Introduction to Unified Modeling Language

Overview of architectural views and UML 2 diagrams

What Is UML?

« A language (notation) for modeling object-oriented systems

« A standard maintained by the Object Management Group
A modeling language including 13 diagrams

* A means for visualizing, specifying, constructing, and
documenting software systems

UNIFIED |°
MODELING [\ A
- http://www.uml.org ancuace B WY

Long Story of UML

Industrialization

Standardization

Unification

Fragmentation

‘06 @ UML 2.1
f Not all components of
0 e UML 2.0 UML 2 are supported by
01 @ UML L.4/1.5 modeling tool.s yet.
*" Some tools still use
‘99 .— UML 1_3“... UML 14
o8 AN
(Internal) @ UML *12< _____ e, RTF (Revision Task Force)
Sep 97 @ UML 1.1
Av..
Jan'97 @ UML1.0 ..
‘ Partner’s Expertise
96 @=——— UML 0.9 & 0.91
* Ivar Jarcobson
95 @—— Unified Method 0.8
................ » Aq- Jim Rumbaugh
Other P T (OMT)
Methodologies Grady Booch

Why Do We Model?

* Furnish abstractions to manage complexity

* Provide structure for problem solving

« Experiment to explore multiple solutions

Modeling allows the following business benefits:
= Reduce time-to-market for business problem solutions
= Decrease development costs

= Manage the risk of mistakes

E megicEcrawy

Why Do We Need UML?

« Graphical notation

= A picture is worth a thousand words
« Standard communication language

* Provides multiple diagrams for capturing different
architectural views

 Promotes component reusability

UML is a standard language for visualizing, specifying,
constructing, and documenting software systems

How Can We Benefit from Using UML Modeling Tool?

* Repository of reusable model artifacts

* Visualize in multiple dimensions and levels of detalil

« Use automated layout and visualization tools

* Harvest models from legacy systems

« (Generate documentation from modeling environment

* Analyze traceability through relationships between elements
* Incremental development and refactoring

« Teamwork for parallel development of large systems

 Integration with other development tools

UML Architectural Views and Diagrams

UML defines 13 diagrams that describe 4+1 architectural views

Structural View Implementation View
Class Diagram Component Diagram
Object Diagram Composite Structure Diagram

Composite Structure Diagram

(Package Diagram)
Behavioral View @W Environment View

Sequence Diagram Deployment Diagram
Communication Diagram
State Diagram

Activity Diagram

Interaction Overview Diagram
Timing Diagram

4+1 architectural views model was proposed by Philippe Kruchten, IBM

« The most important architectural view
» Describes use cases that provide value for the users

« Essential use cases are used as proof of concept for
Implementation architecture

» Use cases may be visualized in UML use case diagram
« Each use case may have multiple possible scenarios

« Use case scenarios could be described:
= Using textual descriptions;
= Graphically, using UML activity diagrams.

- o

E megiecraw”

Structural View

« Represents structural elements for implementing solution for
defined requirements

* Defines
= Object-oriented analysis and design elements;
= Domain and solution vocabulary;
= System decomposition into layers and subsystems;
» |nterfaces of the system and its components.

* |s represented by static UML diagrams:
= Class diagrams in multiple abstraction levels;
= Package diagrams;
= Composite structure diagrams (new in UML 2).

pets T

 mecicEreny’

Behavioral View

* Represents dynamic interaction between system
components for implementing requirements

« Shows distribution of responsibilities
 Allows to identify interaction and coupling bottlenecks

« A means for discussing non-functional requirements
= Performance, maintenance, ...

» |s especially important for distributed systems

* |s represented by dynamic UML diagrams:
= Sequence and/or communication diagrams;
= Activity diagrams; Iy
= State diagrams; ' ‘“
= |nteraction overview diagram (new in UML 2); H
= Timing diagrams (new in UML 2).

E megicEcrawy

Implementation View

* Describes implementation artifacts of logical subsystems
defined in structural view;

« May include intermediate artifacts used in system
construction (code files, libraries, data files, ...)

» Defines dependencies between implementation components
and their connections by required and provided interfaces

* |Is represented by these UML diagrams:
= Component diagrams;
= Composite structure diagrams (new in UML 2).

-

¥ meeiEcrewy”

Environment View

 Represents system’s hardware topology

« Defines how software components are deployed on
hardware nodes
« Useful for analyzing non-functional requirements
= Reliability, scalability, security, ...

* Provides information for system installation and
configuration

* |s represented by
= UML deployment diagram

ﬁi -

E megiecraw”

Use Case Diagram

* Describes the functionality provided by system *
* Contains actors, use cases, and relationships

Magic University

Check Schedule

Registration Clerk\

StudenN

%/ Generate Tuition Invoices
Finance Officer

MEEIECIREY’

Class Diagram

» Describes static structure of the system

« Contains classes and relationships

Student

-name : String
-birthday : date
-email : String
-home : Address

-registered

Class

+Student(name : String)
+setEmail(email : String)
+getEmail() : String
+registerForClass(class : Class)

|

0..*

-code : String
-semester : String
-status : int

-course

Course

+Class(course : Course, section : String, semeste..

+setStatus(status : int)
+getStatus() : int

Undergraduate

-parties : String [0..*]

+addParty(party : String)
+getParties() : String"[]"

0.*
-assistents

Graduate

+applyForAssistance(class : Class)

1

-title : String
-description : String
-credits : int

+getTitle() : String
+setCredits(credits : int)
+getCredits() : int
+getDescription() : String

1
-teacher

Instructor

-name : String
-homeCampus : String

+Instructor(name : String)

 mecicEreny’

Object Diagram

« Shows an example of objects with slots and links that could
be instantiated from defined classes and relatioships

« Validates class diagrams

DB : Instructor DS : Instructor
name = Daniel Brookshier name = Darius Silingas
homeCampus = Plano, TX homeCampus = Kaunas, LT

: Class : Class : Class
code = CS112 code = CS221 code =BM101
semester = Spring semester = Autumn semester = Spring

uml2 : Course req : Course
title = Applying UML 2 with MagicDraw title = Requirements Management
credits =5 credits = 4

Package Diagram

 Decomposes system into logical units of work
* Describe the dependencies between logical units of work
* Provide views of a system from multiple levels of abstraction

MagicUniversity
Registration Reports
L
StudentManagement CourseManagement
‘\—l L
Domain

E megiecraw”

Composite Structure Diagram (1)

« Shows the internal structure of a classifier, including its

interaction points to other parts of the system

* More useful for modeling hardware, real-time systems,
Integrated device modeling

Car

front : Wheel [2]

rear : Wheel [2]

- Axle

engine : Engine [1]

Engine

p : PowerPort

/%ver

\OD/

Powertrain

Wheel

a: Axle

 mecicEreny’

Composite Structure Diagram (2)

« Shows the configuration and relationship of parts that
together perform the behavior of the containing classifier

« Useful for defining static structure of collaboration patterns

-
-
.-
o
-
-
-
-
-

BrokeredSale e
[Consumer : DealParticipant B.u-y.er _______ " Retail : Sale ™~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Seller
\\]‘Broker : DealParticipant
. e Seller -7 T P i3uyer
Producer : DealParticipant | >~"%" “Wholesale : Sale ™

‘‘‘‘‘
______

-
~. s
~ -
~ -
~< -

S~ .-
~~~~~
~ -

-~ -

-~ -

-

Activity Diagram

« Shows a procedural flow for a process
« Useful for workflow modeling

« Supports parallel behavior for multithreaded programming

: Student * Registration System
‘ [Check for Availability]
Choose Class
[no seats left]
[seats available]
Apply for Class Check for Prerequisite
Course Completion
[enrolled student] [does not qualifz]éé
[new student] [qualifies]
Enroll Student w Check for Schedule
rh J Conflict
[conflict]
[Check Schedule rh] [no conflict
@g l Add Class to Schedule j i&

E megiecraw”

Sequence Diagram (1)

Describes how a process is performed by a group of objects
by a sequential set of interactions

Provides an object-oriented view of a procedural views
Facilitates assignment of responsibilities to classes
Helps finding out new methods and new classes
Shows timing very explicitly

(Diagram on next slide)

Sequence Diagram (2)

: Student -2 <<boundary>> O

: RegistrationForm

<<control>> @)
: RegistrationManager

<<entity>1D)
: Class

<<entity>1)
: Student

1: submit()

2: registerForClass(student=

ME, class=uml2)

3:validateRegistration(s

]

4: seatsAvailable()

5:true

6: getPrerequisites()

7: preCourses

8: hasTakenCourses(coy

rses=preCourses)

tudent=ME, class=uml2)

9: true

10: getSchedule()

12:schedule

13: hasConflicts(class=uml2)

<<control>> @)
: NotificationService

<<entity>>0)
: Schedule

14: false

15: addClass(class=uml?)

16: sendNotification()

E megicEcrawy

Communication Diagram

* Provides an alternative view to the sequence diagram in a
format based on structure rather than time

 Emphasizes how objects interact with each other
* More efficient use of space

: Student %

i 1: submit()

<<boundary>> O

: RegistrationForm
2:registerForClass(-)
3: validateRegistration(-, -)
<—
9: sendNotification()
<<control>> ®) ’ <<control>>
: RegistrationManager : NotificationService
4: seatsAvailable() l l6: hasTakenCourses(-) l 8: hasConflicts()
5: getPrerequisites() l7: getSchedule() v 10: addClass(-)
<<entity>> @) <<entity>> @) <<entity>> @)
: Class : Student : Schedule

E megicEcrawy

State Diagram

» Describes how an object changes its state that govern its
behavior in response to stimuli from the environment

H Announced]

at (4 weeks before class)

[Registration Open]

at (1 week before class)

[Registration Closed]

when (reports prepared)
(Cancelled
[students >= 5 [students < 5] l
[Running]
when (grades finalized)

[Finished ’ :

Component Diagram

» Describes software components that make up a system,
their interfaces (optional) and relationships

!

<<EJBEntityBean>> | @ <<EJBEntityBean>> |
Elas’sManagerHome ClassManager CI&Home ClassBean

-
- — ~ ClassManager Class
<<component>> = ~

PP Q
JSP Pages ClassManagerLocal gl/
O ClasSLocal O

7

%

>~ - CIassManM)calHome ClassLotalHome
~ O~
~ =~
~ $() <<EJBSessionBean>>5 | @ <<EJBEntityBean>> |
~
RegistrationManager \1 Schedule
Regi\sthtionManagerHome 9 9 ScheduleHome

T

©

RegistrationManager r}\ Schedule
Notification$erviceLocal SchedulefocalHome

NotificationSe%iceLocaIHlome Sche&xrjl.ocal
<<EJBSessionBean>>[| () <<EJBEntityBean>> |
NotificationService Student

StudentHome

(
S\t%gnt

E megicEcrawy

Deployment Diagram

* Describes the configuration of hardware in a system in
terms of nodes and connections

» Describes the physical relationships between software and
hardware

» Displays how artifacts are installed and move around a
distributed system

Web Client <<execution environment>> <<execution environment>>
HTTP Web Server IIOP/RMI | EJB Application Server

JDBC

<<execution environment>>

DBMS

- /

E megiecraw”

But That’s Not All...

UML provides extensions to the language to create new
types of diagrams

UML Profiles define a set of extensions for a specific usage,
e.g. new domains, technologies, or methods

= Stereotypes

= Tagged Values

= Constraints

= Customizable Icons

E megicEcrawy

Extending UML — Robustness Diagram

O

<<entity>>

Course
S t:ll den:—>t <<boundary>> > <<control>> > <<entity>>

ClassBrowser ClassManager Class
_ _— > .

<< >> << >> << >>

Registration Clerk .boun.dary . C(.)l’ltl‘Ol entity

RegistrationForm RegistrationManager Schedule

!? <<control>> <<entity>>
NotificationService Student

¥ meeiEcrewy”

Where To Go To Learn More

UML Web Resources:

= http://www.objectsbydesign.com
— UML and OQ links, forums, and resources
= http://www.devx.com/uml/
— UML developer zone
= http://www.sdmagazine.com/
— Magazine with many UML related articles
= http://www.omg.org
— The UML Specification and other UML resources

UML Books
= UML Bible by Tom Pender
= UML Distilled by Martin Fowler & Kendal Scott
= Applying UML & Patterns by Craig Larman

