
Page 1

 1 3004 T3a - © J.-Pierre Corriveau, 1997- present

Use Case
Modeling

 2 3004 T3a - © J.-Pierre Corriveau, 1997- present © B. Selic

Page 2

 3 3004 T3a - © J.-Pierre Corriveau, 1997- present © B. Selic

 4 3004 T3a - © J.-Pierre Corriveau, 1997- present © B. Selic

Page 3

 5 3004 T3a - © J.-Pierre Corriveau, 1997- present

Steps of UC Modeling

•  For event-driven systems, UC modeling consists
of the following steps:

–  Scope the system (by considering different Actor perspectives)
–  Identify events and actors

»  Actors are abstractions generating events
»  Think of internal and external events

–  List use-case titles (and prioritize them)
–  Produce a use-case diagram
–  Document use-cases using a scenario textual description

(STD) technique
»  We want the STDs in the design document.

 6 3004 T3a - © J.-Pierre Corriveau, 1997- present

Identifying External Events

Event
offhook -->

first digit -->

last digit -->

<--ringing

answer-->

System Resp.
dialtone

cancel dialtone

translation result

cancel ringing

and ringtone

Arrival
aperiodic
<100/min
aperiodic
<20 sec after
dialtone

interdigit time
= 4sec

aperiodic

Response
<500msec

Digit tone
<100msec

a.s.a.p

a.s.a.p after

last digit
<100msec

Page 4

 7 3004 T3a - © J.-Pierre Corriveau, 1997- present

A Use-Case Diagram

Bank Clear Checks

Prepare Statement

Counter
Transaction

Identify

Loan Application

Audit

Tax Audit

Customer

Auditor

Clerk

Loan Officer

Manager

Actor

Use-Case

<<uses>>

<<uses>>

Clear Checks

<<extends>>

 8 3004 T3a - © J.-Pierre Corriveau, 1997- present

An Example Use Case
Use Case: Making a successful POTS connection
•  Actors: calling party, called party
•  Scenario:
•  Caller lifts telephone receiver
•  Caller hears dial tone
•  Caller dials digits
•  Caller receives audible ring tone

Called party’s phone rings
•  Called party lifts receiver
•  Caller and Called party are now connected and can talk
•  Called party hangs up
•  Caller receives dial tone
•  Caller hangs up

Key points: System as Black Box, event/response

Page 5

 9 3004 T3a - © J.-Pierre Corriveau, 1997- present

How to Start?

•  You must start by writing down a list of verifiable
requirements and going from them to UCs.

•  Each use case captures a cluster of scenarios:
–  the scenarios of a UC must be logically clustered together
–  a scenario is formed by a (more or less abstract) sequence of

input/output events processed by the system (as a black box)
–  through the use of words such as ‘OR’, ‘AND’, ‘eventually’,
‘optionally’, ‘repeatedly’, each step of a UC, each scenario, and
ultimately each UC can be viewed as a grammar of events

–  In OO, we use a set of UCs to describe system behavior:
»  unless otherwise documented, UCs are taken to be

independent of and concurrent with each other
»  inter-UC relationships (annotated with stereotypes) are

important to identify: the more the UCs are tied to each other,
the less partial the overall specification is!

»  there is generally no overall grammar to build for the whole
system but we do aim for req. coverage (via traceability)

 10 3004 T3a - © J.-Pierre Corriveau, 1997- present

•  We propose that each use case be documented using an
STD that ideally contains the following information:

»  a unique identifier
»  a brief textual description of the overall objective of the UC
»  the set of external actors that participate in the UC
»  a set of possible triggering events
»  a pre-condition that must be satisfied in order to enable the

execution of the UC
»  a sequence of system responsibilities (or steps) for the main

scenario (JP: if not for ALL scenarios!!!)
»  a set of possible resulting events for the UC
»  a post-condition that must evaluate to true after the execution of

the UC
»  a set of alternative scenarios (optional but important!)
»  a set of nonfunctional requirements that apply to the UC (optional)
»  a comment section that may be used by designers as a free format

text window to specify different issues related to the UC (e.g.,
which scenarios were grouped into this UC)

Organizing Use Cases

Page 6

 11 3004 T3a - © J.-Pierre Corriveau, 1997- present

Example STD (1)

 12 3004 T3a - © J.-Pierre Corriveau, 1997- present

Example STD (2)

Page 7

 13 3004 T3a - © J.-Pierre Corriveau, 1997- present

UML ’s Stereotypes and Packages

•  A package can be used to regroup a set of use-
cases

–  a package can also be used to regroup other UML entities,
such as classes

–  it constitutes a grouping mechanism for scalability in UML

•  A stereotype is a user-defined label that allows
extensions to the semantics of UML

–  this is a key mechanism to introduce your own semantics into
the modeling process

 14 3004 T3a - © J.-Pierre Corriveau, 1997- present

Stereotypes for Use-Cases

•  A Basic Use-Case:
–  must describe a typical usage of the system from end-to-

end
–  must keep an external, event-driven perspective

•  An Extension
–  captures functionality that is optional or additional to one

or more basic use cases
»  We prefer to list alternatives inside an STD.

–  is related to basic a use-case using an extends arrow
•  A Reference

–  gives a name to a group of steps repeated in several use-
cases

–  is related to basic a use-case using a uses arrow

Page 8

 15 3004 T3a - © J.-Pierre Corriveau, 1997- present

Some Conclusions

 16 3004 T3a - © J.-Pierre Corriveau, 1997- present

Why OO people like Use-Cases

Use-cases:
•  constitute a simple, intuitive form of scenario modeling

–  temporal logic for event specification is much more complicated

•  are not object-oriented
–  only solutions to the requirements are OO!

•  make clear what external functionality is expected
–  the system is treated as a black-box
–  the interface and the DB functionality are typically separated

•  may be helpful infinding objects
–  how to do this is discussed later in COMP 3004
–  only domain (i.e., problem as opposed to solution) objects should be

mentioned in use-cases
•  are traceable to detailed interaction diagrams used later in

the design process
•  may be used as a basis for black-box testing of the system

Page 9

 17 3004 T3a - © J.-Pierre Corriveau, 1997- present

Working with Use-Cases

•  Use-cases proliferate quickly:
–  It is naive to think you can simply write down all of the use-

cases and exhaustively describe the behavior of the system
–  We repeat, it is easy to confuse scenarios, their steps, and use-

cases
•  Several authors suggest finding “key” scenarios

and use-cases
–  but no one gives good guidelines for selecting such “key” use-

cases... See Wirfs-Brock tutorial
•  Don’t forget about scenario interactions (next

slide)

 18 3004 T3a - © J.-Pierre Corriveau, 1997- present

About Scenario Relationships

•  It is important to group together related scenarios into a single
scenario cluster:

–  A use-case should be thought of as a cluster of related scenarios
–  Exception handling scenarios can be viewed as extensions or

alternatives of basic use-cases
•  Individual scenarios are typically straightforward. It is

essential to capture the relationships between scenarios! The
same holds for use-cases!!

–  Such relationships typically define at least a temporal, if not a
causal order between scenarios, and/or between use-cases.

–  A use-case diagram may be used to document inter-UC
relationships. But we need lots of stereotypes!

Page 10

 19 3004 T3a - © J.-Pierre Corriveau, 1997- present

The Bottom Line

•  Don’t do procedural decomposition through the
use-cases

–  don’t describe algorithms or specific paths of execution inside
the system

–  Each scenario of a UC is an end-to-end sequence of events
corresponding to a typical use of the system, which is viewed
as a black box.

•  Review use-cases with respect to completeness
and consistency

–  trace individual scenarios to requirements
–  inter-scenario and inter-UC relationships are crucial in

verifying consistency

