information Security: Third International Workshop, ISW

2000, volume 1975 of Lecture Notes in Computer Science, pages 82–96. Springer-

Verlag, Dec 2000.

[37] A. Herzberg and S. S. Pinter. Public protection of software. ACM Transactions

on Computer Systems, 5(4):371–393, 1987.

[38] F. Hohl. Time limited blackbox security: Protecting mobile agents from ma-

licious hosts. In Mobile Agents and Security, volume 1419 of Lecture Notes in

Computer Science, pages 92–113. Springer-Verlag, 1998.

[39] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamic self-checking tech-

niques for improved tamper resistance. In Proceedings of the 1st ACM Workshop

on Digital Rights Management (DRM 2001), volume 2320 of Lecture Notes in

Computer Science, pages 141–159. Springer-Verlag, 2002.

BIBLIOGRAPHY 110

[40] A. Huang. Hacking the Xbox. No Starch Press, Inc., San Francisco, CA, 2003.

[41] Intel. IA-32 Intel Architecture Software Developer’s Manual, volume 3: System

Programming Guide, chapter Appendix A - Performance-Monitoring Events. In-

tel Corporation, P.O. Box 5937 Denver CO, 2003.

[42] Intel. IA-32 Intel Architecture Software Developer’s Manual, volume 3: System

Programming Guide, chapter 3 - Protected-Mode Memory Management. Intel

Corporation, P.O. Box 5937 Denver CO, 2003.

[43] Intel Corporation, P.O. Box 5937 Denver CO. IA-32 Intel Architecture Software

Developer’s Manual, 2003.

[44] D. S. Johnson and L. A. McGeoch. The Traveling Salesman Problem and its

Variations - Experemental Analysis of Heuristics For the STSP, pages 369–443.

Kluwer Academic Publishers, Jun 2002.

[45] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer

systems. In Proceedings of the 12th USENIX Security Symposium, pages 295–308,

Aug 2003.

[46] R. Kennell and L. H. Jamieson. An analysis of proposed attacks against genuinity

tests. Technical report, Purdue University, Aug 2004. CERIAS TR 2004-27.

[47] G. H. Kim and E. H. Spafford. The design and implementation of Tripwire:

A file system integrity checker. In Proceedings of the 2nd ACM Conference on

Computer and Communications Security, pages 18–29. ACM Press, 1994.

[48] A. LaMarca and R. Ladner. The influence of caches on the performance of heaps.

ACM Journal of Experimental Algorithmics, 1:4, 1996.

BIBLIOGRAPHY 111

[49] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz. Specifying and verify-

ing hardware for tamper-resistant software. In Proceedings of the 2003 IEEE

Symposium on Security and Privacy, page 166. IEEE Computer Society, 2003.

[50] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz. Architectural support for copy and tamper resistant software.

In Proceedings of the Ninth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 168–177. ACM Press,

2000.

[51] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an untrusted operating

system on trusted hardware. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles, pages 178–192. ACM Press, 2003.

[52] C. Linn, S. Debray, and J. Kececioglu. Enhancing software tamper-resistance via

stealthy address computations. In 19th Annual Computer Security Applications

Conference (ACSAC 2003), Dec 2003.

[53] The Linux Kernel Archives, Oct 2004. http://www.kernel.org.

[54] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and

J. F. Farrell. The inevitability of failure: The flawed assumption of security in

modern computing environments. In 21st National Information Systems Security

Conference. National Security Agency, 1998. http://csrc.nist.gov/nissc/

1998/proceedings/paperF1.pdf.

[55] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 5 edition, Oct 2001.

BIBLIOGRAPHY 112

[56] Microsoft. Internet Explorer 6: Digital certificates, Jan 2005. http:

//www.microsoft.com/resources/documentation/ie/6/all/reskit/en-us/

part2/c06ie6rk.mspx.

[57] MIPS Technologies, 1225 Charleston Road Mountain View CA. MIPS32 Archi-

tecture For Programming, 0.95 edition, Mar 2001.

[58] N. Moray. Intelligent aids, mental models, and the theory of machines. In Inter-

national Journal of Man-Machine Studies, volume 27, pages 619–629. Academic

Press Ltd., 1987.

[59] Motorola. M68040 Microprocessors User’s Manual, 1993.

[60] Motorola. MPC7450 RISC Microprocessor Family User’s Manual. Number

MPC7450UM in Motorola Literature. Motorola, P.O. Box 5405, Denver, Col-

orado 80217, Feb 2004.

[61] J. Nick L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a

coprocessor-based kernel runtime integrity monitor. In Proceedings of the 13th

USENIX Security Symposium, pages 179–194, Aug 2004.

[62] D. O’Brien. Recognizing and recovering from rootkit attacks. Sys Admin,

5(11):8–20, Nov 1996.

[63] M. Peinado, Y. Chen, P. England, and J. Manferdelli. NGSCB: A trusted open

system. In The 9th Australasian Conference on Information Security and Pri-

vacy. Microsoft Corporation, Jul 2004.

[64] E. Pelaez. Parallelism: performance or programming. SIGCAS Computer Soci-

ety, 19(4):4–8, 1989.

BIBLIOGRAPHY 113

[65] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding — A

survey. Proceedings of the IEEE, 87(7):1062–1078, 1999.

[66] T. Reinhart, C. Boettcher, and S. Tomashefsky. Self-checking software: improv-

ing the quality of mission-critical systems. In Digital Avionics Systems Confer-

ence, 1999. Proceedings. 18th, volume 1, Oct 1999.

[67] Research In Motion (RIM). Research in motion files fourth complaint against

Good Technology, Sep 2002. http://www.rim.net/news/press/2002/pr-19\

_09_2002.shtml.

[68] P. Roberts. Rsa: Microsoft on ’rootkits’: Be afraid, be very afraid. Website, Mar

2005. http://www.computerworld.com/securitytopics/security/story/0,

10801,99843,00.html.

[69] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-based policy

enforcement for remote access. In B. Pfitzmann and P. Liu, editors, Proceedings

of the 11th ACM Conference on Computer and Communications Security, pages

308–317. The Association for Computing Machinery, Oct 2004.

[70] T. Sander and C. Tschudin. Protecting mobile agents against malicious hosts.

In G. Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture Notes

in Computer Science, pages 44–60. Springer-Verlag, 1998.

[71] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: Software-based

attestation for embedded devices. In Proceedings of the IEEE Symposium on

Security and Privacy, Oakland, CA, May 2004.

[72] U. Shankar, M. Chew, and J. Tygar. Side effects are not sufficient to authenticate

software. In Proceedings of the 13th USENIX Security Symposium, pages 89–102,

Aug 2004.

BIBLIOGRAPHY 114

[73] A. Silberschatz, G. Gagne, and P. B. Galvin. Operating System Concepts. John

Wiley & Sons, Inc., Hoboken, NJ, 7th edition, 2005.

[74] S. W. Smith and S. Weingart. Building a high-performance, programmable secure

coprocessor. Computer Networks, 31(9):831–860, 1999.

[75] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: ar-

chitecture for tamper-evident and tamper-resistant processing. In Proceedings

of the 17th Annual International Conference on Supercomputing, pages 160–171.

ACM Press, 2003.

[76] Sun Microsystems, 4150 Network Circle, Santa Clara, California. UltraSPARC

III Cu User’s Manual, Jan 2004. http://www.sun.com/processors/manuals/

USIIIv2.pdf.

[77] Sun Microsystems. UltraSPARC III Cu User’s Manual, pages 245–258. 4150

Network Circle, Santa Clara, California, Jan 2004. http://www.sun.com/

processors/manuals/USIIIv2.pdf.

[78] E. Troubitsyna. Developing fault-tolerant control systems composed of self-

checking components in the action systems formalism. In Proceedings of the

Workshop on Formal Aspects of Component Software FACS’03, pages 167–186,

Sep 2003.

[79] Trusted Computing Group. Trusted platfrom module (TPM) main specification,

version 1.2, revision 62, Oct 2003. http://www.trustedcomputinggroup.org.

[80] Trusted Computing Group, Oct 2004. http://www.trustedcomputingroup.

com/home.

BIBLIOGRAPHY 115

[81] W. T. Tutte. FISH and I. Technical report, University of Waterloo, 1998.

http://frode.home.cern.ch/frode/crypto/tutte.html.

[82] Ultra-X, Inc. Ultra-X-Hardware Diagnostics, Jan 2005. http://www.uxd.com/

hardware-diagnostics.shtml.

[83] P. C. van Oorschot. Revisiting software protection. In C. Boyd and W. Mao,

editors, Information Security: 6th International Conference, ISC 2003, volume

2851 of Lecture Notes in Computer Science, pages 1–13, Bristol, UK, Oct 2003.

Springer-Verlag.

[84] C. Wang. A Security Architecture for Survivability Mechanisms. PhD thesis,

University of Virginia, Charlottesville, Virginia, Oct. 2000. http://www.cs.

virginia.edu/~survive/pub/wangthesis.pdf.

[85] J. Wetzel, editor. PowerPC Operating Environment Architecture, volume 3, chap-

ter 4.5 Virtual to Real Translation. International Business Machines, version 2.01

edition, Dec 2003.

[86] Wikipedia. Cyclic redundancy check - wikipedia, the free encyclopedia, Mar

2005. http://en.wikipedia.org/wiki/Cyclic_redundancy_check.

[87] Wikipedia. Executable and linkable format - wikipedia, the free encyclope-

dia, Mar 2005. http://en.wikipedia.org/wiki/Executable_and_Linkable_

Format.

[88] Wikipedia. Network - wikipedia, the free encyclopedia, Jan 2005. http://en.

wikipedia.org/wiki/Network.

	Abstract
	Acknowledgements
	Introduction and Overview
	Overview of Software Protection
	Obfuscation
	Software Diversity
	Watermarking
	Software Tamper Resistance
	Remote Verification
	Hardware Assisted Software Tamper Resistance
	Self-Checking Software Tamper Resistance

	Defences for a Trusted End User
	Chapter Summary

	Background on Software Tamper Resistance
	Hashing
	Protecting the Hashing Algorithm
	Aucsmith's Integrity Verification Kernel (overview)
	Networked Hash Functions
	Obfuscation for Protecting Hashing Algorithms

	Aucsmith's Integrity Verification Kernel (details)
	IVK Creation
	IVK Use

	Networks of Checksumming Code
	Testers
	Guards

	Chapter Summary

	The Attack against Integrity Self-Hashing
	Summary of Applicability of Attack Variations to Processors
	A Generic Attack Against Hashing on many Processors
	Variations on the Attack
	Defeating Self-Checking on the UltraSparc
	Defeating Self-Checking on the x86
	Microcode Variation of Attack
	Performance Monitoring

	Locating the Hashing code
	Chapter Summary

	Other Issues Related to the Attack
	Setting up the Split Pages
	Extracting the Code Pages
	Notifying the OS of the Split Code Pages
	Installing the Split Code Pages

	Limitations of our Proof of Concept
	Additional Allocation of Executable Memory Regions
	Page Swapping
	Extracting the Code Pages

	Chapter Summary

	Further Discussion and Concluding Remarks
	The Mental Model of a Modern Processor
	Noteworthy Features of our Attack
	Difficulty of Detecting the Attack Code
	Feasibility where Emulator-Based Attacks would Fail
	Generic Attack Code
	Breadth of Variations

	Implications of the Attack
	Differential Attacks
	Processor Modifications Preventing an Attack

	Concluding Remarks

	Hardware Architecture Background
	Page Table Translation
	TLBs (Translation Lookaside Buffers)
	Page Swapping
	Access Controls on Memory
	Performance Monitoring

	The UltraSparc Processor Attack Code
	Kernel Source Code
	The data TLB Miss Interrupt Handler
	Tamper Resistance Attack Include File
	Tamper Resistance Attack System Call and Initialization
	Small Modifications to Other Source Files

	Application Wrapper

