

Tutorial #9:
The Art of Writing Use Cases

Presented by
Rebecca J. Wirfs-Brock and
John A. Schwartz

Tutorial Presented at OOPSLA 2002:
The ACM SIGPLAN Conference on
Object-Oriented Programming, Systems,
Languages, and Applications

Copyright is held by the author(s).
OOPSLA’02, November 4-8, 2002,
Seattle, Washington, USA.
2002 ACM 02/0011.

1
Wirfs-Brock Associates Copyright 2002. All rights reserved

1Copyright 2002, Wirfs-Brock Associates, Inc.

The Art of Writing Use
Cases

The Art of Writing Use
Cases

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com
John Schwartz
Schwajoh@ohsu.edu

www.wirfs-brock.com

2Copyright 2002, Wirfs-Brock Associates, Inc.

Goals
The goal of this tutorial is to enable you to

– Effectively create elements of a use case model: actors,
use cases, glossaries and use case diagrams

– Choose the form of use case description you need
– Develop or customize a use case template for your

specific project needs
– Effectively write and critique use cases
– Add necessary detail and precision, and relate use

cases to other requirements descriptions

2
Wirfs-Brock Associates Copyright 2002. All rights reserved

3Copyright 2002, Wirfs-Brock Associates, Inc.

Agenda

A Use Case Model: Use Cases, Actors,
Glossaries, Diagrams

Finding and Naming Use Cases and Actors
Dissecting a Use Case Template
Writing Tips and Guidelines
Alternative Paths
Emphasis

4Copyright 2002, Wirfs-Brock Associates, Inc.

A Use Case Model:
Use Cases, Actors and

Glossaries

A Use Case Model:
Use Cases, Actors and

Glossaries

3
Wirfs-Brock Associates Copyright 2002. All rights reserved

5Copyright 2002, Wirfs-Brock Associates, Inc.

Use Case Model
A Use Case Model includes structured use case

descriptions that are grounded in well-defined
concepts constrained by requirements and scope

Activate Customer

and Accounts

Edit Customer
Information

Bank Agent

Edit Customer Status

6Copyright 2002, Wirfs-Brock Associates, Inc.

Use Cases
Use cases describe a system from an external usage

viewpoint
A collection of task-related activities...

– Making a Payment
– Transferring Funds Between Accounts

… describing a discrete “chunk” of the system
They do not describe:

– user interfaces
– performance goals
– application architecture
– non-functional requirements

Jean-Pierre
They do not describe:– user interfaces– performance goals– application architecture– non-functional requirements

4
Wirfs-Brock Associates Copyright 2002. All rights reserved

7Copyright 2002, Wirfs-Brock Associates, Inc.

Use Case Function and Forms

The Writing Task The Best Form To Use

Narrative

Scenario

Conversation or
Essential Use Case

Describe simple
sequence of events

Present Overview

Emphasis actor-system
interaction

8Copyright 2002, Wirfs-Brock Associates, Inc.

Narrative Form

Free-form text in paragraph format

Describes the intent of the user in performing the use
case

Describes high-level actions of the user during the use
case

Refers to key concepts from the problem domain that
are involved in the use case

Jean-Pierre
In COMP 3004 we favor the Scenario and the conversation form

5
Wirfs-Brock Associates Copyright 2002. All rights reserved

9Copyright 2002, Wirfs-Brock Associates, Inc.

The Narrative Form
Make a Payment

The user can make online payments to vendors and
companies known to the bank. Users can apply
payments to specific vendor accounts they have.
There are two typical ways to make payments:
the user can specify a one-time payment for a
specific amount, or establish regular payments
to made on a specific interval such as monthly,
bi-weekly, or semi-annually.

10Copyright 2002, Wirfs-Brock Associates, Inc.

Scenario Form

One particular path through a use case written from the actor’s
point of view

Describes a sequence of events or list of steps to accomplish. A
step may be optional.

Each step is a simple statement

May describe:
– Actors’ intentions (what they accomplish, not the minutiae of their

gestures or individual keystrokes)
– System responsibilities and actions

Jean-Pierre
One particular path

Jean-Pierre
System responsibilities and actions

jean-pierre corriveau

6
Wirfs-Brock Associates Copyright 2002. All rights reserved

11Copyright 2002, Wirfs-Brock Associates, Inc.

The Scenario Form
Register Customer With Automatic Activation

1 User enters registration information:
Required information: user name, email address, desired login ID and

password, and confirmation password
One of: account number and challenge data, or ATM # and PIN
Optional: language choice and company
2 System checks that password matches confirmation password.
3 System validates required fields and verifies uniqueness of login ID
4 System verifies customer activation information.
5 System creates and activates customer online account.
6 System displays registration notification.

12Copyright 2002, Wirfs-Brock Associates, Inc.

Conversation Form

A dialog between the actor and the system that
emphasizes interactions and shows cause and effect

Can show optional and repeated actions

Each action can be described by one or more substeps

May describe:
– Actor intentions and actions
– System responsibilities and actions

Jean-Pierre
Can show optional and repeated actions

7
Wirfs-Brock Associates Copyright 2002. All rights reserved

13Copyright 2002, Wirfs-Brock Associates, Inc.

The Conversation Form
Make A Payment

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and recent payment
history to payee

Enter payee notes, amount and
account

Submit payment information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments
Goto Edit Payment Template

Information
Select next function

Goto selected use case

Optional
Action

Multiple
Actions

Invoking Another Use Case

General
Flow

14Copyright 2002, Wirfs-Brock Associates, Inc.

Comparing the Three Forms
Form Strengths Weaknesses
Narrative • Good for high-

level summaries
• Can be written to

be implementation
independent

• Easy to write at too high
or too low a level

• Not suitable for complex
descriptions

• Can be ambiguous about
who does what

Scenario • Good for
step-by-step
sequences

• Hard to show parallelism
or arbitrary ordering

• Can be monotonous
Conversation • Good for seeing

actor-system
interactions

• Can show parallel
and optional
actions

• Easy to write at too
detailed level: pseudo
pseudo-code

• Only two columns: What
about multiple actors?

All Forms • Informal • Informal

Jean-Pierre

Jean-Pierre
3 forms should be implementation independent!

8
Wirfs-Brock Associates Copyright 2002. All rights reserved

15Copyright 2002, Wirfs-Brock Associates, Inc.

Use Cases Vary by Abstraction
Level

Steve Registers for English 101, or

Student Registers for Course, or

User Uses System, or

Student Registers for Variable Credit Course, or

Student Registers for Music Course

16Copyright 2002, Wirfs-Brock Associates, Inc.

Use Cases Vary in Scope

How broadly do we focus our descriptions?

component: describing the interactions with a web applet

application: describing how the user interacts with online
banking services

organization: describing how the user interacts with online
banking functions that connect with banking applications…

We typically start by describing application level scope

Jean-Pierre
Use Cases Vary by AbstractionLevel

9
Wirfs-Brock Associates Copyright 2002. All rights reserved

17Copyright 2002, Wirfs-Brock Associates, Inc.

user
make payment
transfer funds

operator
edit configuration
maintain user info

administrator
add bank agent

legacy system

Oracle
database

Different Perspectives

18Copyright 2002, Wirfs-Brock Associates, Inc.

Actor

Any one or thing that interacts with the system
causing it to respond to business events

Something that
– stimulates the system to react (primary actor), or
– responds to the system’s requests (secondary

actor)

Something we don’t have control over

10
Wirfs-Brock Associates Copyright 2002. All rights reserved

19Copyright 2002, Wirfs-Brock Associates, Inc.

System Descriptions

Use Case
Narratives

Use Case Scenarios
and Conversations

Detailed
Descriptions

Glossaries

Glossaries

20Copyright 2002, Wirfs-Brock Associates, Inc.

Glossary
A glossary is a central place for:

– Definitions for key concepts
– Clarification of ambiguous terms and concepts
– Explanations of jargon
– Definitions of business events
– Descriptions of software actions

The glossary aids understanding
– Add entries incrementally
– Agree on one definition per term
– Use team development and review

Jean-Pierre
Glossary

11
Wirfs-Brock Associates Copyright 2002. All rights reserved

21Copyright 2002, Wirfs-Brock Associates, Inc.

Writing Glossary Entries
Identify a concept and its distinguishing characteristics

More than a synonym for a word
– Explain why a concept is important
– Mention typical sizes or values
– Clarify likely misunderstandings
– Show an example
– Explain graphical symbols
– Relate entries …

Identifies a way of mentally dividing reality for
purpose of talking or thinking

22Copyright 2002, Wirfs-Brock Associates, Inc.

A Good Form for Definitions
Name of Concept related to a Broader Concept +

Characteristics
Contrast: A compiler is a program that translates

source code into machine language

With a definition that leaves out context: A
compiler translates source code into machine
language

What performs this translation? A computer? A
person?

12
Wirfs-Brock Associates Copyright 2002. All rights reserved

23Copyright 2002, Wirfs-Brock Associates, Inc.

Improving Glossary Definitions
Contrast the original:
Account In the online banking system there are accounts within the

bank which customer-users can access in order to transfer funds,
view account balances and transaction historical data, or make
payments. A customer has one or more accounts which, once
approved by the bank can be accessed. The application supports
the ability for customers to inform the system of new accounts,
and for the customer to edit information maintained about the
accounts (such as name and address information).

With a definition that says what an account is and how it is used:
Account An account is a record of money deposited at the bank

for checking, savings or other uses. A customer may have
several bank accounts. Once a customer’s account is activated for
online access, account information can be reviewed and
transactions can be performed via the internet.

24Copyright 2002, Wirfs-Brock Associates, Inc.

Another Glossary Entry
Automatic activation. Automatic activation is an optional

function of the online banking software that enables
immediate access to bank accounts. To automatically
activate an account, a customer provides information that
associates him with an account, called challenge data, such as
mother’s maiden name. Online access is granted once the
challenge data is validated against bank records. Alternatively,
the customer can supply a valid ATM bankcard number and
PIN. All accounts associated with that ATM card would be
activated.

Characteristics:
– Optional feature
– Details of how the automatic activation function

works

13
Wirfs-Brock Associates Copyright 2002. All rights reserved

25Copyright 2002, Wirfs-Brock Associates, Inc.

Use Pictures to Relate Concepts

wire center— the geographical area served by a central office

central office— a building where local call switching takes place

main distribution frame— a large connector at a central office,
which connects switching equipment to feeder cables

feeder cable— a large cable that connects to the main distribution
frame at a central office and feeds into distribution cables

distribution cable— a cable that connects between a feeder cable
and one or more terminals

26Copyright 2002, Wirfs-Brock Associates, Inc.

A Picture Relating
Hierarchical Concepts

central office

main
distribution
frame

wire center

feeder cables

cross connect

terminals

connector blocks

14
Wirfs-Brock Associates Copyright 2002. All rights reserved

27Copyright 2002, Wirfs-Brock Associates, Inc.

Define Acronyms
and

Their Concepts
Example:

OSS— Operations Support System: As defined
by the FCC, a computer system and/or
database used at a telephone company for pre-
ordering, ordering, provisioning, maintenance
and repair, or billing

28Copyright 2002, Wirfs-Brock Associates, Inc.

Use Case Levels

Use cases can be written at differing levels of abstraction
and scope. Each serves a purpose:
Summary— General descriptions and sweeping overviews of

system functionality or business processes
Core— Task-related descriptions of users and how they interact

with the system; descriptions of a specific business process
Supporting— Descriptions of lower-level activities used to

complete subparts of a core use case
Internal— Descriptions of the behaviors of and interactions

between internal system components

Jean-Pierre
Use Case Levels

Jean-Pierre
Internal— Descriptions of the behaviors of and interactionsbetween internal system components

Jean-Pierre
NO! UCs must be implementation independent...Internal objects must be non-contentious (ie stemming from the reqs) or avoided!

15
Wirfs-Brock Associates Copyright 2002. All rights reserved

29Copyright 2002, Wirfs-Brock Associates, Inc.

Use Case Models Vary in Shape
Sailboat – balanced use cases

Classical business functions

advertise order invoice

set up
promotion

reference
promotion

monitor
promotion

place order create invoice send invoice

identify promotion identify customerregister user identify
product

project goalSummary

Core

Supporting

Alistair Cockburn, Humans and Technology

30Copyright 2002, Wirfs-Brock Associates, Inc.

Use Case Models Vary in Shape
Hourglass—small core

Ad hoc information query/data warehousing

engineering provisioning marketing

Generic
Queries

Maintain indexes Keep use statisticsTune stored
procedures

Collect
information

Support executive
information needs

Summary

Core

Supporting

salesHuman
resources

… …

16
Wirfs-Brock Associates Copyright 2002. All rights reserved

31Copyright 2002, Wirfs-Brock Associates, Inc.

Use Case Models Vary in Shape
Pyramid—supporting use case rich

Software application development environment

Configure
collection

Configure
reporting

Configure
cycle options

Identify
interfaces

Establish
Mapping
rules

Present
options

Identify
usage

Specify rules

Interface
using RMI

Map to IH
standards

Interface
using VPI

Map to
OSS
standards

Support generic
Telco BillingSummary

Core

Supporting

Interface
using
CORBA

List option
by industry
standards

Collect
customer
reporting
options

List options
by customer
standards

… …

… …

32Copyright 2002, Wirfs-Brock Associates, Inc.

A Use Case
Diagram

<<extends>>

<<includes>>

<<includes>>

<<includes>>

<<depends>>

<<includes>>
Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statement

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

17
Wirfs-Brock Associates Copyright 2002. All rights reserved

33Copyright 2002, Wirfs-Brock Associates, Inc.

Use Cases Can Be Related
UML defines these relationships between use cases:

Dependency— The behavior of one use case is affected by another
Being logged into the system is a pre-condition to performing

online transactions. Make a Payment depends on Log In
Includes— One use case incorporates the behavior of another at a

specific point
Make a Payment includes Validate Funds Availability

Extends— One use case extends the behavior of another at a
specified point
Make a Recurring Payment and Make a Fixed Payment both

extend the Make a Payment use case
Generalize— One use case inherits the behavior of another; it can

be used interchangeably with its “parent” use case
Check Password and Retinal Scan generalize Validate User

34Copyright 2002, Wirfs-Brock Associates, Inc.

Finding and Naming Use Cases
and Actors

Finding and Naming Use Cases
and Actors

Jean-Pierre
Use Cases Can Be Related

18
Wirfs-Brock Associates Copyright 2002. All rights reserved

35Copyright 2002, Wirfs-Brock Associates, Inc.

Finding Use Cases

Describe the functions that the user will want from the system
in terms of goals the system helps them accomplish. “ I want
to …
– transfer money between accounts”
– get money from my account”
– make payments”
– set up vendors for automatic payments”

Describe the operations that create, read, update, and delete
information

Describe how actors are notified of changes to the internal state
of the system and how they communicate information about
external events to the software

36Copyright 2002, Wirfs-Brock Associates, Inc.

Naming Use Cases

Name a use case with a verb-noun phrase that states the actor’s goal
Use concrete, “ strong” verbs instead of generalized, weaker ones.

Weak verbs may indicate uncertainty
– Strong Verbs: create, merge, calculate, migrate, receive,

archive, register, activate
– Weaker Verbs: make, report, use, copy, organize, record, find,

process, maintain, list
Be explicit. Use specific terms. They are stronger

– Strong Nouns: property, payment, transcript, account
– Weaker Nouns: data, paper, report, system, form

Jean-Pierre
Finding Use Cases

Jean-Pierre
Naming Use Cases

19
Wirfs-Brock Associates Copyright 2002. All rights reserved

37Copyright 2002, Wirfs-Brock Associates, Inc.

Naming Actors

Group individuals according to their common use of the system.
Identify the roles they take on when they use the system

Each role is a potential actor
Name each role and define its distinguishing characteristics. Add

these definitions to your glossary
Don’t equate job title with role name. Roles cut across job titles
Use the common name for an existing system; don’t invent a new

name to match its role
Don’t waste time debating actor names

38Copyright 2002, Wirfs-Brock Associates, Inc.

Places to Look for Actors

Who uses the system?

Who gets information from this system?

Who provides information to the system?

What other systems use this system?

Who installs, starts up, or maintains the system?

20
Wirfs-Brock Associates Copyright 2002. All rights reserved

39Copyright 2002, Wirfs-Brock Associates, Inc.

Dissecting A Use Case TemplateDissecting A Use Case Template

40Copyright 2002, Wirfs-Brock Associates, Inc.

Use case name

Preamble

Use case body (narrative, scenario or conversation)

Supplementary details and constraints

A Use Case Template

21
Wirfs-Brock Associates Copyright 2002. All rights reserved

41Copyright 2002, Wirfs-Brock Associates, Inc.

Level— summary, core, supporting, or internal use case?
Actor(s)— role names of people or external systems

initiating this use case
Context— the current state of the system and actor
Preconditions— what must be true before a use case can

begin
Screens— references to windows or web pages

displayed in this use case

The Preamble: Setting the Stage

42Copyright 2002, Wirfs-Brock Associates, Inc.

Supplementary Details:
Completing The Picture

Variations— different ways to accomplish use case actions
Exceptions— something expected that goes wrong during the

execution of a use case
Policies— specific rules that must be enforced by the use case
Issues— questions about the use case
Design notes— hints to implementers
Post-conditions— what must be true about the system after a use

case completes
Other requirements—constraints this use case must conform to
Priority— how important is this use case?
Frequency— how often is this performed?

Jean-Pierre
The Preamble: Setting the Stage

Jean-Pierre
Supplementary Details:Completing The Picture

22
Wirfs-Brock Associates Copyright 2002. All rights reserved

43Copyright 2002, Wirfs-Brock Associates, Inc.

WritingTips and GuidelinesWritingTips and Guidelines

44Copyright 2002, Wirfs-Brock Associates, Inc.

The Writing Process

Revised Use Cases with
Supplementary Details

Revise and add precision

Potential new Use CasesCollect and clinic, identify
gaps and inconsistencies

Scenarios OR
conversations

Write detailed
descriptions

Candidate Core Use Case
Names

Collect and clinic,
brainstorm key use cases

NarrativesWrite summary
descriptions

Actors, Candidate
Summary Use Case
Names

Align on scope, level of
abstraction, actors, goals,
point-of-view

The ProductsSmall Teams or
Individuals

Full Team

23
Wirfs-Brock Associates Copyright 2002. All rights reserved

45Copyright 2002, Wirfs-Brock Associates, Inc.

Options for Organizing Use Cases

Choose an organization for your use cases
– by actor
– arranged in a workflow
– in a hierarchy

Include a section for common use cases
initiated by different actors

46Copyright 2002, Wirfs-Brock Associates, Inc.

Writing Scenarios and
Conversations

Start by writing the success story, the “happy path”
Capture the actor’s intentions and actions, and system

responsibilities, from beginning to end goal
– Be clear on where to start
– Describe how the goal is achieved
– End there

Define what information passes between the system and actor
– All steps should be visible to or easily surmised by the actor
– Resist the temptation to get too detailed
– Convey how the system will work—but stop short of explaining

algorithms

24
Wirfs-Brock Associates Copyright 2002. All rights reserved

47Copyright 2002, Wirfs-Brock Associates, Inc.

Use a list

Record actor and system actions, identifying
each

Scenario 1 Name Scenario 2 Name
1. System does this first 1. System does this first
2. Actor first does this Actor:
3. Actor next does this 2. First does this

3. And then does this

Writing a Scenario

this is one
way to

break up
the

monotony

this is one
way to

break up
the

monotony

48Copyright 2002, Wirfs-Brock Associates, Inc.

Writing a Conversation
Use a table

Separate actor actions from system responses

Record rounds between the actor and system

Actor Actions System Responses
I do this

And I respond by ..
I tell you this…

…and this, too…

I am responding to what
you are telling me and
giving you feedback
while you are talking

Batch
round

Interactive
Round

25
Wirfs-Brock Associates Copyright 2002. All rights reserved

49Copyright 2002, Wirfs-Brock Associates, Inc.

Choose this option when your audience needs both
general and specific usage descriptions

High-level use case names state a general goal. Write one
narrative for each general goal:
Narrative: Make a payment
Describe what online payment means and typical ways of making them

Write scenarios or conversations that describe more
specific goals:
Scenario 1: Make a recurring payment

All the steps in paying my monthly phone bill …
Scenario 2: Make a non-recurring payment

All the steps in paying a fixed amount …
Scenario 3: Make a regular payment

All the steps in paying a monthly loan …

Write General and Specific Cases

50Copyright 2002, Wirfs-Brock Associates, Inc.

Write Two “Versions” of the
Same Use Case

Choose this option when some want a quick idea, while
others want to see the details

First, write a narrative

Then, choose an appropriate form. Rewrite the use case
body at this lower-level of detail

Add an “overview” section to your template if you have
diverse readers for your use case descriptions

Leave the narrative as an overview

Jean-Pierre
Write General and Specific Cases

26
Wirfs-Brock Associates Copyright 2002. All rights reserved

51Copyright 2002, Wirfs-Brock Associates, Inc.

Include Actor Actions
Be explicit about what the actor does. Don’t disguise them

as “system collects” or “system captures”actions
Actor actions disguised as system activities:

Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. Present transaction screen
2. Capture fast cash withdrawal request
3. Post transaction to bank and receive confirmation
4. Dispense money, card and transaction receipt

Fixed:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. ATM presents transaction screen
2. Customer selects “Fast Cash” option
3. ATM posts fast cash amount withdrawal transaction to bank and receives

confirmation
4. ATM dispenses money, card and transaction receipt

52Copyright 2002, Wirfs-Brock Associates, Inc.

Include System Actions
Be explicit about what the system does
No system behavior described:

Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. Customer selects “Fast Cash” option
2. Customer takes cash, card and receipt

Fixed:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. ATM presents transaction screen
2. Customer selects “Fast Cash” option
3. ATM posts fast cash amount withdrawal transaction to bank

and receives confirmation
4. ATM dispenses money, card and transaction receipt

Jean-Pierre
Include Actor Actions

Jean-Pierre
Include System Actions

27
Wirfs-Brock Associates Copyright 2002. All rights reserved

53Copyright 2002, Wirfs-Brock Associates, Inc.

Describing Actions
Show actor intent, not precise movements

Intention: User enters name and address
Movements:

System asks for name
User enters name
System prompts for address
User enters address

Use simple grammar
Subject…verb…direct object…prepositional phrase
The system…deducts…the amount…from the account balance

Write actions that move the process forward
“Validate that…,” don’t “Check whether”

54Copyright 2002, Wirfs-Brock Associates, Inc.

Condense Information Entry
and/or Validation Actions

List of Seemingly Unrelated Items:
Enter name
Optionally, enter address
Optionally, enter telephone number

Fixed:
Enter personal information (required: name; optional:

address and phone number)

Jean-Pierre
Show actor intent,

28
Wirfs-Brock Associates Copyright 2002. All rights reserved

55Copyright 2002, Wirfs-Brock Associates, Inc.

Includes Too Many Low Level Details and Substeps:
System opens connection to the bank
System requests authorization of bankcard number and PIN #
Bank confirms bankcard and PIN are valid
System requests active accounts for bankcard
Bank returns account list
System creates active online account entries for each account

Fixed:
System validates bankcard and PIN #s
System activates accounts associated with bankcard

Make sure what is going on, and why is it is being done is obvious to
the typical reader. Know your audience

State System Responses At
a Reasonably High Level

56Copyright 2002, Wirfs-Brock Associates, Inc.

Showing Optional Actions

Optionally, select an available course section

In any order, do one or more of the following:
eat
drink
be merry

Make clear
when a step

is optional

Make clear
when a step

is optional

Indent to
show a

“block ” of
re lated
actions

Indent to
show a

“block ” of
re lated
actions

Jean-Pierre
Showing Optional Actions

29
Wirfs-Brock Associates Copyright 2002. All rights reserved

57Copyright 2002, Wirfs-Brock Associates, Inc.

Showing Repeated and Optional Actions
in the “Build A Message” Conversation

Actor Actions System Responsibilities
“Click” to start software
speaking

Start building a message

Repeat until . . .

Optionally, “click” to select
letter

Optionally, “click” to select
word

Optionally, “click” to select
sentence

Determine what to speak (letter,
word, sentence, or space)
 Speak letter

 Add letter to word
 Speak space

 Add word to end of sentence
 Start new word

 Speak sentence

 Add sentence to end of message
 Start new sentence

… a command is issued
 Process command

 (separate use cases)

Spe ak for Me
enables a

severely
disabled user to

communicate

State when
an action is

optiona l

State when
an action is

optiona l

Stagger
responses to
show system
response is a
consequence

of a user
action

Stagger
responses to
show system
response is a
consequence

of a user
action

Place
“repeated”

actions in a
block

Place
“repeated”

actions in a
block

58Copyright 2002, Wirfs-Brock Associates, Inc.

Mixed level of detail:
Check for required fields
Capture user ID and password
Ask security component for validation
Issue SQL statements to security database for logon

authorization…
Open connection to bank server
Read account summaries…

Fixed:
Check for required fields
Login user to domain
Display account summaries and bulletin

Maintain a Consistent Level of Detail

1

2

3

1

2

3

Jean-Pierre
Maintain a Consistent Level of Detail

30
Wirfs-Brock Associates Copyright 2002. All rights reserved

59Copyright 2002, Wirfs-Brock Associates, Inc.

Conversation: Registration with Automatic-Activation
10. If bank supports automatic activation

with ATM and PIN then...
If ATM and PIN #s are valid then....

Fixed: Write exception details below the body

Conversation: Registration with Automatic-Activation
10. Validate ATM and PIN #

Exception – Step 10: ATM and PIN #s are invalid— Report
error to user

Don’t Embed Checks

60Copyright 2002, Wirfs-Brock Associates, Inc.

Leave Out Information Formats
and Validation Rules

User Name: First name, last name (24 characters max, space delimited)

email address with embedded @ sign signifying break between user
identification and domain name which includes domain and sub-
domain names delimited by periods and ending in one of: gov, com,
edu...

Fixed:
Required: user name, email address, desired login ID and password
One of: account number and challenge data, or ATM # and PIN
Optional: Company Name

Document information model details in a separate place!

Jean-Pierre
Don’t Embed Checks

Jean-Pierre
Leave Out Information Formatsand Validation Rules

31
Wirfs-Brock Associates Copyright 2002. All rights reserved

61Copyright 2002, Wirfs-Brock Associates, Inc.

Don’t Mention Objects in
System Actions

Objects mentioned:
Create customer and account objects

Fixed:
Record customer account information

Remember who the readers are!

62Copyright 2002, Wirfs-Brock Associates, Inc.

Remove Clutter
Metatext— text that describes text that follows

The purpose of this use case is to describe how customers
make payments.

Vague Generalities— well known principles
Each input screen shall fit entirely within the window and

use as little scrolling space as possible.
Piling On— extra meaningless empty words, paragraphs,

charts, sections, overbearing templates
Before piling on After
Use Case Business Use Case
Requirements Requirements Specification Document

Jean-Pierre
Don’t Mention Objects inSystem Actions

32
Wirfs-Brock Associates Copyright 2002. All rights reserved

63Copyright 2002, Wirfs-Brock Associates, Inc.

Leave Out Presentation Details

Widget details described:
Display note in a read/write text field
From account in a drop-down list box
Amount in a currency field

Fixed:
Display payment template editable fields (note, from

account, amount)

Reference screens used by a conversation
Screens: See Login Page

64Copyright 2002, Wirfs-Brock Associates, Inc.

If policies are recorded in other requirements documentation,
reference them in your use case template. If you don’t have
other documentation, add applicable rules to the policies
section of the appropriate use case.

Use Case: Register Customer
A new user must request access and gain approval in order to

perform online banking functions. Registration can be done
instantly, if the bank supports automatic activation, or the
user can enter a request which will be approved by a bank
agent.

Policies:
Customer challenge data must be validated against customer

account records before activating on-line access.

Keep Rules in a “Policies” Section

Jean-Pierre
Leave Out Presentation Details

Jean-Pierre
Keep Rules in a “Policies” Section

33
Wirfs-Brock Associates Copyright 2002. All rights reserved

65Copyright 2002, Wirfs-Brock Associates, Inc.

Use a Table for Complex Rules
Total price: add both columnsShipping Method Shipping

Time Per Shipment Per Item
Standard
Shipping

3 to 7
business
days

$3.00 per shipment
plus $0.95 per book

2nd Day Air
Note: Not
available to P.O.
Boxes, the U.S.
Virgin Islands,
Guam, or
APO/FPO
addresses.

2
business
days

$6.00 per shipment
plus
add an additional
$10 for AK, HI, PR,
or American Samoa

$1.95 per book

Next Day Air
Note: Not
available to P.O.
Boxes, the U.S.
Virgin Islands,
Guam, or
APO/FPO
addresses.

1
business
day

$8.00 per shipment
plus
add an additional
$15 for AK, HI, PR,
or American Samoa

$2.95 per book

66Copyright 2002, Wirfs-Brock Associates, Inc.

Document Global Requirements
in a Central Place

Distinguish between system-wide requirements and
those than span several use cases
Global requirement: System must run 7 by 24
Specific requirement: Account information should

be encrypted and transmitted over a secure
connection

Reference those requirements that are satisfied by the
use case below the use case body

34
Wirfs-Brock Associates Copyright 2002. All rights reserved

67Copyright 2002, Wirfs-Brock Associates, Inc.

Document Hints and Ideas
Design Notes
Errors and warnings about registration information

contents should be collected and returned to the user in a
detailed message rather than stopping at the first
detectable error.

Payments should be shown in time order, with the current
date first.

The user should not see payments that he should have
visibility of. Prevent a user from seeing a payments from
secret accounts that he should be unaware of.

Add design notes as they occur to you

68Copyright 2002, Wirfs-Brock Associates, Inc.

Make Clear What You Don’t Know
Write questions about unsolved issues

Assign responsibility to someone for resolving each
issue

List them with the appropriate use case
Issues:

Should the credit check be performed after the order is
submitted or before?

What happens if credit is denied?

If you are unclear about a detail, don’t write fiction; it
could become fixed

Jean-Pierre
Make Clear What You Don’t Know

35
Wirfs-Brock Associates Copyright 2002. All rights reserved

69Copyright 2002, Wirfs-Brock Associates, Inc.

Alternative PathsAlternative Paths

70Copyright 2002, Wirfs-Brock Associates, Inc.

Alternative Paths

For each significant action:

Is there another significant way to accomplish it that
could be taken at this point? (Variation)

Is there something that could go wrong? (Exception)
Is there something that could go really, really wrong

(Error)

Jean-Pierre
Alternative Paths

36
Wirfs-Brock Associates Copyright 2002. All rights reserved

71Copyright 2002, Wirfs-Brock Associates, Inc.

Choices for Describing Variations

Add textual descriptions of variations in the variations section
of the use case template (if simple), or reference an
additional use case (if variation is complex or deserves
special emphasis)

or
Include a description of a variation in the use case body, when

you want to emphasize different choices or options
or

Draw an activity diagram that shows decision points, alternate
paths, and parallel activities

72Copyright 2002, Wirfs-Brock Associates, Inc.

Variations in
Register with Auto-Activation

1. User enters registration information

2. System checks passwords match

3. System verifies login ID uniqueness

Variations :
1a. User enters ATM card # and PIN – see Validate

ATM card and PIN
1b. User enters challenge data and account – see

Validate Challenge Data

Jean-Pierre
Variations inRegister with Auto-Activation

37
Wirfs-Brock Associates Copyright 2002. All rights reserved

73Copyright 2002, Wirfs-Brock Associates, Inc.

Exceptions

Exceptions are deviations from the typical case that
happen during the normal course of events
– They should be handled, not ignored
– How to resolve them can be open to debate

• What if a user mistypes her password?
• What if an order can’t be fulfilled?
• What if a connection to a web browser is dropped?

74Copyright 2002, Wirfs-Brock Associates, Inc.

Errors

Errors are when things unexpectedly go wrong. They
can result from malformed data, bad programs or
logic errors, or broken hardware
– Little can be done easily to “ fix things up and proceed”
– Recovery requires drastic measures

• What if the disk is full?
• What if equipment cannot be provisioned?
• What if the OS crashes?

38
Wirfs-Brock Associates Copyright 2002. All rights reserved

75Copyright 2002, Wirfs-Brock Associates, Inc.

When Do We Think About Failure?

People typically think about failure only after they’ve describe
“normal” conditions:
“[Describing exceptions] is often tricky, tiring, and surprising work. It

is surprising because quite often a question about an obscure
business rule will surface during this writing, or the failure
handling will suddenly reveal a new actor or new goal that needs to
be supported. Most projects are short on time and energy.
Managing the precision level to which you work should therefore
be a project priority...”

— Alistair Cockburn, Agile Software Development

76Copyright 2002, Wirfs-Brock Associates, Inc.

Reasons To Think About Them Early,
Often, Sooner And Later

Usability may be affected
– Consider software that enables a severely disabled user to construct

messages and communicate with others. Shouting “stack overflow!”
or “network unavailable!” isn’t acceptable

The degree to which a user can or should be involved in
exception handling has profound design implications

Solutions may not be obvious or “easy” . Experimentation may
be required

39
Wirfs-Brock Associates Copyright 2002. All rights reserved

77Copyright 2002, Wirfs-Brock Associates, Inc.

Recoverable Vs. Unrecoverable
Exceptions

In use cases, exceptions may have been identified, as well as
how they should be addressed
– Invalid password entered—After three incorrect attempts, inform

the user that access is denied to the online banking system until she
contacts a bank agent and is assigned a new password.

Recoverable exceptions can be handled deftly. The user will be
able to continue his or her task

In other cases, the user won’t be able to continue. These are
unrecoverable exceptions

78Copyright 2002, Wirfs-Brock Associates, Inc.

A More Realistic Story
Goals may be compromised because of exception conditions.

From the user’s perspective, recoverable exceptions often
represent a series of compromises
– Part of a book order is out of stock. The user can choose to: split

the order and back order the out of item stock items, ship what’s
available now and ship things when they are in stock, cancel the
order, or modify the order

– This situation forces her to unexpectedly make decisions and
“steer” the darn software

Sometimes the user can and should be actively engaged in
“steering” the system

Sometimes this is absolutely inappropriate

40
Wirfs-Brock Associates Copyright 2002. All rights reserved

79Copyright 2002, Wirfs-Brock Associates, Inc.

The Mismatch Between Use Case
And Program Execution

A single use case step can result in thousands of requests
between collaborating objects, any number of which could
cause numerous object exceptions

There isn’t a direct correspondence between use case and
program exceptions

Don’t expect use cases to identify all or even most potential
exceptional cases

Use cases exceptions—at whatever level of detail they are
described—should guide, not prescribe design solutions

80Copyright 2002, Wirfs-Brock Associates, Inc.

Avoid Use Case Writing Paralysis

Keep use case descriptions simple
Periodically update them to reflect design reality, but

don’t become obsessed with adding exception
details

Don’t tack on to use case descriptions exceptions that
are design, architecture, or implementation-level
concerns

Jean-Pierre
There isn’t a direct correspondence between use case andprogram exceptions

Jean-Pierre
Don’t expect use cases to identify all or even most potentialexceptional cases

jean-pierre corriveau

41
Wirfs-Brock Associates Copyright 2002. All rights reserved

81Copyright 2002, Wirfs-Brock Associates, Inc.

A Strategy For Handling Exceptions For
A Key Collaboration

Brainstorm exceptions and errors cases it could address

Decide on reasonable handling and recovery strategies

Design your software to detect and react accordingly
– Create exception classes
– Assign exception handling responsibilities to objects

Explore alternatives. Test for usability and feasibility. Iterate

82Copyright 2002, Wirfs-Brock Associates, Inc.

List What Might Go Wrong
Users enter misinformation or fail to respond
Invalid information
Unauthorized requests
Untimely requests
Dropped communications
Failures due to broken or jammed equipment
Errors in data, corrupt log files, bad or inconsistent data,

missing files
Failure to accomplish some action within a prescribed time

limit

42
Wirfs-Brock Associates Copyright 2002. All rights reserved

83Copyright 2002, Wirfs-Brock Associates, Inc.

Choices for Describing Exceptions

Add textual descriptions of in the exception section
of the use case template, which may reference
an additional use case

or

Describe exceptions for a number of use cases (and
their effects) in a separate section of your use
case model

84Copyright 2002, Wirfs-Brock Associates, Inc.

Describing Exceptions Makes
Requirements More Complete

Possibilities in Place An Order
Ideal situation

– Good credit, items in stock accept order

Recoverable exceptions:
– Bad credit and preferred customer accept order
– Low stock, and OK to reduce quantity accept

reduced quantity order

Unrecoverable exceptions:
– Bad credit and not a preferred customer decline order
– Out of stock decline order

Jean-Pierre
Choices for Describing Exceptions

43
Wirfs-Brock Associates Copyright 2002. All rights reserved

85Copyright 2002, Wirfs-Brock Associates, Inc.

Exceptions Added
to Place An Order

Scenario: Place An Order
1. Identify the customer
2. Identify each order item and quantity
3. System accepts and queues the order

Exceptions:
1a. Bad credit and Preferred Customer—Accept order
1b. Bad credit and not Preferred Customer—Decline order
2a. Low on stock—Ask customer to accept reduced quantity

86Copyright 2002, Wirfs-Brock Associates, Inc.

When to Create a New
Use Case to Describe An

Alternative
Write another...

– when an alternative appears complex
– when an alternative is important and you want to

emphasize it
Document simpler alternatives in the supplementary part
Document more complex ones as separate use cases
Rewrite and reorganize for clarity!
Give new use cases specific names that identify specific

conditions

Jean-Pierre
When to Create a NewUse Case to Describe AnAlternative

44
Wirfs-Brock Associates Copyright 2002. All rights reserved

87Copyright 2002, Wirfs-Brock Associates, Inc.

Documenting Exceptions For a
Specific Use Case

Name the exception below the use case body
Tell what step it relates to
Document what happens:

Briefly describe what happens, or
Refer to another use case describing the exception

handling
Optionally tag an exception as being recoverable or not

(you decide whether this adds value to your
descriptions)

88Copyright 2002, Wirfs-Brock Associates, Inc.

Develop and Document General Policies

Describe and explain general policies that affect the use case
model. Collect them in a central place.
– The online banking application is designed to cover

communications failures encountered during a financial transaction.
A full set of single-point failures was considered. Some double-
point failures were explicitly not considered

– The general strategy is to ensure that transaction status is accurately
reflected to the user. Failures in validating information will cause
the transaction to fail, whereas intermittent communications to the
external database or to the backend banking system during the
transaction will not cause a transaction to fail

45
Wirfs-Brock Associates Copyright 2002. All rights reserved

89Copyright 2002, Wirfs-Brock Associates, Inc.

Explain And Document Policies

User will be logged off
with a notice that
system is temporarily
unavailable and will
learn of transaction
status on next login.

Attempt to re-establish
connection. If this fails,
transaction results are
logged as “pending”
and the user is informed
that the system is
momentarily
unavailable.

Connection dropped
between domain server
and backend bank
access layer after
request is issued.

User session is
terminated… user
could've caused this by
closing his or her
browser, or the system
could have failed. User
will be notified of
transaction status the
next time they access
the system.

Transaction continues
to completion. Instead
of notifying user of
status, transaction is
just logged. User will
be notified of recent
(unviewed) transaction
results on next login.

Connection is dropped
between UI and
Domain Server after
transaction request is
issued.

Affect on UserRecovery ActionException or Error

Use
descriptions

approachable
to users,

developers
and other

stakeholders

90Copyright 2002, Wirfs-Brock Associates, Inc.

Specify Pre- and Post-
Conditions Only When You

Need to Be Formal
Pre-conditions should make clear when a use case can execute

– An account must be in good standing and the daily withdrawal limit
not exceeded in order to withdraw cash

Post-conditions may be relevant to other systems
– Being overdrawn may trigger transaction fees

Pre-conditions may be set by other systems
– An account can be overdrawn through direct payments

Once you add pre- and post-conditions to one use case, you will
need to add them to dependent ones!

46
Wirfs-Brock Associates Copyright 2002. All rights reserved

91Copyright 2002, Wirfs-Brock Associates, Inc.

Document Pre and Post-
Conditions That Affect Future

System Behavior
Define post-conditions in terms of things that will impact future

system behavior
Post-condition that restates the user’s goal:

– Post-condition: Customer has withdrawn cash
– So what? The customer receives cash but what does this say about

the next time he/she wants to withdraw case, or any other use case?

Fixed:
– Post-condition 1: Account balance is positive
– Post-condition 2: Account is overdrawn
– If the account is overdrawn, the user may not be able to withdraw

more case… or an overcharge fee may be assessed

92Copyright 2002, Wirfs-Brock Associates, Inc.

Add Precision To Post-Conditions
Instead of documenting just the “happy path” post-

condition, define post-conditions for each path
through the use case and resulting system state
– At least one post-condition for each successful goal

• Customer receives cash Account is overdrawn or Account
balance is positive

– One for each exception
• Account daily limit would be exceeded - Customer withdraws

lesser amount Account is in good standing and Account daily
withdrawal limit reached

• Amount would exceed overdraw limit - We refuse to disburse cash
 account is in good standing

– One or more for each variation
• Fast cash Account is overdrawn or Account balance is positive

Jean-Pierre
Add Precision To Post-Conditions

47
Wirfs-Brock Associates Copyright 2002. All rights reserved

93Copyright 2002, Wirfs-Brock Associates, Inc.

EmphasisEmphasis

94Copyright 2002, Wirfs-Brock Associates, Inc.

Emphasize What’s Important
Within a Use Case

Things gain prominence by their position and
appearance. To increase an item’s emphasis:
Put it first
Highlight it

Surround it by white space
• Put it in a bulleted list
Mention it in multiple places

Give it more room
Repeat or restate it in different forms
Say it another way
Mention it in multiple places

48
Wirfs-Brock Associates Copyright 2002. All rights reserved

95Copyright 2002, Wirfs-Brock Associates, Inc.

What’s Emphasized?
Template 1

Use Case: Make a Payment

Author: Rebecca

Last Revision Date: 10/04/02

Change History:…

Version: 0.4

Status: Preliminary Review
Level: Core

Template 2
Use Case: Make a Payment
Actor: Bank Customer
Pre-condition: User has an
active account and is
authorized to transfer funds

Don ’t choose a
template that
inadvertently

emphasizes the
wrong things

Don ’t choose a
template that
inadvertently

emphasizes the
wrong things

96Copyright 2002, Wirfs-Brock Associates, Inc.

What’s Emphasized?

Choose course by optionally, in any sequence:
• Browse Course Catalog
• Choose Next Course from Degree Plan
• Enter course section

One way to
make a

supporting
use case

stand out is
to use BOLD

One way to
make a

supporting
use case

stand out is
to use BOLD

49
Wirfs-Brock Associates Copyright 2002. All rights reserved

97Copyright 2002, Wirfs-Brock Associates, Inc.

Emphasize What’s Important
Within a Use Case Model

Place first those use cases you wish to emphasize

Choose the form of use case descriptions according to
what you want to emphasize:
– A conversation emphasizes system/actor dialog
– A narrative emphasizes the high points of a story,

not the details

Repeat and restate to make points stand out

Choose a template that doesn’t inadvertently emphasize
the wrong things

Copyright 2002 Wirfs-Brock Associates 1

THE ART OF WRITING USE CASES TUTORIAL
NOTES
I. Description and Objectives

This is an introduction to use cases, a technique for structuring system usage descriptions, and the principles of a
user-oriented development process. You will be able to apply the principles and techniques to your projects, writing
appropriate usage descriptions.

The topics include:
III. The context for use cases
IV. Use case modeling constructs
V. System glossary
VI. A Use Case Template
VII. Narratives
VIII. Scenarios and Conversations
IX. Other Descriptions, Exceptions, and Variations
X. A Use Case Model Checklist
XI. The Writing Process
XII. More Tips and Techniques

II. Further Resources
There are several good books about use cases. We recommend these three:
Writing Effective Use Case , Alistair Cockburn, Addison-Wesley, 2001, ISBN 0-201-70225-8
Use Cases Requirements in Context, Daryl Kulak and Eamonn Guiney, Addison-Wesley, 2000, ISBN 0-201-

657678-8
Software for Use A Practical Guide to the Models and Methods of Usage-Centered Design, Larry Constantine and

Lucy Lockwood, ACM Press,1999,ISBN 0-201-92478

Andy Pol’ s website, The Use Case Zone has many pointers to online articles, templates and use case discussions:
http://www.pols.co.uk/usecasezone/

III. The Context for Use Cases: Team Development
Development is never done in a vacuum; there is always a context. Many of the stakeholders in our development

efforts do not speak in our native object-oriented tongue. In our role of analyst we face two challenges: correctly
interpreting stakeholders' knowledge of the problem, their concerns and requirements in our models, and presenting
our design work in terms they can understand.

Copyright 2002 Wirfs-Brock Associates 2

A good system never dies, it is adapted and improved upon.

A system takes form through a series of textual and graphical descriptions. At each time-slice of the project, the
description should be less ambiguous, but each form should be describing the same thing. Each description, when
viewed by a practitioner with experience in the corresponding natural, graphical, or programming language, can be
evaluated according to a number of well-known criteria. Typically, the system came to be through a structured pro-
cess known as design, often preceded by a form of requirements gathering and specification called analysis. During
analysis, one of your tasks is to describe our system’ s usage with use cases.

Each participant in the life of a software system has a unique set of criteria for evaluating its quality during its
development. The target values that are used during such evaluation varies according to their point-of-view. To begin
simply, let's imagine sets of criteria that are important from three points-of-view:
• user
• analyst/designer
• programmer

To bring together all of these perspectives, you need a systematic way to consider the problem. Once you can
agree on the nature and requirements of the problem, you can make informed decisions about and document which
parts of the problem you intend to automate with the computer. Finally, you will have solid ground for determining
whether or not the program that you build for our machine has, in fact, accomplished your goals.

data

usage
cost code reuse

Copyright 2002 Wirfs-Brock Associates 3

The User
The user is particularly concerned that the system be easy-to-use. Of course, this requires that the application con-

trols and processing be transparent, consistent, correct and natural to the user. The system must also do the job, i.e., it
must be complete, and it should be configurable to an individual user's specific needs.

The Analyst/Designer
From the analyst/designer’ s point-of-view, the requirements, the specification and design must be simple and easy

to understand. It must be modular and traceable to the requirements. Due to an ever-evolving specification, it must be
flexible and extensible. Specified portions must be reusable. Further, the system under development is constrained by
business and user requirements. The functional characteristics of the design should be concise without losing the
details of its execution behavior.

The Programmer
Programmers have all the issues of the designer. But when entering the implementation domain, they must be cer-

tain that the application is possible. Beyond that, they must live with the constraints imposed by the hardware that
application performs on.

Building Consensus
System development has three areas of activity: understanding and documenting the problem and its requirements,

specifying how the various users will be able to use the system to satisfy the requirements and how the system will
fulfill all of the remaining non-usage requirements, and implementing the specification as software executing on
appropriate hardware.

IV. Use Case Modeling Concepts
A specification is a statement of what the system is to do in the context of your problem. It describes how the require-
ments that you have elicited by asking the right probing questions will be fulfilled. Requirements that can be satisfied
by interactions between a user and the program can be described by use cases.Use cases present a model of how your
system is used and viewed by its users. This use case model is just one view developers need to understand as they
proceed with design and implementation. It is also a view that other stakeholders in the specification of a product can
readily understand and comment on. A usage model, expressed as use cases forms the basis for a behavioral descrip-
tion of a system.

Let’s introduce the core concepts of use case models:

Use Case
A use case is a description of system functionality from a particular point-of-view. Many use cases describe task-
related activities. For example, in the Online Bank application, which we draw upon to illustrate concepts in this
course, we wrote use cases to describe these activities, among others

• making a payment
• transferring funds between accounts
• reviewing account balances

Each use case describes a discrete “ chunk” of the online banking system. These use cases were described from the
users’ viewpoint.

Use cases don’ t dive into implementation details, but describe how something behaves from an external perspec-
tive. A use case may include more or less detail, depending on its intended audience and what level it of the system it
describes.

Three Use Case Forms
We recommend you consider three forms of use case descriptions. Each different form has its strengths and weak-

nesses. Depending on what you need to describe, and at what level of detail, you should pick the appropriate form to

Copyright 2002 Wirfs-Brock Associates 4

write a use case description. You might choose to first write high-level overviews, then add detail and describe the
sequences of actions and interactions between the user and the program. The form you choose depends on what you
are trying to express.

You may write one or more forms for each use case, depending on the needs of your audience. Write narratives to
present a high-level overview. Then, if appropriate, write one or more scenarios or conversations that elaborate this
high-level description.

Here are examples of each of the three forms.
First, a use case narrative taken from an on-line banking project:

It offers a high-level view of how the requirements of “ Make a Payment” are satisfied.
A use case narrative has a very simple format. It begins with the name of the use case, and is followed by a brief,

textual description that explains at a high level how an actor interacts with our system in order to accomplish a task or
goal. Here is another narrative:

Use Case Function and Forms

The Writing Task The Best Form To Use

Narrative

Scenario

Conversation or
Essential Use Case

Describe simple
sequence of events

Present Overview

Emphasis actor-system
interaction

Make a Payment
Narrative

The user can make online payments to vendors and companies
known to the bank. Users can apply payments to specific
vendor accounts they have. There are two typical ways to
make payments: the user can specify a one-time payment for a
specific amount, or establish regular payments to made on a
specific interval such as monthly, bi-weekly, or semi-
annually.

Register Customer
Narrative

To use the system, a customer must be registered. There are two ways to
register. If the bank supports “ automatic activation” , all the customer
must do is supply identification information. After the system verifies that
the customer has an account and the information is corrector, the
customer may use the system. If the bank does not support automatic
activation, the customer submits a request to be activated, along with the
identification information. After a bank employee has check the
information and activated the customer, the customer may use thesystem.
This may take a few days.

Copyright 2002 Wirfs-Brock Associates 5

There are two scenarios outlined in the narrative: one for automatic activation, another with manual activation. We
write a sequence of actions to describe each. Here is an example of the scenario for registering with automatic activa-
tion.

Notice that, along with the sequence of actions, we include some notion of the types of information that are used.
Finally, the more detailed conversation form allows us to clearly show the system’ s responses to the actions of the

user. Here we have many opportunities to demonstrate decision-making, iteration, and dependency among the parts
of the problem.

Each form has its strengths and weaknesses. Conversations show more detail, scenarios show step-by-step sequences,
narratives are free-form text. The form you choose depends on what you want to convey to your reader, and how
much detail you want to show.

Register Customer with
Automatic Activation

Scenario
1 User enters registration information:

Required information: user name, email address, desired login ID and password, and
confirmation password

One of: account number and challenge data, or ATM # and PIN

Optional: language choice and company
2 System checks that password matches confirmation password.

3 System validates required fields and verifies uniqueness of login ID

4 System verifies customer activation information.
5 System creates and activates customer online account.

6 System displays registration notification.

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and
Recent payment history to Payee

Enter payee notes, amount and
account

Submit Payment Information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments
 Goto Edit Payment Template

Information
Select next function
 Goto selected use case

Copyright 2002 Wirfs-Brock Associates 6

Abstraction, Scope, and Detail
Use cases can be written very concretely, or they can generalize specific actions to cover broader situations. For
example, we could write use cases that describe:

Steve registers for English 101, or
Student registers for Course, or
User uses System, or
Student registers for Variable Credit Course, or
Student Registers for Music Course

In order to choose the right level of abstraction to write a use case, you need to understand how the behaviors of
both the actor and the system might be expressed to cover the widest range of situations without losing any important
details. Clearly, “ User uses System” is too high-level, and “ Steve registers for English 101” is too concrete. However,
it may be important to write use case descriptions for “ Student registers for Course” and, if the system’ s or user’ s
actions are sufficiently different, to also describe “ Student registers for Variable Credit Course.” In fact, if registering
for a music course means signing up for practice sessions in practice rooms in addition to classroom instructions, it
too may need additional description. You can also express variations within a single use case description.

Use cases vary in scope and detail. You can use them to describe all or part of our “ system” . Which system bound-
ary do we mean: At a particular component (describing the web applet)? across the application (on-line banking)? or
across multiple applications within the organization (the bank)?

We typically start by describing application level scope. The amount of detail that we choose to put into use cases
varies. We could describe general actions: Enter deposit amount. Or specific detail: Press number keys followed by
enter key

Write at the level that seems appropriate to your readers. This typically means describing actor actions and system
responses that match the goal for the use case. So, to follow that guideline, if the use case were named “ Make
Deposit,” we’d describe the user general action of “ enter deposit amount,” not his or her gestures: “ Press number
keys followed by enter key.”

Form Strengths Weaknesses
Narrative • Good for high-

level summaries
• Can be written to

be implementation
independent

• Easy to write at too high
or too low a level

• Not suitable for complex
descriptions

• Can be ambiguous about
who does what

Scenario • Good for
step-by-step
sequences

• Hard to show parallelism
or arbitrary ordering

• Can be monotonous
Conversation • Good for seeing

actor-system
interactions

• Can show parallel
and optional
actions

• Easy to write at too
detailed level: pseudo
pseudo-code

• Only two columns: What
about multiple actors?

All Forms • Informal • Informal

Copyright 2002 Wirfs-Brock Associates 7

Recipe: Finding the Use Cases
1. Describe the functions that the users will want from the system.
2. Describe the operations that create, read, update, or delete information that the system

requires. Describe these operations.
3. Describe how actors are notified of changes to the internal state of the system.

Identify actors that inform the system about events that the system must know about. Describe
how the users will communicate the information about these events.

Actors
An actor is some one or some thing that interacts with our system. We divide actors in to two groups:

• those that stimulate the system to react (primary actors), and
• those that respond to the system’ s requests (secondary actor)

We model actors so we can understand what behaviors they’ ll need from our system, if they are primary actors.
We model secondary actors so we understand how our system uses external resources. In the Unified Modeling Lan-
guage, the stick figure icon is how we show an actor on a use case diagram. This is the standard notation for an actor,
although you may choose another icon that is more meaningful.

Actors are the external agents that use (or are used by) our system. Those that initiate activity are worth considering
as a group. These primary actors stimulate the system to take action and form the basis of most of our usage descrip-
tions. The other, secondary actors, interact with the system only because the system poses questions to them or issues
a command. They are usually external programs or devices, although sometimes the system will direct a human to
perform a task.

Most often, systems engage with an actor called the user. In fact, we often unconsciously equate an actor with this
user. But such a narrow vision will often make us overlook significant areas of the system’ s requirements. For exam-
ple, many systems require support for administrators and technicians that periodically maintain and configure the sys-
tem. These activities are quite different from the user's tasks. Systematic consideration of the various actors that are
involved with our system will ensure a more complete understanding of what it must do.

Guidelines for Finding and Naming Actors

GUIDELINE: Focus on primary actors.

In the on-line banking system, we have a number of human actors. The one we initially focused on was the cus-
tomer-user who accesses financial services including bill payment, account balance and statement inquiries, and
funds transfer. An agent of the bank (or bank agent) can perform several tasks: customer maintenance, console
operation, and bank administrative functions which include bank agent maintenance, and system configuration.

GUIDELINE: Group individuals according to their common use of the system. Identify the roles they take on
when they use or are used by the system

Each role is a potential actor
Name each role and define its distinguishing characteristics. Add these definitions to your glossary

Copyright 2002 Wirfs-Brock Associates 8

GUIDELINE: Focus initially on human actors. Ask:

• Who uses the system?
• Who installs the system?
• Who starts up the system?
• Who maintains the system?
• Who shuts down the system?
• Who gets information from the system?
• Who provides information to the system?

GUIDELINE: Name human actors by their role.

Specific people may play several roles; several actors may represent them. We could divide our bank agent actor
into several, more distinct roles: console operator, bank agent administrator, customer administrator, and system
configuration manager. These finer distinctions, while easily made, didn't really help us gain any new insights
about system requirements for bank employee usage. While important, bank agent usage wasn't a high priority.
The customer-user facilities were of primary interest to the project manager and sponsors. So we backed off and
did not enumerate these kinds of bank agent actors.

GUIDELINE: Don't equate a job title with an actor name.

This wasn't a problem on the online banking application. Since we didn't directly interact with bank employees
we didn't know their job titles. We were arm's length from end users, so it was easy for us to create a single bank
agent category. However, we have seen several projects where jobs and titles get in the way of understanding of
how users need to use the system. Supervisory job titles don't always equate with more features; usage often cuts
across job function.

GUIDELINE: Don't waste time debating actor names.

Actor names should be nouns or noun phrases. Don't be too low level when naming actors. Don't be too abstract
in describing or naming an actor. We didn't have the benefit (or bias) of knowing the name of any existing legacy
applications at banks. The physical name of the transaction service, e.g. CICS, seemed too physical and not very
descriptive; our next line of thought was that this actor represented our connection to existing legacy applica-
tions. So, we settled on calling this external actor a legacy connection and left it at that!

GUIDELINE: Be consistent in showing actors. Your choices are:

• Show all actors that interact with the system , even remote systems,
• Show only those initiators of the contact ,
• Show only those actors that need the use case ,
• Show only human actors, not the system

We recommend you use the first strategy, and distinguish actors that initiate contact as primary actors , and
actors that the system touches as secondary actors .

GUIDELINE: An actor name for an existing system should refer to its common name.

GUIDELINE: Names of non-human actors are more recognizable if they simply remain the name of the system.

Don't invent clever, more abstract names if it causes confusion. In the online banking application it was fairly
easy to find our non-human actors. We recorded information about On-line Banking System customers and their
transactions in an Oracle Database, and accessed legacy systems (either CICS, IMS/DC) to perform financial
transactions and pull current account information. This led us to two external actors: legacy connection and data-
base. These actors mainly were of interest to the development team who needed to model objects that represented
interfaces to these external actors; the project sponsor only cared about the kind of legacy connections that would
be supported, and that Oracle was the database we had selected.

Copyright 2002 Wirfs-Brock Associates 9

GUIDELINE: If you are building a system whose behaviors are based on privileges and rights of individuals
rather than on their roles, record these variations in a manner that lets you track their impact on the design - don't
try to solve it with actors alone.

Sometimes we need to know more about individual users than their actor roles. You may need to describe indi-
viduals' rights and capabilities, and note what privileges are required to exercise certain system functionality.
Simply defining actors doesn't buy us enough information. This issue came up in our system design when we
started considering version two On-line Banking System features. In release one, a customer-user could register
and use all banking functions; in version two, a major requirement was that multiple users could be associated
with a single customer. Each user might use a different set of the customer's accounts. A user could grant account
visibility if he/she had appropriate privileges (the ability to do account and user maintenance). Initially, we
debated splitting customer-user into primary- user and customer-user, but talked ourselves out of creating a new
actor to solve our conceptual problem. It wasn't clear that 'primary user' was the right distinction. One clue was
that our domain expert didn't like this idea at all. He felt that since all customer-users had the potential to do
account and user maintenance, they shouldn't be arbitrarily divided into different actors. We also realized that
our second attempt at factoring bank agent into roles hid the requirement that our system needed to let banks con-
figure the capabilities of individual bank agents. Those that were trained in customer administration weren't
likely to also perform console operator functions, but it was up to the bank to decide who could do what; it was
up to our system to enforce and grant these capabilities.
These activities are quite different from the user's tasks. Systematic consideration of the various actors that are
involved with our software will ensure a more complete understanding of what the software must do.

Recipe: Finding Actors
1. Focus initially on human and other primary actors.
2. Group individuals according to their common tasks and use of the system.
3. Name and define their common role.
4. Identify systems that initiate interaction with the system.
5. Identify other systems used to accomplish the system’s tasks (these are secondary actors).
6. Use common names for these other “ system” actors.

Use Case Models
A single use case describes a discrete chunk of the system’ s functionality. A use case model is a collection of

related descriptions of our system’ s behavior. These descriptions are backed up by clearly understood concepts, and
should satisfy system requirements.Use case descriptions are typically written from an external perspective; that of a
user performing task-related activities. These descriptions form the basis of our view of how the various actors in our
problem will interact with the program and flesh out one of our perspectives of the specification.

While you initially focus on use cases initiated by human actors, there are a number of other system initiated use
cases that can be documented, such as:

• initializing the system on startup
• broadcasting change information to other active components
• backing up the database

Activate Customer
and Accounts

Edit Customer
Information

Bank Agent

Edit Customer Status

Activate Customer
and Accounts

Edit Customer
Information

Bank Agent

Edit Customer Status

Copyright 2002 Wirfs-Brock Associates 10

Use Cases Can Be Related
Use case diagrams can show a big picture of the application by demonstrating what actors participate in what use
cases, and by showing the relationships among the various use cases. Relations like “ uses” , “ depends” , and “ extends”
are added when this additional level of detail provides useful information.

GUIDELINE: Don’t show everything!

GUIDELINE: You can have more than one system view. Don’t try to put all of your useful information into one
diagram.

The Unified Modeling Language defines these relationships between use cases:
Dependency—The behavior of one use case is affected by another
Being logged into the system is a pre-condition to performing online transactions. Make a
Payment depends on Log In
Includes—One use case incorporates the behavior of another at a specific point
Make a Payment includes Validate Funds Availability
Extends—One use case extends the behavior of another at a specified point
Make a Recurring Payment and Make a Fixed Payment both extend the Make a Payment
use case
Generalize—One use case inherits the behavior of another; it can be used interchangeably with its “ parent”
use case
Check Password and Retinal Scan generalize Validate User

Use Case Diagrams
A use case diagram shows a high-level picture of the users and the use cases they participate in. In a complex sys-

tem, several use case diagrams can be drawn to show different views of how the system is used. The Unified Model-
ing Language includes a graphical notation for representing use cases as ellipses and actors as stick figures. The lines
drawn between actors and use cases indicate that the actor is initiating the use case. Use cases can call upon other use
cases, indicated by the <<includes>> relationship, or vary the behavior of a use case, indicated by the <<extends>>
relationship. The dependency relationship is shown by a dashed line. Generalization (not shown in the diagram

Copyright 2002 Wirfs-Brock Associates 11

below) is shown by an open arrow pointing to the use case being generalized. This is the same as the inheritance rela-
tionship between classes.

Guidelines for Drawing Use Case Diagrams

GUIDELINE: Identify the “ shape” of your use case model, then draw one or more use case diagrams that present
meaningful snapshots of your system’ s behavior.

GUIDELINE: Don’t include every use case in a single Use Case Diagram.

You can draw more than one use case diagram. A use case can be shown on more than one diagram, too. The
purpose of a use case diagram is to convey a particular organization of use cases.

Some possible diagrams: A diagram showing core use cases and their initiating actors; a diagram that emphasizes the
interactions and dependencies between two actors; a high-level diagram that identifies summary use cases; a detailed
diagram that shows how certain core use cases are fulfilled by “ including” supporting use cases; a diagram that iden-
tifies key variations with use cases that “ extend” other use cases

Use Case Levels
Use cases can be written at various levels of abstraction. They can describe sweeping overviews of system function-
ality. These are termed “ summary” use cases. Use cases can describe task related activities of users as they interact
with the system. These are “ core” or task level use cases. You can describe how your software behaves in support of
core use cases. We term these “ supporting” use cases. You can dig even deeper and describe how components in our

<<extends>>

<<includes>>

<<includes>>

<<includes>>

<<depends>>

<<includes>>
Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statement

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

<<extends>>

<<includes>>

<<includes>>

<<includes>>

<<depends>>

<<includes>>
Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statement

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

A Use Case
Diagram

Copyright 2002 Wirfs-Brock Associates 12

software behave and interact. These “ internal “ use cases are of value to those designing how the responsibilities of
the system are distributed between components.

The most useful level to consider from the external actor’ s understanding is the core level .This will be the focus of
our writing in class. However, sometimes other stakeholders need to see the big picture and will need to read sum-
mary use case description. Developers need the extra precision found in supporting and internal use cases. Core level
use cases are linked to lower level supporting use cases, and are part of higher level strategies.

Use Case Model Shapes
Depending on the nature of the system you are trying to describe, your use case model may assume one of several

shapes. Alistair Cockburn, in Writing Effective Use Cases, identifies the sailboat shape. It is a use case model that
includes a well structured set of core use cases that are defined to meet strategic behaviors outlined in a few summary
level use cases. In this sailboat image, most of the use cases are core- those found at the waterline where the sailboat
sits in the water. At the core level, you identify specific tasks of various actors using the system. Below this waterline
are supporting use cases that are used to fulfill one or more core use case functions.

FIGURE 1. A sailboat shaped Use Case Model. A balanced number of core or task-level use cases.

A second characteristic use case model shape is the “ hourglass” . This use case model is characterized by a small
(could even be one) number of core or task-level use cases that call on a wide-range of supporting use cases. The core
use cases could support several strategic goals. In this use case model shape, variations and complexities are typically
hidden to the software user performing a core use case.

FIGURE 2. An hourglass shaped Use Case Model. Much of the complexity of the software is not evident to
the user.

advertise order invoice

set up
promotion

reference
promotion

monitor
promotion

place order create invoice send invoice

identify promotion identify customerregister user identify
product

project goalSummary

Core

Supporting

advertise order invoice

set up
promotion

reference
promotion

monitor
promotion

place order create invoice send invoice

identify promotion identify customerregister user identify
product

project goalSummary

Core

Supporting

engineering provisioning marketing

Generic
Queries

Maintain indexes Keep use statisticsTune stored
procedures

Collect
information

Support executive
information needs

Summary

Core

Supporting

salesHuman
resources

… …

engineering provisioning marketing

Generic
Queries

Maintain indexes Keep use statisticsTune stored
procedures

Collect
information

Support executive
information needs

Summary

Core

Supporting

salesHuman
resources

… …

Copyright 2002 Wirfs-Brock Associates 13

A third shape is a “ pyramid” . In this Use Case model, there are many supporting use cases, each defining function-
ality that can be called on by a few core use cases. This is typical of a software application development environment
or an operating system. Sometimes, there may be little or no distinction between core and supporting use cases: all
may be exposed and usable by the same actors.

FIGURE 3. A pyramid-shaped Use Case Model. Core use cases resting on numerous supporting use cases.

Example: Defining Usage Requirements
The On-line Banking System requirements consists of support for all of the tasks that the users need to perform

with the system. They initiate the activities of the system and their agendas are reflected in the use cases:
• Login
• Register Customer
• View Account Balances
• View Account Statement
• Transfer Funds
• View Session Activities
• Select Setup Choice
• Edit User Information
• Edit Account Information
• Delete Account
• Edit Payment Template Information
• Make Payment

When you define what your system does for its users, you are also determining the boundaries of our system:
what’ s inside?, what’ s out of scope?, what does your system do for its users?, how do they interact with it?, and how
does it interact with other systems?

In the on-line bank, although the end users using the web were of primary concern, there were other people and
systems that interacted with the software. These actors also initiated and participated in a number of use cases. Exter-
nal systems, and how they were used were important, too.The interactions and usage of legacy software were impor-
tant to specify so that it could be isolated and viewed in a uniform way by other parts of the system. The use of the
database was of concern to developers and the sponsors. Although the database was a secondary actor; the details of
what was stored in the database, and the requirements for storing transaction details (not internal transactions) made it
important to describe it in a manner that was understood by both parties.

Configure
collection

Configure
reporting

Configure
cycle options

Identify
interfaces

Establish
Mapping
rules

Present
options

Identify
usage

Specify rules

Interface
using RMI

Map to IH
standards

Interface
using VPI

Map to
OSS
standards

Support generic
Telco BillingSummary

Core

Supporting

Interface
using
CORBA

List option
by industry
standards

Collect
customer
reporting
options

List options
by customer
standards

… …

… …

Configure
collection

Configure
reporting

Configure
cycle options

Identify
interfaces

Establish
Mapping
rules

Present
options

Identify
usage

Specify rules

Interface
using RMI

Map to IH
standards

Interface
using VPI

Map to
OSS
standards

Support generic
Telco BillingSummary

Core

Supporting

Interface
using
CORBA

List option
by industry
standards

Collect
customer
reporting
options

List options
by customer
standards

… …

… …

Copyright 2002 Wirfs-Brock Associates 14

Use cases are only part of any system specification. Use cases are often accompanied by supporting information,
pictures, more formal descriptions of algorithms, etc., that are meaningful to people who will build or use the system.

The sources of funding of the on-line bank were a consortium of South American banks, and a major computer
manufacturer. They specified schedule, cost, deliverables, variability from one bank to another, support for legacy
connectivity, user languages, development tools and languages, hardware platforms, and distribution requirements.

The user requirements came from representatives of the banks: the tasks to be performed on-line, the user inter-
face, and the roles of the people that will use the application.The technical architect imposed a set of non-functional
requirements on the system: reusability, performance characteristics, robustness, configurability, support for technol-
ogy standards, error-handling, and fault tolerance. The patterns of usage were not nearly as difficult as the “ internal” ,
structural and behavioral requirements imposed by the system architect and the sources of funding.

It is for this reason that use cases are only part of any system specification. They are accompanied by supporting
information, pictures, more formal descriptions of algorithms, hardware componentry, etc., that are meaningful to
people who will build or use the system.

V. Glossaries
The purpose of a glossary is to clarify terms so that team members can know what they are agreeing or disagreeing
on. A common set of terms that are defined and understood forms the basis for all our descriptions. A glossary should
be developed to accompany a use case model as well as other requirements documentation.

A glossary is a central place for:
• Definitions for key concepts
• Clarification of ambiguous terms and concepts
• Explanations of jargon
• Definitions of business events
• Descriptions of software actions

The glossary is built incrementally. Terms in the glossary form a working description of the concepts and events
that exist in the various domains of the problem, and clarify the terms that we use to describe requirements and write
use cases. A good glossary entry follows this form:

“Name of a concept” related to a “broader concept” + any distinguishing characteristics
For example:
A compiler is a program that translates source code into machine language.

user
make payment
transfer funds

operator
edit configuration
maintain user info

administrator
add bank agent

legacy system

Oracle
database

Drawing the System Boundary
Actors and Use Cases

Copyright 2002 Wirfs-Brock Associates 15

Here is an example from the on-line bank contrasting an original version with an improved version, reworked for
clarity:

Experience has shown the value of developing a common set of terms for the development team. Seasoned develop-
ers, because of their wide experience in the domain, will have encountered multiple, varying definitions for many of
the core concepts. A concept glossary levels the playing field and unifies these diverse points-of-view. For team
members new to the domain, a concept glossary offers a jumpstart to understanding the domain, and is vital to under-
standing the requirements.

GUIDELINE: Write definitions for key concepts.

GUIDELINE: Build incrementally when writing requirements.

GUIDELINE: Add supplementary information.

Why is this concept important? What are typical sizes or values? Clarify likely misunderstandings. Explain
graphical symbols

GUIDELINE: Determine an appropriate name for each concept.

GUIDELINE: Normalize names.

Identify behaviors that are the same but have different names. Identify behaviors that are different but have the
same name.

GUIDELINE: Define acronyms and their concepts.

Example: OSS - Operations Support System: As defined by the FCC, a computer system and/or database used at
a telephone company for pre-ordering, ordering, provisioning, maintenance and repair, or billing

GUIDELINE: Use pictures to relate concepts.

Example: We recommend defining terms and relating them with a picture as the best way to get across complex
relationships. Here are some related concepts:
wire center- the geographical area served by a central office

central office- a building where local call switching takes place
main distribution frame- a large connector at a central office, which connects switching equipment to feeder
cables

Improving Glossary Definitions
Contrast the original:

Account In the online banking system there are accounts within the bank
which customer-users can access in order to transfer funds, view account
balances and transaction historical data, or make payments. A customer has
one or more accounts which, once approved by the bank can be accessed.
The application supports the ability for customers to inform thesystem of
new accounts, and for the customer to edit information maintained about the
accounts (such as name and address information).

With a definition that says what an account is and briefly
describes how it is used:
Account An account isa record of money deposited at the bank for

checking, savings or other uses. A customer may have several bank
accounts. Once a customer’ s account is activated for online access, account
information can be reviewed and transactions can be performed via the
internet.

Copyright 2002 Wirfs-Brock Associates 16

feeder cable- a large cable that connects to the main distribution frame at a central office and feeds into distribu-
tion cables
distribution cable- a cable that connects between a feeder cable and one or more terminals
and a picture showing how they are related:

GUIDELINE: Avoid vague words.

GUIDELINE: Avoid Using is when or is where.

Good: An overplot is an overlap between two or more graphic entities drawn at the same place on a page

Bad: An overplot is when two things overlap

GUIDELINE: Define a particular status as a list of possible states.

Example: A proposal’ s approval status is its current stage in the process for granting or denying it: awaiting
department approval, awaiting chair approval, awaiting board approval, or denied.

GUIDELINE: Use team development and review to build consensus for definitions.

A Picture Relating
Hierarchical Concepts

central office

main
distribution
frame

wire center

feeder cables

cross connect
terminals

connector blocks

Copyright 2002 Wirfs-Brock Associates 17

VI. A Template For Writing Use Case Descriptions
Here is a template for filling in additional information that can accompany the description of the interaction

between the actor and the system. Several authors have proposed their versions of a Use Case Template. They are
similar but have slight differences. This discussion presents an overview of elements that can be part of a use case
template.

FIGURE 4. The parts of a Use Case Template

We recommend you start by adopting a template that is fairly lightweight (we include more information in this
template than you may need to get started). Depending on where you are in a project, you may start by only filling in
part of the information in a template...and then add more details in a second iteration. For example, you may start by
only writing a narrative and identifying the actor for the use case. Later, you may describe exceptions and add conver-
sations or scenarios that expand on the basic narrative.

It is useful to divide the template into three parts:
• the preamble- which defines the context of the use case
• the body - which describes the actor’ s interactions with the system, and
• supplementary information - which adds details and constraints on the use case’ execution

The Preamble
The preamble contains information that “ sets the stage” for the behavior described in the body of the use case
In the preamble, you may find the following information:

• Level - summary, core, supporting or internal use case?
• Actor(s) - role names of people or external systems initiating this use case
• Context - the current state of the system and actor
• Preconditions - what must be true before a use case can begin
• Screens - references to windows or web pages displayed in this use case (if a UI is part of the system)

The Body
Description of the use case’ s behavior. This description can be:

• A narrative - a free form paragraph or two of text.
• A scenario - a step-by-step description of one specific path through a use case
• A conversation - a two-column (or more columns if showing dialogs between multiple actors and/or system
components) description of the dialog between the actor and the system.

In a single use case, you may write a narrative, and, once you’ve worked out how the actor will interact with the
system, then write either a scenario or conversation. Nothing says that the body has to be restricted to one form. But
most of the time we see writers start by writing a very brief narrative (of just a couple of sentences), then write either
a scenario or a conversation that goes into more depth. They leave both forms around—the narrative as an overview
(which only certain stakeholders read) and the other as an in depth presentation of actor/system interaction.

A Use Case Template

Use case name

Preamble

Use case body (narrative, scenario or conversation)

Supplementary details and constraints

Copyright 2002 Wirfs-Brock Associates 18

Supplementary Details
• Variations - different ways to accomplish use case steps
• Exceptions - errors that occur during the execution of a step
• Policies - specific rules that must be enforced by the use case
• Issues - questions about the use case
• Design notes - hints to implementers
• Post-conditions - what must be true about the system after a use case completes
• Other requirements- what constraints must this use case conform to
• Priority- how important is this use case?
• Frequency - how often is this performed?

GUIDELINE: When you start writing use cases, describe the key points. Typically, this means giving the use
case a name, identifying the actor and writing the use case body (one of the three forms).

GUIDELINE: Fill in template fields as information becomes available.

As you write a narrative, you may think of an issue or a note to the designer. Jot these down when you think of
them. Don’t wait for the perfect time. The right time to add a detail is when it occurs to you. You can always note
a fact, then fill in more complete details later.

GUIDELINE: Make clear how complete a use case is.

Daryl Kulak and Eamonn Gray in their book, Use Cases Requirements in Context identify four phases of a use
case description: facade, filled, focused and finished.
Whether you pick these four “ degrees” of completeness or some other measure of completeness, it is a good idea
to note whether a use case is a first draft, whether it has been reviewed, when it has been revised or approved by
various stakeholders, and “ signed off” as finished.

GUIDELINE: For more formal projects, information about the current state and history of a use case can be
added to the template..

Add this information as supplementary details. This lets readers of the use case see the main points first. If you
include this information are part of the preamble, it adds clutter that has to be scanned over before the reader
finds the main facts about the use case.

A use case description can start out simply, then get quite complex as template details are filled in. Start simply, writ-
ing down what you know and issues that need to be addressed. Through several revisions and refinements get to a
“ finished” use case.

VII. The Narrative Form
Narratives are free-form text in paragraph format. A narrative describes the intent of the user in performing the use
case, high-level actions of the user during the use case, and refers to key concepts from the problem domain that are
involved in the use case.

Below is an example narrative from the On-line Banking System Specification Documents. We have briefly
described the purpose of Log In and what happens as a result of the user successfully completing the Log In. We've
also included a set policies that relate to logging in, and have listed some exceptions that may arise during Log In.

Use Case: Log In
Log In is the primary entry point into the On-line Banking System. Log In verifies that the
user is previously registered with the On-line Banking System, and that s/he has correctly
entered user id and password information. After a successful login, a registered user can use
the system's main functions. All others, regardless of whether they have registered or not,
have access to the On-line Banking System Demo and Registration Page.

Copyright 2002 Wirfs-Brock Associates 19

Recipe: Writing Use Case Narratives
1. Give the use case a descriptive name.

GUIDELINE: Begin the use case name with an active verb.

2. Identify the actor that uses the use case.
3. Identify the intended audience of the use case.
4. Specify the actor’s goals for the use case.

GUIDELINE: Use active verbs to describe the actor’ s goal.

5. Write a description consistent with the name and the user’s goal; one that elaborates the use
case.

GUIDELINE: Maintain a single point-of-view: the actor’ s.

GUIDELINE: Describe intent, not action.

GUIDELINE: Capture the simple, normal use cases first. You will describe the variations as secondary use cases
later.

GUIDELINE: If the use case changes the state of some information, describe the possible states.

GUIDELINE: Write the use case description at a level appropriate for the intended audience.

GUIDELINE: Leave out details of user interface, performance, and application architecture. Put these details in a
central document, and reference these requirements in the use case.

6. Describe any business rules or policies that affect the use case in a separate place: either in a
policies section below the use case body; or in a global policies section. Reference globally
applicable rules or policies in the use case policy section of the template.

VIII. Scenarios and Conversations: Writing More Detailed Usage Descriptions
One key to developing a usage model is knowing how much to describe. A closely related question is, “ What’ s the
best way to present detailed information?” Use case narratives are general descriptions about how a system supports
an actor’ s goal. There may be numerous ways to achieve any goal. Sometimes it helps to clarify things by concretely
describing actions and information for a specific situation.

Scenarios and conversations are forms that are useful to show in more detail how an actor achieve’ s a specific
goal.

How many use cases should be written? A glib answer: “ As many as it takes to get the main ideas across.” The
number is highly dependent on how close your intended audience is to the problem, and how many details they need
spelled out.

Here’ s one general word of advice: Write to be read. If it clarifies and brings understanding to your system’ s
behavior, write narratives to describe the general situation, then augment those narratives with specific descriptions.
If your readership only looks at details, narratives likely won’t be of value.

GUIDELINE: High-level use case names state a general goal. Write one narrative use case for each general goal,
and as many scenarios or conversations as it takes to get the main ideas across.

For example:
Narrative: Make a payment

Describe what online payment means and typical ways of making them

Copyright 2002 Wirfs-Brock Associates 20

Write scenarios or conversations that describe more specific goals:
Scenario 1: Make a recurring payment

All the steps in paying my monthly phone bill …
Scenario 2: Make a non-recurring payment
All the steps in paying a fixed amount …

Scenario 3: Make a regular payment
All the steps in paying a monthly loan …

Sometimes, your use cases are read by diverse audiences. Some want to only see details. Others only want “ big
picture” overviews. In the interests of keeping everything together, and not creating a maintenance problem, we sug-
gest you bundle both a general and a specific description together in a single use case.

GUIDELINE: Write two “ versions” of the same use case: one version a narrative, the other version a more
detailed form.

Example:
First, write a narrative
The “ View Recent Account Activity” narrative describes generally how users view the current or previous
account period’ s transactions
Then, choose an appropriate form. Rewrite the use case body at this lower-level of detail

The View Recent Account Activity conversation includes the details of optional actions, such as downloading a
file containing recent transactions in several different formats

Leave the narrative as an overview. Consider adding an “ overview” section to your template if you have always
have diverse readers for your use cases.

What is a Scenario?
Scenarios are one means to describe a specific path through a use case. A scenario list specific steps toward that

goal. It describes a sequence of events or list of steps to accomplish.Each step is a simple declarative statement with
no branching. A scenario may describe:

• Actors and their intentions
• System responsibilities and actions

All steps should be visible to or easily surmised by the actor. We typical state a statement by naming who is per-
forming the step. Our goal is to convey how the system and actor will work together to achieve a goal. Even though a
scenario can show more detail, resist putting in too much detail. Much of that detail can be placed in the preamble or
supplementary parts of the use case template.It should be clear where a scenario starts. Describe the steps in achiev-
ing the actor’ s goal. End there.

For example, we might write a scenario toward the user’s goal of “ Register a Customer.” This specific scenario
explains a variation of this task called “ Register Customer with Auto-Activation.”

Example Scenario: Register Customer with Auto-Activation
1. User enters registration information:

• Required information: user name, email address, desired login ID and password, and confirmation password
• One of: account number and challenge data, or ATM # and PIN
• Optional: language choice and company

2. System checks that password matches confirmation password.
3. System validates required fields and verifies uniqueness of login ID
4. System verifies customer activation information.
5. System creates and activates customer on-line account.
6. System displays registration notification.

Copyright 2002 Wirfs-Brock Associates 21

Recipe: Writing Scenarios
The purpose of a scenario is to describe the flow of events in the use case. These events can be initiated by the user

or performed by the system, but should express the steps of the process as the user understands it.
1. For each use case, determine the “ happy path” to the actor’ s goal.

GUIDELINE: Ignore other possible paths through the use case at first. Write these “ secondary” scenarios later.

GUIDELINE: Refer to the specific use case that the scenario elaborates, if the use case has been written.

2. Write a scenario as a sequence of steps, ordered by time.

GUIDELINE: Every step in a scenario should be visible to or easily surmised by the user.

GUIDELINE: Write each step as a simple, explanatory statement.

GUIDELINE: Keep information and actions concrete.

GUIDELINE: Focus on ordering and definition of steps.

GUIDELINE: Factor lower-level details into new descriptions.

GUIDELINE: Keep steps ar roughly the same level of abstraction.

In following example, several steps have been compressed to keep actions at the same level.

3. Number the steps.

GUIDELINE: Don’t get carried away. Keep the numbering one level deep. Remember, the goal is clarity.

4. Look for steps that might repeat within the scenario.

GUIDELINE: To show repetition, use repeat or while statements.

GUIDELINE: Avoid the tendency to write pseudocode unless your audience are programmers who only
understand code.

5. Look for steps that depend on a condition.

Mixed level of detail:
Check for required fields
Capture user ID and password
Ask security component for validation
Issue SQL statements to security database for logon

authorization…
Open connection to bank server
Read account summaries…

Fixed:
Check for required fields
Login user to domain
Display account summaries and bulletin

1

2

3

1

2

3

Copyright 2002 Wirfs-Brock Associates 22

GUIDELINE: To show that a step depends on a condition, use an if statement.

GUIDELINE: When the logic for expressing a conditional statement becomes too complex, write another,
alternative scenario.

GUIDELINE: Distinguish between variations and exceptions. Describe recovery from exceptions in a
supplementary note or another scenario if the recovery is complex. Document variations in either a
supplementary note, or another scenario if the actions are interesting.

6. Look for sequences of steps that repeat across scenarios.

GUIDELINE: Don’t do this early in your project. Later, factor out portions of a scenario that repeat in other
supporting scenarios, give them a name, and refer to them within the core use case with a reference to the
supporting use case’ name.

7. Look for optional steps.

GUIDELINE: Preface optional steps or actions with “ Optionally,..” . Indent optional steps for clarity.

8. Show the range of values of data that is used in the scenario.

GUIDELINE: If the user changes the information, specify the possible states that the information might go
through.

What is a Conversation?
A conversation describes a significant sequence of interactions between an actor and the system, or between one

part of our system and another. It is a detailed description of a Use Case that clearly defines the responsibilities of
each participant.

There are two central parts to a conversation, a description of requests or inputs, and a corresponding description
of the high level actions taken in response. Together, these “ side-by-side” descriptions capture a sequential ordering
of communications.

Like a scenario, it can show optional and repeated actions. Each action can be described by one or more substeps
The focus of a conversation is to detail the types of interactions, the flows of information, and the first-level sys-

tem logic of the system, all from the user's point-of-view. If desired, it can also be used to drill down to the deeper
levels of system logic, as seen by a developer.

FIGURE 5. A conversation shows a dialog

Because of the various ways in which a user task can be performed successfully, there may be one or more conver-
sations for a single use case narrative.

Copyright 2002 Wirfs-Brock Associates 23

Often, it is too big a gap to move directly from informal Use Case written in narrative form to design. Also, use
cases written at this higher level are full of ambiguities and extraneous details that have little to do with what our sys-
tem must do for the user. As you restructure use cases into conversations, you add more detail by:
• showing branching and looping,
• describing constraints on what our software should do,
• describing the context in which the conversation occurs,
• identifying the actors that initiate the activity,
• defining the “ standard” course of action and alternatives to it,
• raising unanswered questions, and
• adding design notes.

TIP: This supporting information is often as important as is defining the order to the user's actions.

Notation
Use a table format to record a conversation several stylistic shorthand conventions. Other use cases invoked during

a conversation are marked in bold text. These use cases could be “ used” (UML's “ includes” relationship), or transfer
of control could passed via a “ goto” . These control flow conventions proved extremely relevant to the UI designer
and application server implementation, but are unimportant to a high-level view of a use case.

Optional actions, for example (Indicate Setup Payees), are labelled. Show looping or repetitive steps by merging
adjacent cells in a row to bracket the beginning and end of a block of repeated or optional actions:

FIGURE 6. Showing Repetition, or an optional block of actions

Repeat

actions go here

Until proposed schedule is built

Repeat

actions go here

Until proposed schedule is built

Copyright 2002 Wirfs-Brock Associates 24

Placing dialog in adjacent cells of the same row shows an interactive round (an actor action that invokes a nearly
simultaneous system response). Placing the system response in the row immediately after the provoking action
denotes a batch round.

FIGURE 7. Conversation notation

This is an example of a dialog between the customer-user and the system. We used a table format to record this
dialog and several stylistic shorthand conventions. Other use cases invoked during payment were marked in bold text.
These use cases could be “ used” (UML’ s uses relationship), or transfer of control could passed via a “ goto.” These
control flow conventions proved extremely relevant to the UI designer and application server implementation, but are
unimportant to a high-level view of a use case.

In the on-line bank, our web-based interface design did not allow for simultaneous interactions; instead informa-
tion would be batched and passed along with an action tied to a button. A more traditional window application or a
Java applet has the potential for many more overlapping activities.

Writing Conversations
Knowledgeable experts from diverse backgrounds can readily construct conversations. Conversations can either

be developed by a team or drafted by an individual then reviewed, explained, and revised by a small group. It is
important that teams who develop conversations blend the talents of developers, users, and other specialists. Each
contributor has a unique and valuable perspective. No perspective should dominate, yet a certain interest may take
center stage during a working session. It is important that side concerns be recorded, and worked through, perhaps as
an outside activity. Respect and appreciation for the concerns of others is important; teamwork and a spirit of joint
development is crucial. For example, in one working session, we dived into technical design details for several min-
utes, backed up to re-examine whether the flow of the conversation we had proposed was still workable, then summa-
rized what issues were solved and what new ones were raised by a single decision. Technical, user interface and
business issues were all discussed in a single session while holding everyone's attention.

One key to building a good conversation is to preserve its dual purpose of

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and recent payment
history to payee

Enter payee notes, amount and
account

Submit payment information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments
Goto Edit Payment Template
Information

Select next function
Goto selected use case

Optional
Action

Multiple
Actions

Invoking Another Use Case

Copyright 2002 Wirfs-Brock Associates 25

1. recording of the important events and information that are conveyed between the user and the
system; and

2. guiding developers who will be creating the object design model.
To meet these objectives, conversations must be written at a fairly high level. It often is the case that sequencing of

model responses (for example the details of recording a payment transaction) are not accurate reflections of the tasks
that the system must do. Yet, they need not be early on. What is important, is that an interdisciplinary team is sketch-
ing out how they expect their software system to work.

Conversations capture the flow of communication between actor and system. If the nature or the amount of infor-
mation changes significantly, the demands on your object model also change. So we suggest that you include suffi-
cient detail, and reflect changing interaction and interface design if conversations are to actually guide object
modeling.

What is a dialog?
The basic form of conversation is the dialog. A dialog is a conversation where both sides participate in a structured

sequence of rounds of interaction. Each round is a pairing of an action taken by the user, and the software system's
response to this action. A round is one of two types. It is either an interactive round or a batch round. An interactive
round features interplay of user actions and system responses. For example, the validation of a single key press
among many is typical of an interactive round. In contrast, filling out several entry fields and then submitting them all
at once is a more typical of a batch round.

This sequence of rounds establishes a necessary ordering of the interactions, and details the individual activities of
the user and the system's response in each round. Many of our conversations between human actors and our system
are of this form

FIGURE 8. General form of a conversation

Choosing Between Conversations and Scenarios
The detailed form you choose to use depends on two primary factors:

• whether or not your system has meaningful dialogs between its users; and
• personal preference

Use a scenario when:
• a simple list of actions is sufficient
• actor-system interactions aren’t interesting

Chose a conversation when:
• there are many interactions and you want to describe them
• you want to show more details in your system responses
• you want to separate the roles of actor and system and clearly identify at each point the system does for the
actor

We have written conversations for systems where there isn’t a lot of interaction between actor and system. This
becomes readily apparent from looking at the staggered pattern of filled in cells.

Most projects write high-level use case narratives, then standardize on one of the two more detailed forms to
describe all use cases. Whether you want to write conversations or scenarios may not be obvious until you understand
the nature of your system’ s interactions with its users.

Actor Actions System Responses
I do this

And I respond by ..
I tell you this… I am respond to what you

are telling me and giving
you feedback while you
are talking

Batch
round

Interactive
Round

Copyright 2002 Wirfs-Brock Associates 26

Recipe: Writing Conversations

GUIDELINE: Write a conversation if it is important to show the patterns of interaction between the actor and the
system.

GUIDELINE: Write a conversation if you want to show the first cut at system-actor actions in greater detail.

GUIDELINE: If you have written a scenario and find that it does not offer you enough detail, rewrite it as a
conversation.

1. List the actor actions in the left column and the system actions in the right column.

GUIDELINE: Leave out presentation details.

GUIDELINE: Maintain a consistent level of detail.

GUIDELINE: Don’t embed alternatives in your action descriptions.

It can get complicated for your readers to deciphers nested “ if then... else, if..” statements if they are liberally
sprinkled through your action statements. You can keep the statements simple if you write the “ happy” path
description in the body of the conversation. Call out exceptions and variations below.

GUIDELINE: Don’t mention “ objects” in system responses.

Remember that your readers what to know what is happening from an external perspective, not what the system
is doing behind the scenes. For example, rather than stating “ create customer and account objects” you can
rewrite the system’ s response to more clearly explain what the system has done to benefit the actor: “ record cus-
tomer account information” .

GUIDELINE: Write conversations with a small group (maximum of 3).

When we first started defining the On-line Banking System, we wanted every developer to understand all facets
of the system. This quickly proved impractical and slowed everyone down. So, two of us focused on use cases
and conversations, interacting primarily with the system architect and domain expert. Eventually one person took
over maintaining use cases; everyone else used them as reference material. For example, the developer who
designed and implemented the application server only raised questions when conversations were unclear or
inconsistent, and was quite content to not always work from the latest documentation until things settled down.
The project manager and project sponsor didn't read these documents at all (unlike other projects we've worked
on where management enjoys reading and commenting on them in detail).

2. When the system has an immediate response to an actor action (such as validating a key
stroke), list them in the same row.

Pseudo-code:
Conversation: Registration with Automatic-Activation

10. If bank supports automatic activation
with ATM and PIN then...

If ATM and PIN #s are valid then....

Fixed:
Conversation: Registration with Automatic-Activation

10. Validate ATM and PIN #

Exception
Step 10: ATM and PIN #s are invalid- Report error to user

Copyright 2002 Wirfs-Brock Associates 27

GUIDELINE: Leave out information formats and validation rules.

These are best kept in a separate place that can be maintained and updated as business procedures and policies
may change. Only summarize what information is presented to or collected from the actor in the conversation.

3. When the response is delayed until an entire actor action is complete, list it in the row imme-
diately below the row with the actor action.

4. Write any assertions about the software’s states during the conversation.
5. As you consider the actions in the conversation, document any ideas about “ how” in a Design

Notes section.
6. Test the conversation with a walkthrough.

GUIDELINE: Use specific examples to walk through use cases and conversations.

GUIDELINE: Trying to abstract or write more general conversations too early tends to create problems. It is
better to deal with specific situations first, then review and combine things as appropriate, after you have the big
picture. This strategy led us to write different conversations to record different typical uses. For example, we
discovered two common ways customers could make payments, one for paying same amount to the same vendor
and one where the amount paid varies. This led us to write two separate conversations, Make Similar Payment
and Make Payment. In version two, when we would support automatic payments, Make Recurring Payment
would be added to our Payment Use Case conversations.

7. Check conversations for completeness.
8. Relate the conversations through their preconditions and postconditions.

IX. Other Descriptions, Exceptions and Variations
“ Other” requirements are those that are not captured within the body of a use case, or within or within other parts of
the use case template. They can either be kept in a central place or can document the use case where they seem to
apply. In fact, if you are following a rigorous requirements specification process, you may gather and record many
requirements that, while they may impact your system’ s usage and design, belong elsewhere.

Keep Common Requirements in a Central Place

GUIDELINE: Document requirements spanning use cases in a central place.

For example: “ Financial transactions must be secure.” , and “ System must run 7x24”

GUIDELINE: Refer to specific “ central” requirements by name in the use cases that they impact if this impact is
not obvious to the reader and it’ s important to know.

Rules and information model embedded:
User Name: First name, last name (24 characters maximum, space

delimited)
email address with embedded @ sign signifying break between user

identification and domain name which includes domain and sub
domain names delimited by periods and ending in one of:gov, com,
edu...

Fixed:
Required: user name, email address, desired login ID and password
One of: account number and challenge data, or ATM # and PIN
Optional: Company Name

Copyright 2002 Wirfs-Brock Associates 28

Note Specific Requirements in Use Cases they Affect

GUIDELINE: Document specific requirements in the use case that they pertain to.

For example: “ Registration response time must be less than one minute.”

GUIDELINE: Look for requirements that are invisible to the actor.

For example: “ System must not lose any requests” , or “ Application servers will be widely distributed”

GUIDELINE: Look for performance requirements that affect system behavior.

Design Notes
Design notes, if part of your use case template can “ round out” your usage descriptions with ideas that occur to you
that might be useful during design. Since a use case isn’t a descriptions of a solution, don’t write these details there.
But if you think of a good design idea, you may want to jot it down and keep it with your use cases.

GUIDELINE: Add design notes as they occur to you when writing scenarios and conversations.

For example: “ Errors and warnings about registration information contents should be collected and returned to
the user in a detailed message rather than stopping at the first detectable error” , and “ Payments should be shown
in time order, with the current date first.”

GUIDELINE: Write design notes as hints or suggestions, not as instructions to the designer. Don’t be too
detailed.

Alternatives
Distinguishing which courses of action are the “ main” paths is often difficult. We have two options for documenting
alternative courses of action (variations) and points of potential error (exceptions) in a use case. If the alternative can
be stated simply, we embed if-statements in the description. For a slightly more complex alternative, we note these
alternatives in supplemental text below the basic path. Or, when the alternative flow of events is complex, we can
write completely new use cases for these alternatives. In the latter two situations, we reference the point in the origi-
nal use case where the alternative takes place.

Variations
A variation can be a different action on the part of either the actor or the system. When you see this possibility, be
opportunistic! Don’t let the insight go by. Capture the conditional choice in an if statement, describe the difference in
supplemental text below the use case body, or write another use case. One that incorporates the alternate action. Note
the name of the new use case so that you can write it later.

Exceptions
On the other hand, actions that have the potential for errors, again, on the part of either the actor or the system.

Treat these errors similarly to variations, but note them under a separate heading in the supplementary part of the use
case template. They are the source of many of the error-handling requirements of the system.

GUIDELINE: Describe the exception and its resolution. Identify whether it is recoverable (e.g. the actor can
continue on with his/her task in some fashion) or unrecoverable.

GUIDELINE: For each recoverable exception describe how the actor/system needs to respond to make forward
progress.

GUIDELINE: For each unrecoverable exception, make clear what state the system returns to after detecting this
condition, and how the actor is notified of this condition.

Copyright 2002 Wirfs-Brock Associates 29

Activity Diagrams
Activity Diagrams are a UML standard way of describing sequences of actions, the dependencies among them, and
the parallelism and synchronization characteristics. Use them as a way of visualizing activities at several levels: the
process level that demonstrates how different use cases interact, the task level that shows the activities of a user when
performing a use case, and the subfunction level that shows the internal workings of a single step, whether it be per-
formed by a user or a computer program.

These elements show an activity (the oval), synchronization of activities (the synchronization bar), decision-mak-
ing (the diamond), pre and post conditions (the guards, text inside the square brackets annotating the arrows), and
iteration (the asterisk on annotating an arrow).

This activity diagram demonstrates the actions that take place when “ Making a Payment” . It is at the task level and
describes a single use case.

GUIDELINE: Use an activity diagram to describe a single use case. The goal is to understand what actions that
take place and the dependencies between them

GUIDELINE: Use an activity diagram to understand workflow across use cases. Activity diagrams are great for
showing connections and dependencies between the use cases of an application.

GUIDELINE: Use an activity diagram to show parallel activities. Activity diagrams are particularly good at
showing parallelism, synchronization, and pre and post conditions.

Recipe: Writing Exceptions
The typical paths through the use case is specified in primary descriptions. Alternatives to these paths can be writ-

ten as secondary use cases, or named in variations and exceptions sections.
1. Look for potential exceptions in each primary use case.

GUIDELINE: When looking for exceptions, ask:

• Is there something that could go wrong at this point? (exception)
• Is there some exceptional behavior that could happen at any time?

Enter Amount

[no]
[yes]

Choose Acct

*
for each payment

Customer Access
Payment
Screen

Choose
Vendor

Enter Amount

Choose Acct
[other]

[default]

Submit
Payment

Verify
Payment

Copyright 2002 Wirfs-Brock Associates 30

GUIDELINE: Be opportunistic! Document the exceptions whenever they occur to you.

The first step is identifying the exception. The next step is resolving how it will be handled.

GUIDELINE: Keep the exceptions at the same level of abstraction as the use case description.

2. Determine which exceptions should be written as separate use cases.

GUIDELINE: Defer writing these secondary use cases until you feel satisfied with your primary ones.

GUIDELINE: Write secondary use cases according to the recipe and guidelines for primary ones.

3. Document the exceptions.

GUIDELINE: Describe the exception condition. Note whether it can be recovered from or not. Describe the
actions the actor or system take to recover; or to end the use case in an unrecoverable situation.

GUIDELINE: Choose the clearest way to describe how the exception is handled

Options include:
• Briefly describe what happens, or
• Refer to another use case that describes the exception handling

4. Refer to the place in the original use case where the exception takes place.

GUIDELINE: Insert footnote numbers or tags into the main scenario, and tag the alternatives with the same
number.

Recipe: Writing Variations
The typical path through the use case is specified in the body of the use case. Alternatives to these paths can be

written as secondary use cases, or named in variations sections.
1. Look for potential alternatives in each use case body.

GUIDELINE: When looking for variations, ask:

• Is there some other action that can be taken at this point?

GUIDELINE: Be opportunistic! Document the variations whenever they occur to you.

2. Determine which variations should be written as new use cases.

GUIDELINE: Defer writing these secondary use cases until you feel satisfied with your primary ones.

GUIDELINE: Write secondary use cases according to the recipe and guidelines for primary ones.

3. Document the variations.

GUIDELINE: If the variation is easily added to the use case body, put it there. Show that variations are optional
by indicating that one of several choices can be made for a particular step.

GUIDELINE: If the description of variations clutters up a use case description, write about it in the
supplementary part of the use case template.

Refer to the place in the original use case where the variation takes place.

Copyright 2002 Wirfs-Brock Associates 31

GUIDELINE: Insert footnote numbers or tags into the main body, and tag the variation with the same number.

Assertions
Assertions about our system’ s behavior are useful for:

• Generating the flow of system events
• Determining use case dependency relationships
• Understanding the states of the application

We make three kinds of assertions: preconditions, postconditions, and constants.

Pre-conditions
Pre-conditions are what must be true of the state of the application for the use case, scenario or conversation to be
applicable. They can also imply the possibility of some order of the use cases, as we will see in the next section on
post-conditions.

Post-conditions
Post-conditions are what must be true of the state of the application as a result of completion of the use case, sce-

nario, or conversation.
For example, in the On-line Banking Make a Payment use case, debiting an account leaves the system in one of two
states:
• InGoodStanding
• OverDrawn

These post-conditions of Make a Payment lead to two different system states. In the first case: “ OverDrawn” leads
to not permitting another make payment use case to execute (until the Account is InGoodStanding) because InGood-
Standing is a precondition for Make a Payment. In the second case, InGoodStanding enables another Make a Payment
to be executed.

GUIDELINE: Document pre and post-conditions where the system responds differently as a result.

We have seen many people struggle with the question, “ what’ s a good post condition?” A bad post condition
adds clutter and doesn’ t add any information. Restatements of the actor’ s goal don’ t add information. If the goal
is to Make a Payment, then saying that a payment has been made doesn’t add any information. A good test of a
post-condition is that it states something about the system that may or may not be obvious from completing a use
case. And, ideally, a post-condition may enable another use case to be executed.
Example of a poorly stated post-condition that restates the use case goal:
Post-condition: Customer has withdrawn cash

So what? The customer receives cash but what does this say about the next time he/she wants to withdraw case,
or any other use case?
Fixed:
Post-condition 1: Account balance is positive

Post-condition 2: Account is overdrawn
Note that the user may have achieved his/her goal, to withdraw cash, but depending on the amount withdrawn
and the account’ s balance, his/her account may be in one of two possible states after successfully withdrawing
cash. Now that’ s interesting!

GUIDELINE: Specify pre- and post- conditions only when you need to be formal

Once you add pre- and post-conditions to one use case, you will need to add them to dependent ones! A use case
model that only has pre and post-conditions on a few use cases begs the question, is this complete or are there
gaps in this specification?

Copyright 2002 Wirfs-Brock Associates 32

GUIDELINE: Check for completeness of use case dependencies by asking how each use case is enabled, and the
conditions it sets that enable others.

Example: Pre-conditions should make clear when a use case can execute

 An account must be in good standing and the daily withdrawal limit not exceeded in order to withdraw cash
Post-conditions may be relevant to other systems
 Being overdrawn may trigger transaction fees

Pre-conditions may be set by other systems
 An account can be overdrawn through direct payments

GUIDELINE: Complete the specification of pre and post-conditions by documenting the possible states of the
system after each exceptional condition, and each variation of a step.

Example:

Often, there are multiple post-conditions for one scenario or conversation
At least one for each successful goal...
 Customer receives cash? Account is overdrawn or Account balance is positive

One for each exception...
 Account daily limit would be exceeded - Customer withdraws lesser amount? Account is in good standing and
Account daily withdrawal limit reached
 Amount would exceed overdraw limit - We refuse to disburse cash? account is in good standing

One or more for each variation...
Fast cash? Account is overdrawn or Account balance is positive

Constants
Constants, sometimes called invariants are what must be true of the state of the application during the entire

progress of the use case, scenario, or conversation. They are often contextual and must not be changed at any moment
during the use case.

GUIDELINE: Be careful about getting too formal. Assertions tend to make requirements look incomplete if they
vary in their formality.

GUIDELINE: Use pre-conditions to make it clear when a conversation might execute.

GUIDELINE: Write post-conditions as if you were going to use them as a basis for writing a test plan. You are.

GUIDELINE: Write constants to describe conditions that should not change during the conversation.

X. Use Case Model Checklist
At the end of the day, the goal of a usage model is to convey how a system behaves and responds to its users. A good
usage model conveys how a system behaves, and how behaviors are related.

You can look over a use case model to:
• Check for internal consistency between use cases
• Identify “ central” use cases
• Identify unmet or externally satisfied preconditions
• Review the actor’ s view for completeness
• Review the handling of exceptions
• See that use case dependencies, extensions and includes relationships have been documented

Copyright 2002 Wirfs-Brock Associates 33

Organizing Your Use Cases
Organizing use cases is important. A pile of usage descriptions, arranged alphabetically, doesn’t orient readers to

the usage terrain. We suggest that you choose an organization that helps orient your typical reader.
Some possible organizations:

• by level (summary first, core next, supporting, then internal ones last)
• by actor
• by type of task

 arranged in a workflow
Be consistent. Keep various forms of a single use case together.

XI. A Use Case Writing Process
The task of writing can be shared, but the best way to develop a common language is for teams to work on developing
a rhythm to their work. Sometimes it is best to get group consensus, othertimes it is best to work alone (or in a small
group) to create use cases that others can review. Writing, like programming, can be done solo, then reviewed as a
group. Once you pick a template and learn the common ideas, you can try writing solo, then critiquing as a group.
Group review can lead to a common style and format for usage descriptions. We suggest this process as one way to
work collectively and individually to develop a use case model:

FIGURE 9. A Process for Developing a Use Case Model that includes both team and individual work.

Note: Although not everyone is a skilled writer, most developers can write good use cases. It is a matter of writing
and reading good use cases (and then adopting a common style). This involves practice and critical review.

XII. Tips and Techniques
We have pulled many commonsense writing guidelines from Ben Kovitz’ s wonderful book Practical Software
Requirements. They were either paraphrased or taken verbatim from his chapter on writing. Other guidelines on what
extra efforts can have big payoffs come from our experience. If you apply these principles to your writing of use
cases and other technical writing, your readers will be the beneficiary of your efforts.

Revised Use Cases with
Supplementary Details

Revise and add precision

Potential new Use CasesCollect and clinic, identify
gaps and inconsistencies

Scenarios OR
conversations

Write detailed
descriptions

Candidate Core Use Case
Names

Collect and clinic,
brainstorm key use cases

NarrativesWrite summary
descriptions

Actors, Candidate
Summary Use Case
Names

Align on scope, level of
abstraction, actors, goals,
point-of-view

The ProductsSmall Teams or
Individuals

Full Team

Revised Use Cases with
Supplementary Details

Revise and add precision

Potential new Use CasesCollect and clinic, identify
gaps and inconsistencies

Scenarios OR
conversations

Write detailed
descriptions

Candidate Core Use Case
Names

Collect and clinic,
brainstorm key use cases

NarrativesWrite summary
descriptions

Actors, Candidate
Summary Use Case
Names

Align on scope, level of
abstraction, actors, goals,
point-of-view

The ProductsSmall Teams or
Individuals

Full Team

Copyright 2002 Wirfs-Brock Associates 34

Broad Principles

GUIDELINE: Read other people’ s writing. If your own documents are hard to understand, you don’t notice
because you already know what it’ s supposed to say.

Writing is a craft. If writing is a large part of your job, people will judge you not on the basis of your thinking,
but on the basis of your writing.

GUIDELINE: Write for human beings.

• Is there a way to express this that would be easier to understand?
• Am I overloading the reader with too much information at once? Should I provide some sort of roadmap, or
break it up into smaller sections or smaller sentences?
• Which details are more important to my readers and which are less important? How can I make clear which
details are which?
• Is this statement too abstract for my readers to understand without illustration? Are these details too narrow
and disconnected for my readers to understand without explaining the underlying principle common to them all?
• What reasonable misinterpretations could my readers make when reading this passage?
• Will my readers see any benefit from reading this section? How does it relate to my specific reader’ s job?
Does anyone have a reason to care about this? Will people see this as a waste of time?
• What is the feel of the writing?
• Is the document boring? Would anyone want to read it?

GUIDELINE: Choose the best alternative for expressing your thought, despite the rules.

GUIDELINE: When you have information that can be presented in a list, it is usually the best way. People like
lists

GUIDELINE: Choosing the way to say something should derive from the content.

GUIDELINE: use a consciously designed organization for your document. Then there is “ a place for every detail,
every detail in its place.”

GUIDELINE: Reinforcement makes a document understandable. Illustrations, overviews, section headings.
Repetition, on the other hand, is decoy text.

Decoy Text

GUIDELINE: Avoid metatext. Text that describes the text that follows.

GUIDELINE: Avoid generalities.All information in a requirements document should be specific to the software
to be built.

GUIDELINE: Avoid piling on words or explanations.

Remove clutter at all levels. You can clutter sentences, words, paragraphs, or sections of documentation with
extra meaningless words. Overbearing templates also contribute to clutter.
An example:
 Piling on: Business Use Case
 Clutter Removed: Use Case

Another example:
 Piling on: Requirements Specification Document
 Clutter Removed: Requirements

GUIDELINE: Keep extraneous documents out of your requirements document. Schedules, acceptance criteria,
traceability matrices, feedback forms, etc.

Copyright 2002 Wirfs-Brock Associates 35

Avoiding Common Mistakes

GUIDELINE: Put related material together. Avoid making your document a jigsaw puzzle.

GUIDELINE: Don’t mix requirements with specification. The what with the how. Don’ t confuse means with
ends.

GUIDELINE: Choose the most appropriate vocabulary for expressing a requirement. Don’t force fit your
descriptions into inappropriate diagrams, charts, and tables just because they are “ usual” .

GUIDELINE: Avoid “ Duckspeak” (from 1984). Meaningless sentences expressing conformation to standards.

For example, “ The order data validation function shall validate the order data.”

GUIDELINE: Know the vocabulary of your readers and use it. Don’t invent unnecessary terminology.

GUIDELINE: Be aware of what content you are putting in your document. Don’t mix levels.

Jumping back and forth between program design, requirements, and specification will only confuse the reader.

GUIDELINE: Don’t start with a table of contents taken from another document.

This is equivalent to forcing the content of one document into the table of contents of another

GUIDELINE: Use consistent terminology.

GUIDELINE: Don’t write for the hostile reader. Assume the reader will try to understand.

GUIDELINE: Make the requirements document readable. If it is not, the development staff won’t read it.

Poor Uses of Documentation

GUIDELINE: Avoid documentation for the sake of documentation. Don’t try to make your documentation an
end in itself.

GUIDELINE: Requirements documents are not written to impress the customer with double-talk.

GUIDELINE: Don’t write a CYA document. In these cases, most information must be communicated to the
development staff by oral tradition.

GUIDELINE: Write questions about unsolved issues.

Put them with the appropriate use case description (or with the document you are working on) to show you’ re not
done.
Example: Should the credit check be performed after the Order is submitted or before? What happens if credit is
denied?

GUIDELINE: If you are unclear about a detail, don’ t write fiction; it could become fixed.

Guidelines for each element of a Use Case Template
In addition to the above general guidelines for writing, we offer these specific guidelines for writing use cases drawn
from our direct experience.

Use Case Name:
A name of some actor task to be accomplished with the system. Name it from the actor’s point of view

Copyright 2002 Wirfs-Brock Associates 36

Good Example: Place an Order, or Cancel an Order, or Make a Payment
Bad Example: Process Order Record
This is named from the system’s point-of-view
Bad Example: Placing an Order
This is not stated with an active verb

Narrative Description:
A high-level narrative paragraph describing activities of a task

Actors:
Role names of Person or External System initiating this use case

Good Example: bank customer
Bad Example: novice user
This is a skill level, not a role. If novices do things differently, than skilled users, then perhaps their different
forms of interaction might be described… but the role is user (not novice or skilled user)

Context:
A description about the current state of the system and the actor

Good Example: The bank customer is a primary user
Bad example: The customer wants cash
So what? Expressing desires clutter our descriptions. Always assume actors want to accomplish some goal,
and that the system is ready to respond. Don’t state the obvious.
Bank customer: The bank customer is logged on
This is obvious. Don’t state the obvious. It adds clutter.

Level:
Is it Summary, Core, Supporting or Internal?

Example:
Place Order (summary)
Order Long Distance Phone Service (core)
Enter Customer Address (supporting)
Obtain Secure Connection (internal)

Preconditions:
Anything significant about the system that must be true. Usually stated in terms of key concepts and their states.

Good Example: A bank customer’s account is in good standing
This must be true before he can make a withdrawal
Bad Example: The bank customer is logged in
This is context, not something true about the state of the system

Post conditions:
Anything that has changed in the system that will affect future system responses as a result of successfully com-

pleting the use case. Usually stated in terms of key concepts and their states.
Good Example: The bank customer’s account is overdrawn
This means that the customer cannot make another withdrawal until the account balance is positive
Bad Example: The bank customer received cash
This says nothing about how the system will respond in the future

Copyright 2002 Wirfs-Brock Associates 37

Business Policies:
Business specific rules that are always true that must be enforced by the system.
Test for whether a policy is application specific or a business policy: Who established this policy? Was it the applica-
tion designer, or was it the way we do business?

Good Example: Shipping dates must not fall on Sunday or holidays
Bad Example: The system must determine the shipping date
This is a statement of something the system must do, a system responsibility, not a rule that the system will
enforce.

Application Policies:
Limits on the way than an application can behave.
Here’s a simple test for whether a policy is application specific or a business policy: Who established this policy?
Was it the application designer, or is this the way we do business?

Good Example: A user cannot incorrectly enter a password more than three times during a login attempt
Bad Example: The password is encrypted then matched with the stored encrypted password
This states how the system is going to validate the password, a system responsibility

Alternatives:
Deviations from a step that occur due to exceptions or decisions made by the system or actor. An alternative can
either be a variation or an exception.

Variations Optional actions for a step that are normal variations (not errors)
Exceptions Errors that occur during the execution of a step
An alternative form can be written as either

• Step number. Variation or Exception Name – Brief statement of how this alternative will be
handled,

Example:
Scenario: Identify Customer
1. Operator enters name
2. System finds and displays near matches

Variations:
1a. Operator enters billing address
1b. Operator enters phone number
1c. Operator enters customer address

Exceptions:
2a. No near match found—Notify operator to retry search
2b. Too many near matches found—Notify operator how many matches were found, and give option to nar-
row search or display matches

or, if handling the alternative warrants it:
• Step number. Reference to Use Case that describes the interactions with the system to handle

the alternative
Good example:

Scenario: Identify Customer
1. Operator enters name
2. System finds and displays near matches

Exceptions:
2a. Too many near matches found—use Narrow Search Request

Copyright 2002 Wirfs-Brock Associates 38

Issues:
Questions that need to be resolved about this use case, scenario or conversation.
Issues should be stated simply. If you know who should resolve this issue, identify them.

Good Example:
Should a credit check be performed for new customer before placing orders? Should credit checking be
performed if an order exceeds a certain amount? To be resolved by: John
Bad Example:
What about credit checking?
(What is meant by this question? Is it unclear exactly what the issue with credit checking is.)

Design Notes:
Design decisions that occur to you as you describe the usage

Good Examples:
If the bank does not permit automatic activation, the fields for ATM and PIN number should not be dis-
played. (Hints to the application designer)
User Beware! If the user enters an incorrect ATM PIN number, it is possible that he could be suspended
from use of his/her ATM. We must be sure to let the user know about that error.
(Important notes about how the errors should be presented to the user—from the analyst’s perspective)

Bad Example:
All errors should be reported to the user.
(Too vague. What’s a designer to do with this note?)

Screens:
References to windows or web pages that are displayed during the execution of this use case

Good Examples:
Include a reference to a hand drawn “sketch” of a UI or a mock-up (this is good in early prototyping).
Include a prototype screen “captured” off the display. Label important important elements where infor-
mation is gather and/or presented, and important user actions occur.
Bad Example:
Include detailed screens after they are implemented

 (Too specific. What’s the point of showing this level during requirements?)

Priority:
How important is this?

Frequency:
How often this is performed?

Good Example: 200 times a month
Bad Example: 200 times (What’ s the unit of time?)

What It Really Takes to Handle Exceptional Conditions
Rebecca Wirfs-Brock

Wirfs-Brock Associates
www.wirfs -brock.com

rebecca@wirfs-brock.com

This material is taken from Object Design: Roles, Responsibilities and Collaborations by
Rebecca J Wirfs-Brock and Alan McKean, to be published by Addison Wesley in November
2002. Copyright Addison-Wesley 2003. Used with permission of the publisher.

Henry Petroski, structural engineer and historian, talks of the need to understand the
consequences of failure: “The consequences of structural failure in nuclear plants are so great
that extraordinary redundancies and large safety margins are incorporated into the designs. At the
other extreme, the frailty of such disposable structures as shoelaces and light bulbs, whose failure
is of little consequence, is accepted as a reasonable trade-off for an inexpensive product. For
most in-between parts or structures, the choices are not so obvious. No designers want their
structures to fail, and no structure is deliberately under designed when safety is an issue. Yet
designer, client, and user must inevitably confront the unpleasant questions of ‘How much
redundancy is enough?’ and ‘What cost is too great?’ ” As software designers, we too need to
make our software machinery hold up under its anticipated use.

Software need not be impervious to failure. But it shouldn’t easily break. A large part of
software design involves building our software to accommodate situations that, although
unlikely, still have to be dealt with. What if the user mistypes information? How should the
software react? What if items a customer wants aren’t available? Even if the consequences of not
delivering exactly what the customer wants are not catastrophic, this situation must be dealt with
reasonably—in ways acceptable to the customer and the business.

When information is mistyped, why not notify the user and let them re-enter it. Not enough
stock on hand? Again, ask the user to cancel or modify their order. Software should detect
problems and then engage the user in fixing them!

But what if a user is unable to guide the software? Shouting “stack overflow!” or “network
unavailable!” won’t help a disabled person who communicates by using software that interprets
her eye blinks and constructs messages. “Punch in the gut” error messages are unacceptable in
that design. It should handle many exceptional conditions and keep running without involving
the user.

There is an enormous difference between making software more reliable and “user
attentive,” and designing it to recover from severe failures. Fault tolerant design incorporates
extraordinary measures to ensure that the system works despite failure. For example, telephone-
switching equipment is extremely complex, yet has to be very reliable. Redundancies are built
into the hardware and the software. Complicated mechanisms are designed to log and recover
from many different faults and error conditions. If a hardware component breaks, a redundant
piece of equipment is provisioned to take its place. The software keeps the system running under
anticipated failure conditions without losing a beat.

The more serious the consequences of failure, the more effort you need to take to design in
reliability. Alistair Cockburn, in Agile Software Development , recommends that the time you

spend designing for reliability fit with your project’s size and criticality. He suggests four levels
of criticality:

• Loss of comfort. When the software breaks there is little impact. Most shareware falls
into this category.

• Loss of discretionary monies. When the software breaks it costs. Usually there are
workarounds, but failures still impact people, their quality of work and businesses
effectiveness. Many IT applications fall into this category. Applications that affect a
business’ customers do so as well. If a customer gets overcharged because of a billing
miscalculation, this doesn’t cause the business severe harm. Usually the problem gets
fixed, one way or the other, when the customer calls up and complains!

• Loss of essential monies. On the other hand, some systems are critical. At this level of
criticality, it is no longer possible to correct the mistake with simple workarounds. The
cost of fixing a fault is prohibitive and would severely tax the business.

• Loss of life. If the software fails people could get injured or harmed. People who design
air traffic control systems, space shuttle control software, pacemakers, or anti-locking
brake control software spend a lot of time analyzing how to keep the system working
under extreme operating conditions.

The greater the software’s criticality, the more justification there is for spending time to design it
to work reliably. Even if not a matter of life and death, other factors may drive you to design for
reliability:

• Software that runs unattended for long periods may operate under fluctuating conditions.
Exceptional conditions in its “normal” operating environment shouldn’t cause it to break.

• Software that “glues” larger systems together often needs to check for errors in inputs and
work in spite of communications glitches.

• Components designed to “plug in” and work without human intervention need to detect
problems in their operating environment and run under many different conditions.
Otherwise, “plug and play” wouldn’t work.

• Consumer products need to work, period. Their success in the marketplace depends on
high reliability.

A Strategy For Increasing your System’s Reliability
Reliability concerns crop up throughout development. But once you’ve decided on the basic

architecture of your system, assigned responsibilities to objects, and designed collaborations, you
can take a closer look at making specific collaborations more reliable—by designing objects to
detect and recover from exceptional conditions.

We suggest you start by characterizing the different types of collaborations in your existing
design. This will give you a sense of where you need to focus efforts on improving objects and
designing them to be more resilient. Then, identify key collaborations that you want to make
more reliable. Once you’ve characterized you system’s patterns of collaborations and prioritized
you work, you need to get very specific:

• List the exceptions and errors cases you want your design to accommodate.
• Decide on reasonable exception handling and error recovery strategies to employ
• Try out several design alternatives and see how responsibilities shift among collaborators.

Settle on a solution that represents a best compromise.

• Define additional responsibilities for detecting exceptions and obligations of other objects
for resolving them if that is part of your solution.

• Look at your design for holes, unnecessary complexity, and consistency

A system is only as reliable as its weakest link. So it makes little sense to design one very
reliable object surrounded by brittle collaborators. Or to make one peripheral task very reliable
while leaving several central ones poorly designed. The system as a whole needs to be designed
for reliability, piece by piece.

Determine where collaborations can be trusted
One way to get a handle on how collaborations can be improved is to carve your software

into regions where “ trusted communications” occur. Generally, objects located within the same
trust region can communicate collegially, although they may still encounter exceptions and
errors as they perform their duties. Within a system there are several different cases to consider:

• collaborations between objects that interface to the user and the rest of the system;
• collaborations between objects within the system and objects that interface with external

systems;
• collaborations between objects outside a neighborhood and objects inside a

neighborhood;
• collaborations between objects in different layers;
• collaborations between objects at different abstraction levels,
• collaborations between objects of your design and objects designed by someone else;
• collaborations between your design and objects that come from a vendor-provided library

Who an object receives a request from is a good indicator of how likely is it to accept a request at
face value. Who an object calls upon determines how confident it can be that the collaborator
will field the request to the best of its ability. It’s a matter of trust.

Trusted vs. Untrusted Collaborations
When should collaborators be trusted? Two definitions for collaboration are worth re-

examining:
Collaborate: 1. To work together, especially in a joint intellectual effort. 2. To cooperate
treasonably, as with an enemy occupation force. —the American Heritage Dict ionary.

The first definition is collegial: objects working together towards a common goal. When objects
are within the same trust region, their collaborations can be conscientiously designed to be more
collegial. Both client and service provider can be designed to assume that if any conditions or
values are to be validated; the designated responsible party need only do them once.

Figure 1. Trust Assumptions

In general when objects are in the same architectural layer or subsystem, they can be more
trusting of their collaborators. And they can assume that objects that use their services call upon
them appropriately.

The second definition requires you to think critically. When collaborators are designed by
someone else, or when they are in a different layer, or a library, your basic assumptions about the
appropriate design for that collaboration need to be carefully examined. If a collaborator can’t be
trusted—it doesn’t mean it is inherently more unreliable. But a more defensive collaborative
stance may appropriate. A client may need to add extra safeguards—potentially both before and
after calling an untrusted service provider.

If a request is from an untrusted or unknown source, extra checks may be made before a
request is honored. There are several situations to consider:

• When an object sends a request to a trustworthy colleague
• When an object receives a request from a trusted colleague
• When an object uses an untrusted collaborator
• When an object receives a request from an unknown source
• When an objects receives a request from a known untrustworthy source.

Collaborations between trusted colleagues. A client that provides a well-formed request
expects its service provider to carry out that request to the best of its ability. When an object
receives a request from a trusted colleague, it typically assumes that the request is correctly
formed, that it is sent at an appropriate time, and that data passed along with the request is well
formed (unless there is an explicit design decision that the receiver takes responsibility for
validating this information).

During a sequence of collaborations between objects within the same trust region there is
little need to check on the state of things before and after each request. If an object cannot fulfill
its responsibilities and is not designed to recover from exceptional conditions, it could raise an
exception or return an error condition enabling its client (or someone else in the collaboration
chain) to responsibly handle the problem. But the object may be legitimately to not check. And it

UserLoginController PasswordChecker

isValid(password)

I am sending you a request at the right
time with the right information

I assume that I don’t have to check to
see that you have set up things properly
for me to do my job

won’t even notice when things fail. In a trusted collaboration there is no need to check for invalid
collaborations. So if trust is ever violated, things can go terribly wrong.

When using an untrusted collaborator. When collaborators are untrusted, extra precautions
may need to be taken. Especially if the client is designed to be responsible for making
collaborations more reliable. You may pass along a copy of data instead of sharing it with an
untrusted collaborator. Or to check on conditions after the request completes.

When receiving requests from an unknown source. Designers of objects that are used under
many different situations—such as those included in a class library or framework— have to
balance their objects’ expected use (or misuse) with overall reliability goals. There aren’t any
universal design rules to follow. Library designers must make a lot of hard choices. You can
design your object to check and raise exceptions if data and requests are invalid (that’s certainly
a responsible thing to do, but not always necessary) or not (that’s the simplest thing, but not
always adequate). Your goal should be to design your framework or library to be consistent and
predictable, and to provide enough information so that clients can attempt to react and recover
when you raise exceptions.

When receiving requests from an untrusted client. Requests from untrusted sources often are
checked for timeliness and relevance. Especially if your goal is to design an object that works
reliably in spite of untrustworthy clients. Of course there are degrees of trust and degrees of
paranoia! Designing defensive collaborations can be expensive and difficult. In fact, designing
every object to collaborate defensively leads to poor performance and potentially introduces
errors.

Implications of Trust
Determining “ trust regions” for a system is straightforward. And once you determine them,

it is easier to decide where to place extra responsibilities for making collaborations more reliable:

In the applica tion that enables a disabled user to communicate, all objects within the
“core” of the application were designed to work together and are considered to be within
the same trust region. Objects in the application control and domain layers all assume
trusted communications. Objects at the “edges” of the system —within the user interface
and in the technical services layer —are designed to take precautions to make sure
outgoing requests are honored and incoming requests are valid. For example, the
Selector debounces user eye blinks and only presents single “click” requests. And the
MessageBuilder quite reasonably assumes that it receives “trusted” requests from the
objects at the edges: the Selector and the Timer. Objects controlled by the
MessageBuilder assume t hey are getting reasonable requests, too. So requests to add
themselves to a message, or to offer the next guess are done without questioning the
validity of input data or the request. Trusted collaborations within the “core” of the
system greatly simplifi ed the implementation of the MessageBuilder, the Dictionaries, the
Guesser, the Message, and Letter, Word and Sentence objects’ responsibilities.

Objects at the “edges” of the system have additional responsibilities for detecting
exceptions and trying to recover if they can, or if not, to report them to a higher authority

(someone at the nurse’s station). When a message cannot be reliably delivered, extra
effort is made to send an alarm to the nurse’s station and raise an audio signal.

Figure 2. The Selector and the Timer are designed to deliver trusted requests to the Message
Builder, allowing it to focus on coordinating the construction of the user’s message

In a large system, it is useful to distinguish whether collaborations between components can be
trusted, and furthermore, to identify guarantees, obligations and responsibilities of each
component. Once these constraints are agreed upon, each component can be designed to do its
part to ensure the system as a whole works more reliably.

A telco integ ration framework receives service order requests and schedules the work to
provision services and set up billing. The architecture of the system consists of a number
of “adapter” components that interfaced to external applications. Collaborations
between an adapter and its “adapted” application were generally assumed to be
untrusted, while collaborations between any adapter and core of the system were trusted.
The order taking adapter component received requests to create, modify or cancel an
order from an external Order Taking application. These requests were converted into an
internal format used by the scheduler that was part of the framework integration services.
The order taking adapter did not trust the Order Taking application to give it well -
formed requests: it assumed that any number of things could be wrong (and they often
were). It took extraordinary efforts to guarantee that requests were correctly converted to
internal format before it passed them to the scheduler.

MessageBuilder

Selector Presenter

Message

Guess

Guesser

knows contents and delivers itself

adds itself when selected

signal when user selects voice or display the guess

coordinate everything

Even so, it was still possible to receive requests that were inconsistent with the actual
state of an order: for example a request to cancel an order could be received after the
work had already been complete. It was business policy not to “cancel” work that had
already been completed. So while collaborations between the order-taking adapter and
the scheduler were trusted, well -formed requests could still fail.

Figure 3. The telco integration framework architecture

Identify Collaborations to Make Reliable
At first, you may not know just exactly what measures to take to increase your system’s

reliability. First, identify several areas where you want to ensure reliable collaborations. Revisit
your initial design and take a stab at improving it. You might consider:

• Collaborations in support of a specific use case or task
• How an object neighborhood responds to a specific request
• How an interfacer handles errors and exceptions encountered in an external system
• How a control center responds to exceptional conditions and errors raised by objects

under its control

Once you’ve identified a particular collaboration to work on, consider what needs to be done.
Maybe no additional measures need to be taken—objects are doing exactly what they should be

external
applications

Provisioning

Bill ing

Order
Taking

external
applications

Provisioning
Adapter

Bill ing
Adapter

Number
Portability
Adapter

Number
Portability

Integration
Framework

Services

the telco
framework and

adapters

Order
Taking Adapter

doing. More likely, you will want to add specific responsibilities to some objects for detecting
exceptional conditions and responsibilities to others for reacting and recovering from them. The
first step to making any collaboration more reliable is to understand what might go wrong.

Once you’ve gauged how reliable your software needs to be, consider key collaborations
and look for ways to make them more reliable. As you dig deep into design and implementation
you will uncover many ways your software might break. But let’s get real! While it is up to us
designers to decide what appropriate measures to take, to propose solutions, and to work out
reasoned compromises, extraordinary measures aren’t always necessary.

Will Use Cases Tell Us What Can Go Wrong?
“The major difference between a thing that might go wrong and a thing that cannot possibly
go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out
to be impossible to get at or repair.” —Douglas Adams, Mostly Harmless (Hitchhiker’s
Guide Series #5)

Ideally, some requirements document or use case should spell out the right thing to do when

things go wrong. But use cases generally describe software in terms of actors’ actions and system
responsibilities, not what can go wrong and how to remedy it. At best, use case writers will
identify a few problems and briefly describe how some of them should be handled. But even
then, use case writers may have been going astray. What someone considers a big problem might
not be. Just because someone describes a possible exception and how it should be resolved
doesn’t mean it will actually happen. Your design may have successfully sidestepped around the
potential problem.

But that doesn’t relieve you from the responsibility of identifying real problems and
resolving them. As you dig into design, you are likely to identify many exception conditions and
devise ways of handling them. When your solutions are costly or represent compromises, review
them with all who have a stake in your software’s overall reliability. They should weigh in on
your proposed solutions.

It is easy to waste a lot of time considering things that might go wrong, but won’t, or
pondering the merit of partial solutions when there is no easy fix. To not get bogged down,
distinguish between errors and exceptions. Errors are when things are wrong. Errors can result
from malformed data, bad programs or logic errors, or broken hardware. In the face of errors,
there is little than can be done to “ fix things up” and proceed. Unless your software is required to
take extraordinary measures, you shouldn’t spend a lot of time designing your software to
recover from them.

On the other hand, exceptions aren’t normal, but they happen and you should design your
software to handle them. This is where the bulk of your energy should go—solving exceptional
conditions. If exceptional conditions have been identified for a use case, how they should be
accommodated may have been as well:

Invalid password entered —After three incorrect attempts, inform the user that access is
denied to the online banking system until he contacts a bank agent and is assigned a new
password.

To translate this into an appropriate design solution you’ll need to assign some object the
responsibility for validating the password; several more are likely to be involved in recovering

from this problem. This is pretty easy—there is nothing difficult or challenging in designing an
object to validate a password or report an error condition to the user.

But wait. Is this an error or an exception? Mistyped passwords are a regular if infrequent
occurrence. We want our software to react to this condition by giving the user a way to recover,
so we view it as an exception, not an error. In fact, most use cases describe exceptions that cause
the software to veer off its “normal” path. Some will be handled deftly and the user will be able
to continue with their original task. These are recoverable exceptions . With others, the user
won’t be able to complete their original task. The use case will end abnormally, but the
application will keep running. From the user’s perspective these are unrecoverable exceptions .
Rarely will use cases mention errors, unless their authors are experienced at describing fault
tolerant software
.

Object Exceptions are Different than Use Case Exceptions
Let’s get one thing clear. Exceptions described in use cases are fundamentally different than

exceptions uncovered in a design. Use case exceptions reflect the inability of an actor or the
system to continue on the same course. Object exceptions reflect the inability of an object to
perform a requested operation. During execution of a single step in a use case scenario,
potentially several use case-level exceptions could happen. However, the execution of a single
use case step could result in thousands of requests between collaborators, any number of which
could cause numerous different object exceptions. There isn’t a one-to-one correspondence
between exception conditions described in use cases and object exceptions. Regardless, we need
to make our application behave responsibly. We also need to make it reasonably handle the many
more exceptional conditions that arise during execution.

Object Exception Basics
An exception condition detected during application execution invariably leads some object

or component to veer off its “normal” path and fail to complete an operation. Depending on your
design, some object may raise an exception, while another object may handle it. By handling an
exception, the system recovers and puts itself into a predictable state. It keeps running reliably
even as it veers off the “normal” path—to an expected but “exceptional” one. Left unhandled,
however, exceptions can lead to system failure, just as unhandled errors do.

It is up to you to decide what to do when an exception condition is encountered. Many
object-oriented programming languages define mechanisms for programmers to declare
exceptions and error conditions, signal their occurrence, and to write and associate exception-
handling code that executes when signaled. Alternatively, you could design an object to detect an
exception condition, and instead of raising an exception, it could return a result indicating that an
exception occurred. Partly it’s a matter of style and largely a matter of implementation language
that determines whether you design your objects to raise exceptions or report exception
conditions. Either design described below would “handle the exception condition” of an invalid
password.

Figure 4. Execution transfers directly to callers’ exception handling code

Figure 5. Caller checking a result for exceptions during the call

The first uses exception facilities in the programming language; the second returns values that
signify an exceptional condition. Both techniques convey the exceptional condition to the client.
Yet another design alternative would to make a service provider smart. It might remember that
an exception condition has occurred and provide an interface for querying this fact.

Let’s look further at what it means to define and use exception facilities in an object-
oriented programming language. When an object detects an exception and signals this condition
to its client, it is said to raise an exception. In the Java programming language, the term is “ throw
an exception.” In order to throw a specific exception, a programmer would declare that a
particular type of Throwable object (which contains contextual information) to be sent along
with the exception signal. An object throws an exception by executing a statement:

UserLogin
Controller

Application
Coordinator

log in(user, password)

third login attempt raises exception

log in(user, password)

one or more of the callers handles the exception

Presentation
Coordinator

<<exception>>
<<exception>>

UserLogin
Controller

Application
Coordinator

log in(user, password)
log in(user, password)

Presentation
Coordinator

creates and returns description of exception in result

callers read results and handle exception

result

result

if (loginAttempts > MAX_ATTEMPTS) {
 throw new LoginAttemptsException();
}

The handler of an exception signal has several options. It could fix things up and then

transfer control to statements immediately following the code that raised the exception
(resumption). Or, it might re-signal the same or a new exception, leaving the responsibility for
handling it to a possibly more knowledgeable object (propagation). In most cases, instead of
grinding to a halt, it is desirable to make progress. This involves a cooperative effort on behalf of
both the object raising the exception, the client sending the exception-causing request, and one or
more objects in the collaboration chain if the requestor chooses not to handle the exception then
and there.

There must be enough information available to an object that takes responsibility for
handling the exception to take a meaningful action. Be aware that when you design an exception
object you can declare information that it will hold. The object that detects the exception
condition when it creates an exception object populates it with this information.

We offer these general guidelines for declaring and handling exceptions:

Avoid declaring lots of different exception classes . The more classes of exceptions you define,
the more cases an exception handler must consider (unless it groups categories of exceptions
together). To keep exception handling code simple, define fewer classes of exceptions and,
design clients to take different actions based on answers supplied by the exception object.

Deep and wide exception class hierarchies are seldom a good idea. They significantly
increase the complexity of a system yet the individual classes are seldom actually used. Compare
the complexity of an IOError class hierarchy with twenty subclasses (probably arranged in some
sub-hierarchy structure) with one I/O error class that knows an error code with twenty possible
values. Most programmers can remember and distinguish 5-7 clearly different exception classes,
but if you give them 20-30 exception classes with similar names and subtle distinctions they will
never be able to remember them all and will have to continually refer back to the system
documentation.

Identify exception classes the same way you identify any other classes— via responsibilities
and collaborations. Unless two exceptions will have really distinct responsibilities or participate
in different types of collaborations they shouldn't need different classes. Outside the world of
exceptions you wouldn't normally create two distinct classes simply to represent two different
state values, so why create multiple exception classes simply to represent different values of an
error code?

A case where it makes sense to have different exception classes would be for FileIOError
and EndOfFile exceptions. Some people might try to treat EndOfFile as a FileIOError but this
wouldn’t be a good design choice. FileIOError represents a truly exceptional and unexpected
occurrence. Its collaborators are likely to have to take drastic actions. EndOfFile is usually an
expected occurrence and its collaborators are likely to respond to it by continuing the normal
operations of the program. Seldom, if ever, do you want to respond in the same way to both of
these exceptions. But you are quite likely to want to respond in an identical manner to all
FileIOErrors.

Name an exception after what went wrong, not who raised it . This makes it easy to associate
the situation with the appropriate action to take. The alternative makes it less clear why the
handler is a performing specific actions. An exception handler may also need to know who
originally raised it (especially if it was delegated upward from a lower-level collaborator), but
this can easily be defined to be included as part of the exception object. In this coding example,
TooManyLoginAttemptsException explains what happened not who threw it:

try {
 loginController.login(userName, password);
}
catch (TooManyLoginAttemptsException(e)) {
 // handle too many login attempts
}

Recast lower-level exceptions to higher-level ones whenever you raise your abstraction
level. When very low-level exceptions percolate up to a high-level handler, there is little context
for the handler to make informed decisions. Recast an exception whenever you cross from one
level of abstraction to another. This enables exception handlers that are way up a collaboration
chain to make more informed decisions and reports. Not taking this advice can lead your users to
believe that your software is broken, instead of just dealing with unrecoverable errors:

A compiler can run out of disk space during compilation. There isn’t much the compiler
can do in this case except report this condition to the user. But it is far better for the
compiler to report “insufficient disk space to continue compilation” than to report “I/O
error #xxx”. With the latter message, the user may be led to believe there is a bug in the
compiler, rather than insufficient resources which could be corrected by the user. If this
low-level exception were to percolate up to objects that don’t know to in terpret this I/O
error exception, it will be hard to present a meaningful error message. To prevent this,
the compiler designers recast low -level exceptions to higher -level ones whenever
subsystem boundaries were crossed.

Provide context along with an exc eption. What are most important to the exception handler are
what the exception is and any information that aids it in making a more informed response. This
leads to designing exception objects that are rich information holders. Specific information can
be passed along including: values of parameters that caused the exception to be raised, detailed
descriptions, error text, and information that could be used to take corrective action. Some
designers, when recasting exceptions, embed lower level exceptions as well, providing a
complete trace of what went wrong.

Figure 6. Preserving information in “ inner exceptions”

Preserve information in “inner exceptions” Assign exception-handling responsibilities to
objects that can make decisions. There are many different ways to “handle” an exception: it
could be logged and rethrown (possibly more than once), until someone takes corrective action.
Who naturally might handle exceptions? As a first line of defense, consider the initial requestor
as the first line of defense. If it knows enough to perform corrective action, then the exception
can be taken care of right away and not be propagated. As a fallback position, it is always
appropriate to pass the buck to some object that takes responsibility for making decisions and
controlling the action. Controllers and objects located within a control center are naturals for
handling exceptions.

Handle exceptions as close to the problem as you can. One object raises an exception, and
somewhere up the collaboration chain another handles it. Sure this works, but it makes your
design harder to understand. It can make it difficult to follow the action if you carry this to
extremes.

Objects that interface to other systems and components often take responsibility for handling
faulty conditions in other systems they interface to, relieving their clients of having to know
about lower-level details and recovery strategies. Objects that play a role of providing a service
often take on added responsibility to handle an exception and retry an alternative means of
accomplishing the request.

Consider returning results instead of raising exceptions . Instead of raising exceptions, you
always can design your exception-taking object to return a result or status that is directly checked
by the requestor. This makes it more obvious who’s got to take at least some responsibility—the
requestor.

UserLogin
Controller

Application
Coordinator

object creates initial exception

login(user, password) TooMany
LoginAttempts

Exception

<<create>>

UserAccess
Exception

<<create>>

original description is preserved in “inner exception”

login(user, password)

<<exception>>

<<exception>>

Exception and Error Handling Strategies
In the case of errors as well as exceptions, it is a matter of how much effort and energy you

want to expend handling them. Highly-fault tolerant systems are designed to respond to take
extraordinary measures. A highly fault tolerant system might recover from programming errors
by running an alternate algorithm, or from a disk suddenly becoming inaccessible by printing
data on an alternate logging device. Most ordinary software would break (gracefully or not,
depending again, on the design and the specific condition).

There are numerous ways to deal with a request that an object can’t handle. Doug Lea, in
Concurrent Programming in Java , poses the question “What would you do if you were asked to
write down a phone number and you didn’t have a pencil?” to explore several options. One
possibility, is what Lea calls unconditional action. In this simple scheme, you’d go through the
motions of writing as if you had a pencil, whether you did or not. Besides looking silly, this is
only acceptable if nobody cares that you fail to complete your task.

Employing this strategy often leads to unpredictable results. In real life, you likely wouldn’t
be so irresponsibility, and your software objects shouldn’t behave this way either. If an object or
component or system that receives a request isn’t in the proper state to handle it, nothing can be
guaranteed. An unconditional act could cause the software to trip up immediately, or worse yet,
to fail later in unpredictable ways. Ouch! There are more acceptable alternatives:

• Inaction—Ignore the request after determining it cannot be correctly performed.
• Balk—Admit failure and return an indication to the requestor (by either raising an

exception or reporting an error condition).
• Guarded suspension—Suspend execution until conditions for correct execution are

established, then try to perform the request.
• Provisional action—Pretend to perform the request, but do not commit to it until success

is guaranteed.
• Recovery—Perform an acceptable alternative.
• Appeal to a higher authority—Ask a human to apply judgment and steer the software to

an acceptable resolution.
• Rollback—Try to proceed, but on failure, undo the effects of a failed action.
• Retry—Repeatedly attempt a failed action after recovering from failed attempts.

These strategies impact the designs of both clients as well as objects fulfilling requests, and,
possibly, other participants in recovery activities. No one strategy is appropriate in every
situation. Inaction is simple but leaves the client uninformed. When an object balks, at least the
requestor knows about the failure and could try an alternative strategy. With guarded suspension,
the object would patiently wait until some other object gave it a pencil (the means by which
someone knows what is needed and supplies it is unspecified).

Provisional action isn’t meaningful in this example, but it makes sense when a request takes
time and can be partially fulfilled in anticipation of it later completing it. Recovery could be as
simple as using an alternate resource—a pen instead of a pencil. Appealing to a higher authority
might mean asking some human who always keeps pencils handy and sharp to write down the
number instead. Rollback doesn’t make much sense in this example, since nothing has been
partially done—unless the pencil breaks in the middle of writing down the number. In this case
the object would throw away the partially written number. Rollback is a common strategy where
either all or nothing is desired and partial results are unacceptable. Retrying makes sense only
when there is a chance of success in the future.

To sum up, there will always be consequences to consider when choosing any recovery

strategy:

“The designer or his client has to choose to what degree and where there shall be failure.
Thus the shape of all designed things is the product of arbitrary choice. If you vary the
terms of your compromise...then you vary the shape of t he thing designed. It is quite
impossible for any design to be ‘the logical outcome of the requirements’ simply because
the requirements being in conflict, their logical outcome is an impossibility.” —David Pye

Mixing or combining strategies often leads to more satisfactory results. For example, one object
could attempt to write down the phone number but broadcast a request for a pencil if it fails to
locate one. It might then wait for a certain amount of time. But if no one provided it with one,
ultimately it might ignore the request. Meanwhile, the requestor might wait awhile for
confirmation, and then locate another to write the phone number after waiting a predetermined
period of time. The best strategy isn’t always obvious or satisfying. Compromises don’t always
feel like reasonable solutions—even if they are the best you can do under the circumstances.

Design a solution
So far, we’ve considered strategies for handling failures for a single request. Making larger

responsibilities more reliable can get much more complex. Once you’ve identified a particular
part of your design that you want to make more reliable, think through all the cases that might
cause objects to veer off course. Start simply, then work up to more challenging problems. Given
the nature of design, not all acceptable solutions may seem reasonable at first. You may need
time for a solution to “ soak in” before it seems right.

Brainstorm Exception Conditions
Complex software can fail in many, many ways. Even simple software can have many

places where things could go wrong. Thinking through all the ways software might fail is
difficult work. Make a list. Enumerate all the exceptional conditions you can think of for a
specific chunk of system behavior. Whether you are working on your design in support of a use
case, or designing some collaboration deep inside your system, list everything that you
reasonably expect could go wrong. Consider:

• Users behaving incorrectly—entering misinformation or failing to respond within a

particular time
• Invalid information
• Unauthorized requests
• Invalid requests
• Untimely requests
• Time out waiting for a response
• Dropped communications
• Failures due to broken or jammed equipment, such as a printer being unavailable

• Errors in data your software uses including corrupt log files, bad or inconsistent data,
missing files

• Critical performance failures or failure to accomplish some action within a prescribed
time limit

This list is intended to jog your thinking. But be reasonable. If some condition seems highly
improbable...leave it off your list. Put it on another list (the list of exceptions you didn’t design
for). If you know that certain exceptions are common, say so. If you don’t know whether an
exception might occur, put a question mark by it. You may not know what are reasonable and
expected conditions if you are building something for the first time. People and software and
physical resources can cause exceptions. And the deeper you get into design and implementation,
the more exceptions you’ll find.

Limit Your Scope: Pick a Likely Exception and Resolve It. Take exception design in bite-
sized increments. If you’ve already designed your objects to collaborate under normal
conditions, start modestly to make it more reliable. Pick a single exception that everyone agrees
is common enough and you think you know how it should be handled. If you are designing
collaborations for a specific use case, tackle one “unhappy path” situation. What actions should
occur when there are insufficient funds when making an online payment? What if the user blinks
her eyes too rapidly and makes a false selection? What if the file is locked by another
application?

After you’ve decided on what seems a reasonable way to handle that situation, design a
solution using the object-oriented design techniques we’ve described. Minimize or purposefully
ignore certain parts of your design in order to concentrate on those objects who will take
exception, and those who will resolve it. You needn’t reach all the way from the user interface to
the lowest technical service objects. Here is what we consider to be both in and out of scope for
the exceptional case of insufficient funds:

Make A Payment- Insufficient Funds
Assume a well-formed request (no data entry errors)
Ignore backend system bottlenecks
Ignore momentary loss of connections or communication failures (they will be handled by
connection objects in the technical service layer)
Offer the user an opportunity to enter an alternate amount

Determine who should detect an exception and how it should be resolved. Assume that
everything goes according to plan up to the point of where the particular exception you are
considering is detected.

We know the existing backend banking system returns an error code indicating
insufficient funds to our external inte rface component. Now what?
The backend banking component reports the exception via a Result object to the
FundsTransfer object that is responsible for coordinating the transaction. The
FundsTransfer interprets this as an “unrecoverable exception” which ca uses it to halt
and return a Result (indicating failure) to the User Session.

Describe additional responsibilities of collaborators. Objects that are service providers,
controllers and coordinators are often charged with exception handling responsibilities.

In the online banking application, the FundsTransferTransaction—a service-
provider/coordinator—coordinates the work of performing a financial transaction. It makes
relatively few decisions, only altering its course when the result is in error. It is responsible for
validating funds transfer information, forwarding the request to the backend banking interface
component, logging successful transaction, and reporting results.

Objects within the application server component are within the same trust region. They
receive untrusted requests from the UI component and collaborate with the backend banking
component (each of those collaborations span another trust boundary). The backend-banking
component interfaces to the backend banking system, a trusted external system that either
handles the request or reports an error. Occasionally, communications between the backend bank
system fail, and then our software must take extraordinary measures.

Objects at the edges of a trust region can either take responsibility for guaranteeing that
incoming requests are well formed, or they can delegate all or part of that responsibility.In the
online banking application, any incoming request from the user component is validated. The
UserSession object receives and validates requests from the UI component, then creates and
delegates the request to specific service providers. When a request to transfer funds is received
from the UI component, a FundsTransferTransaction is created. It has responsibility for
validating the funds transfer information and reacting to errors reported from the backend
system.

As you work through exception handling scenarios assigning additional responsibilities to
collaborators, make sure you consider:

• Who validates information received from untrusted collaborators
• Who detects exceptions
• How exceptions are communicated between collaborators (via raised exceptions or error

results)
• Who recovers from them
• How recovery is accomplished
• Who recovers from failed attempts at recovery
• Who recasts exceptions, or translates them to higher levels of abstraction

Record Exception Handling Policies
Once you’ve decided how to solve one exceptional condition, tackle another. Often you can

leverage earlier work. If you decide that “ these type of exceptions” are very similar to “those”
ones, you’ll likely want to handle them consistently. Write down general strategies you will
attempt to follow. Deciding on exception handling policies can save a lot of work:

System Exception Policies
Recoverable software exceptions. These are caught exceptions that do not necessarily
mean an unstable state in the software (corrupt message, time outs, etc.). The strategy to
be followed in these cases is to first log the exception and then try to handle it (if retrying
is likely to succeed). If n ot, raise the exception so it can be handled (if the caller is within
the same process); or to return an error (if the caller is not within the same process).
Unrecoverable software exceptions. These are caught exceptions that presumably can
lead to an unstable state, like running out of memory or a task being unresponsive. The

response in these cases is to log the cause of the exception and to restart the application
unless the severity there is a “hold&do not restart” indication for that specific conditio n.

Document Your Exception Handling Designs
You will likely want to beef up existing design documentation with exception handling

details. But don’t pile on details. You can easily make a collaboration story incomprehensible or
a diagram illegible obscuring the main storyline. Instead, draw new diagrams to show how
specific exceptions are handled. Leave existing diagrams alone. Any new diagram will look
nearly identical to the “normal” case, but will include additional details about how an exception
is detected, communicated and dealt with.

Your stakeholders and fellow designers will get a much better sense of your exception
design if you explain it. Describe what exceptions you considered, how each is resolved, and
what you consider to be out of scope:

The online banking application is designed to cover communications failures
encountered during a financial transaction. A full set of single -point failures was
considered. Some double-point failures were explicitly not considered, as they are both
unlikely and covering them adds undue complexity to the processing of transactions.
In each case, the general strategy is to ensure that transaction status is accurately
reflected to the user. Failures in validating information will cause the transaction to fail,
whereas intermittent communications to the external database or to the backend banking
system during the transaction will not cause a transaction to fail.

In our opinion a picture isn’t worth a thousand words and a thousand words doesn’t always
cut it either. If you can find a way to explain concepts and design strategies using a combination
of visual and textual information, you’ll be a more effective communicator. Here is an example
showing key components and objects involved in performing a “prototypical” online banking
transaction. A table that explains what exceptions can occur and their impacts on the user,
accompanies it. Once this multi-media explanation was created, how the software was designed
to react to exceptional conditions was easily communicated.

Figure 8. A “high-level” sequence diagram showing a typical banking transaction

result

:MakePayment
TransactionUI :Session

performTransaction()
makePayment()

Legacy Server

prepareRequest()

submitRequest()

connect()

disconnect()

logResult()

submitRequest()

resultresult

Exception or Error Recovery Action Affect on User

Connection is dropped
between UI and Domain
Server after transaction
request is issued

Transaction continues to
completion. Instead of
notifying user of status,
transaction is just logged. User
will be notified of recent
(unviewed) transaction results
on next login.

User session is terminated…
user could've caused this by
closing his or her browser, or
the system could have failed.
User will be notified of
transaction status the next time
they access the system

Failure to write results of
successful transaction to
domain server log

Administrator is alerted via
console and email alerts.
Transaction information is
temporarily logged to
alternative source. If
connections cannot be re-
established, the system
restricts users to “ read only”
and account maintenance
requests until transaction
logging is re-established

User can see an unlogged
transaction in transaction
history constructed from
backend banking query… but
won't have it embellished with
any notes he or she may have
entered

Connection dropped between
domain server and backend
bank access layer after request
is issued

Attempt to re-establish
connection. If this fails after a
configurable number of
retries, transaction results are
logged as “pending” and the
user is informed that the
system is momentarily
unavailable…check in later.
When connections are re-
established, status is acquired
and logged. Further logins are
prevented until backend
access is re-established

User will be logged off with a
notice that system is
temporarily unavailable and
will learn of transaction status
on next login

Backend banking request fails Error condition reported to
user. Transaction fails. Failed
transaction is logged

User receives error
notification but can continue
using online services

Table 1. A table that explains online banking transaction exceptions and their impacts on the
system and its users

Review Your Design for Holes
Even with best intentions, you just can’t spot all the flaws in your work. Have you ever had

that “Aha! moment,” explaining something to someone else. Simply talking about your design
with someone else helps you see things clearly. A fresh perspective will help spot gaps in your
design. The most common bugs in exception handling design, according to Charles Howell and
Gary Veccellio, who analyzed several highly reliable systems, crop up when:

• failing to consider additional exceptions that might arise when writing exception handling
logic. Don’t let your guard down! Any action performed when handling an exception
could cause other exceptions. Often the appropriate solution to this situation is to raise
new exceptions from within the exception handling code.

• mapping error codes to exceptions. At different locations in your design, various objects
may have the responsibility to translate between specific return code values to specific
exceptions. The most common source of error is to incompletely consider the range of
error codes—mapping some, and not all cases. Mapping is often required when different
parts of a system are implemented in different programming languages.

• propagating exceptions to unprepared clients. Unhandled exceptions will continue to
propagate up the collaboration chain until either they are handled by some catchall object,
or left to the run time environment. Designers usually want some graceful exception
reporting or recovery. What they’ll get instead, will be program termination, if clients
aren’t designed to handle an unexpected exception.

• thinking an exception has been handled when it has merely been logged. Exception code
should do something meaningful to get the software back on track. As a first cut, you
may implement a common mechanism to log or report an exception. But this doesn’t
mean it has been handled. You’ve done nothing but report the problem—which is only
slightly more useful than taking no action at all.

In addition to these potential sources of error, look for places where complexity may have
sneaked in:

• redundant validation responsibilities. When you aren’t certain who should take
responsibility, sometimes you put it in several places. There may be different levels of
validation performed by different objects in a collaboration—first checking that the
information is in the right format, next checking that it is consistent with other
information. It is OK to spread these responsibilities between collaborators. But avoid
two different objects performing identical semantic checks.

• unnecessary checks. If you aren’t sure whether some condition should be checked, why
not check anyway? Because it can decrease system performance and give you a false
sense of security. This is an easy trap to fall into. By doing this, you’ve done absolutely
nothing to increase your software’s reliability and are likely to confuse those who will
maintain your design.

• embellished recovery actions. Extra measures at first seem like a good idea... but wait. Is
it really necessary to retry a failed operation, log it, and send email to the system
administrator? Look for where extra measures detract from system performance, make
your system more complex... and on a really bad day could clog up someone’s inbox.

At the end of a review, you should be convinced that your exception handling actions are
reasonable, cost effective and are likely make a difference in your system’s reliability.

Summary
As a first step in increasing reliability, you need to understand the consequences of system

failure. The more critical the consequences, the more effort and energy is justified designing for
reliability. To clarify your thinking, distinguish between exceptions—unlikely conditions that
your software must handle—and errors. Errors are when things are wrong—bad data,
programming errors, logic errors, faulty hardware, broken devices. Most software doesn’t need
to be designed to recover from errors, but can be made more reliable by gracefully handling
common exceptional conditions.

Approaches for improving reliability are rarely cut and dried. The best alternative isn’t
always clear. To decide what appropriate reactions should be taken involves sound engineering
as well as consideration of costs and impacts on the system’s users.

Objects do not work in isolation. To improve system reliability you must improve how
objects work in collaboration. Collaborations can be analyzed for the degree of trust between
collaborators. Within the same trust boundary, objects can assume that exceptions will be
detected and reported, and that responsibilities for checking on conditions and information will
be carried out by the appropriately designated responsible party. In some programming
languages, exceptions can be declared. When an exception is raised, some other object in the
collaboration chain will take responsibility for handling it. An alternative implementation
technique is to return values from calls that can encode exceptional conditions.

When collaborations span trust boundaries, more precautions may need to be taken.
Defensive collaborations—designing objects to take precautions before and after calling on a
collaborator—are expensive and error prone. Every object shouldn’t be tasked with these
responsibilities. When you need to be very precise, define contracts between collaborators.
Bertrand Meyer uses contracts to specify the obligations and benefits of the client and provider
of a service. Spelling out these terms makes it absolutely clear what each object’s responsibilities
are in a given collaboration.

Further reading
Doug Lea has written a very handy book called Concurrent Programming in Java: Design

Principles and Patterns. This book is invaluable, to even non Java programmers. It is packed
with in depth discussions and examples and good design principles. Even if you aren’t building
highly concurrent applications, this book is worth careful study.

Advances in Exception Handling Techniques grew out of a workshop on exception handling
for the 21st century. It is a collection of chapters written by programming language researchers,
database designers, distributed system designers and developers of complex applications and
mission critical systems who share their vision of the current state of the art of exception
handling and design. You will find very readable papers that discuss exceptions from multiple
perspectives.

Bertrand Meyer’s book Object-Oriented Software Construction (Second Edition) is the
definitive work on software engineering using the principle of Design by Contract. It is a
weighty book. But the two chapters, Design by contract: building reliable software, and When

the contract is Broken: exception handling, are a good exposure to the thinking in terms of
preconditions, postconditions, invariants and collaboration contracts.

Henry Petroski talks about the role of failure analysis in successful design in To Engineer is
Human. Software designers clearly don’t understand the laws that govern software failures as
well as structural engineers understand physics and materials. But you can learn many lessons
from this book.

References
Douglas Adams, Mostly Harmless (Hitchhiker’s Guide Series #5), Random House, 1993
Henry Petroski, To Engineer is Human , Vintage Books, 1992
David Pye, The Nature and Aesthetics of Design , Van Nostrand Reinhold Company, 1978
Alistair Cockburn, Agile Software Development, Addison-Wesley, 2002
Alexander Romanovsky, Christophe Dony, Jorgen Lindskov Knudsen, Anand Tripathi, Eds.,
Advances in Exception Handling Techniques , Springer-Verlag, 2001
Doug Lea, Concurrent Programming in Java (tm) Second Editio n: Design Principles and
Patterns, Addison-Wesley, 2000
Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1997
Charles Howell and Gary Veccellio, “Experiences with Error Handling in Critical Systems” in
Advances in Exception Handling Te chniques, Alexander Romanovsky, Christophe Dony, Jorgen
Lindskov Knudsen, Anand Tripathi, Eds., Springer-Verlag, 2001

