
Test Driven
Development

Kirrily Robert

The problem

Good

Cheap Fast

jeanpier
Sticky Note
s/w dev

No silver bullet

jeanpier
Sticky Note
There is still no magic recipe.
We will look at disasters later in the course.

Time taken to fix bugs

0

250

500

750

1,000

Design Implementation QA Post-release

jeanpier
Sticky Note
Actually Caper Jones and Oliver Bonsignour state in "The economics of s/w quality" that the most efficient practice is to have good (complete and consistent) requirements

Cheap programmers

• Best programmers 10x as effective

• Testing can close the gap (somewhat)

Software quality

• “Instinctive”

• Hard to measure

jeanpier
Sticky Note
The myth

• Testing

• Test Driven Development

The solution

jeanpier
Sticky Note
S/w testing is about running code to check its behavior. There are other approaches to s/w quality, as discussed later in the course.

Testing

Test

Design

Implement

TDD

Design

Implement

TestTest

jeanpier
Sticky Note
Notice: testability leads to design, NOT the other way around

How to do it

• Design: figure out what you want to do

• Test: write a test to express the design

• It should FAIL

• Implement: write the code

• Test again

• It should PASS

Design

The subroutine add() takes two arguments and adds
them together. The result is returned.

jeanpier
Sticky Note
These are really requirements...

Test

use Test::More tests => 1;

is(add(2,2), 4, “Two and two is four”);

FAIL

$ prove -v add.t

add....Undefined subroutine &main::add called at add.t line 3.

Looks like your test died before it could output anything.

1..1

dubious

 Test returned status 255 (wstat 65280, 0xff00)

DIED. FAILED test 1

 Failed 1/1 tests, 0.00% okay

Failed Test Stat Wstat Total Fail List of Failed

add.t 255 65280 1 2 1

Failed 1/1 test scripts. 1/1 subtests failed.

Files=1, Tests=1, 0 wallclock secs (0.02 cusr + 0.01 csys = 0.03 CPU)

Failed 1/1 test programs. 1/1 subtests failed.

Implement

sub add {

my ($first, $second) = @_;

return $first + $second;

}

Test

$ prove -v add.t
add....1..1
ok 1 - Two and two is four
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs (0.02 cusr + 0.01 csys = 0.03 CPU)

Wait...

• What if there are fewer than two
arguments?

• What if there are more than two
arguments?

• What if the arguments aren’t numeric?

Iterate

Design

Implement

TestTest

Design

• The subroutine add() takes two
arguments and adds them together. The
result is returned.

• If fewer than two arguments are
provided, add() will return undef.

• If more than two arguments are provided,
add() will return the sum of the first two.

• If any argument is non-numeric, add()
will return undef.

Test
use Test::More tests => 4;

is(add(2,2), 4,
“Simple case: two and two is four”);

is(add(3), undef,
“Return undef for < 2 args”);

is(add(2,2,2), 4,
“Only add first 2 args”);

is(add(“foo”, “bar”), undef,
“Return undef for non-numeric args”);

jean-pierre corriveau

Test

prove -v add.t
add....1..4
ok 1 - Two and two is four
ok 2 - Return undef for < 2 args
ok 3 - Only add first 2 args
ok 4 - Return undef for non-numeric args
ok
All tests successful.

Effective tests must
be automated

jeanpier
Sticky Note
Even for this trivial example, the number of tests grows quickly.

Write once, run often

• Write tests once

• Keep them somewhere sensible

• Run frequently (one click)

• No human input

• Machine-parsable output

jeanpier
Sticky Note
The last two are killers: all contexts of use must be addressed WITHOUT human intervention and whether a test passes or fails must be decided automatically.

Test coverage

• How much of the code is tested?

• What areas still need testing?

• Where are the greatest risks?

jeanpier
Sticky Note
Total code coverage is desirable but, by itself, does not guarantee s/w quality, as discussed later.

9/15/13

3

TDD in summary

A.  First we write a test.

B.  Then we write code to make the test
pass.

C.  Then we find the best possible design for
what we have - refactoring (Relying on the
existing tests to keep us from breaking things
while we are at it)

TDD goals

•  TDD is a technique for improving the
software’s internal quality

Well-written code
•  Good design
•  A balanced division of responsibilities
•  Without duplication of responsibility
•  Maintainability and smooth evolution

jeanpier
Sticky Note
A more detailed look at TDD

jeanpier
Sticky Note
The issue is how do we measure such desirable characteristics?

9/15/13

4

Build it right: TDD

•  TDD: building up the system
incrementally, knowing that we’re never far
from a working baseline.

– A test is our way of taking that next small
step.

•  The term refactoring is used to better
communicate that the last step is about
transforming the current design toward a
better design.

First we write a test
•  We are writing a test. Also, we are making

design decisions:
– We are designing the API—the interface for

accessing the functionality we’re testing.
– The test case that we design will be the first

“client” of the functionality that we are going
to implement.

– One of the fundamental lessons in designing
an interface is that we only evaluate a design
effectively and objectively when we try to use
it.

9/15/13

5

Then we write just enough code

•  The second step of the TDD cycle is to
write just enough code to make the test
pass.

•  You’re satisfying an explicit, unambiguous
requirement expressed by a test.

And then we refactor

•  Take a step back, look at our design, and
figure out ways of making it better.

•  It is all about keeping your software in
good health—at all times.

•  Refactoring is about applying refactorings
on code in a controlled manner

jeanpier
Sticky Note
More about refactoring later...

9/15/13

6

Keeping code healthy with
refactoring

•  “a disciplined technique for restructuring
an existing body of code, altering its
internal structure without changing its
external behavior” : Martin Fowler

Refactoring Example

•  Replace Inheritance with Delegation
– Motivation: A subclass uses only part of a

superclass interface or does not want to
inherit data

– Summary: Create a field for the superclass,
adjust methods to delegate to the
superclass, and remove the subclassing.

jeanpier
Highlight

jeanpier
Sticky Note
Yes but do you understand the consequences? Even the design patterns of Go4 have pros and cons...

9/15/13

7

Refactoring Example
•  Mechanics

1.  Create a field in the subclass that refers to
an instance of the superclass. Initialize it to
this.

2.  Change each method defined in the
subclass to use the delegate field.

3.  Compile and test after changing each
method.

Refactoring Example
•  Mechanics

4.  Remove the subclass declaration and
replace the delegate assignment with an
assignment to a new object.

5.  For each superclass method used by a
client, add a simple delegating method.

6.  Compile and test.

9/15/13

8

Refactorings alter internal
structure

•  Many of the refactorings are very low-level
–  rename method
– Rename variable

•  Low-level refactorings are the fundamental
building blocks to achieving larger
refactorings
– Moving the responsibilities around in your

code
–  Introducing or removing an inheritance

hierarchy

Refactorings preserve behavior

•  whatever transformations you apply to the
existing code, those transformations
should only affect the code’s design and
structure—not its externally visible
behavior or functionality.
– Renaming a method that is part of a class’s

public interface - ???
– how can we be sure that our refactorings

haven’t changed the code’s external
behavior? - ???

jeanpier
Highlight

