About UML’ s
Statecharts

© J.-Pierre Corriveau, 1997- present 3004 T4e -

Finite State Machines

+ Finite State machines (FSMs) describe behavior in
terms of states, events, and transitions:
— They have their transitions triggered by events.
— They are equivalently called state (transition) diagrams.
— They are useful in automating the generation code and tests.
— Extended FSMs (eFSMs) allow the use of state variables.
— Douglass has suggested patterns for FSMs of real-time systems

* For OO Development, an FSM may be developed for
each class:
— Each object is in exactly one state at any point in time.
— Events correspond to the messages sent by other objects.

— Many classes do not have sophisticated state behavior - often just
one state.

— Contrary to Structural Programming, we do not develop an FSM for
the system: behavior is distributed across objects:

» semantically we can think of communicating eFSMs

© J.-Pierre Corriveau, 1997- present 3004 T4e -

Page 1

Basic UML Notation for State Machine

([event signature event signature

N

event signature
State 1 State 2 \C@

event signature

. offHook/gi i
give dialtone
\A /_\‘
active
v

OnHook/ send disconnect
Event signature:

event(parameters: type) [guard condition] / action *sends

© J.-Pierre Corriveau, 1997- present 3004 T4e -

3

Statecharts = Hierarchical eFSMs

* The notation used in UML is taken almost directly
from Harel Statecharts:

— Statecharts embellish traditional state machines by providing
notation for nesting and concurrency.

— The embellishments help simplify visually state machines, which
can, otherwise, become quite complex.

» But the embellishments introduce semantic difficulties...
* Hierarchical eFSMs lend themselves to iterative

development: (the usual stub idea...)

— but remember that a single transition may make an FSM non-
deterministic!

— and non-determinism is not the only problem of communicating
state machines: deadlocks and livelocks must be detected...

— and Binder insists on statecharts being flattened if tests are to be
extracted from them...

© J.-Pierre Corriveau, 1997- present 3004 T4e - 4

Page 2

el

e1

/ State X

_

e2

e5

e3
®—{ State C

[State A 4[State B]
) e6

.

J

/

© J.-Pierre Corriveau, 1997- present

3004 T4e- S

(o

ialing

_— State Name

digitString =

‘ <

entry/ stop_dial_tone
on event_name :action
do/ time_digits

[

exit/flush_digits
\& —9 Y

State Variable

entry action: do on entry

do activity: do while in state

exit action: do when leaving state

on event: stay in state but perform
an action triggered by
an event.

Such rich semantics give modeling flexibility, but also create headaches for

testers...

And UML-RT does NOT have the exact same semantics...

© J.-Pierre Corriveau, 1997- present

3004 T4e- 6

Page 3

<>or@

gook Digit Collegt
a4 enirylplay diatone
\Iast digit

[Called Number idle

Connect

Treatment

o

Called Number busy]

[invalid number]

Setup \

/

© J.-Pierre Corriveau, 1997- present

3004 Tde- 7

Taking Class

~

Incomplete

lab done

lab done
o—(1ab 1)]———[1ab>2]

—®

e
N

.

(Faied
_]/

© J.-Pierre Corriveau, 1997- present

3004 T4e- 8

Page 4

Sy

© J.-Pierre Corriveau, 1997- present 3004 Tde- 9

.
B W

€

© J.-Pierre Corriveau, 1997- present 3004 T4e - 10

Page 5

VCR toggle_power

toggle_power o

.‘.

*._ power button

Remote ver * Aver.toggle_power

OG>

power button
.~ Melevision.toggle_power

TV toggle_power

toggle_power o

N [ogge_power -

© J.-Pierre Corriveau, 1997- present 3004 Tde - 11

T
| . 1
o e8.00/ACI4

ed,e5/ACIS

™

e4/AC4

6/ACI1
<2, e3/AC2

@
€3/AC3 '@*

C2IACS > J/
_ Y/

© J.-Pierre Corriveau, 1997- present 3004 Tde - 12

Page 6

From Problem Statement
To Statecharts

© J.-Pierre Corriveau, 1997- present 3004 T4e - 13

In UML the transition from a set of UCs to a set
of a sequences of messages and to the relevant
statecharts can be conducted in 4 steps:

1. Definition of pre and post conditions associated
with a use case

2. In each instance of the corresponding interaction
diagram, introduction of states before every
incoming message

Naming of the states
4. Generation of statecharts

g

A glitch: this recipe downplays completely inter-UC
relationships...

© J.-Pierre Corriveau, 1997- present 3004 Tde - 14

Page 7

Aciorl: | A: B: (o Adt
tel _
Cmessagel
<«—INessage2
——nessaged

—messaged
_—_messageS >
«——message6

. —> ____message8

« messaged

messagel(>

rel

Actor2:

© J.-Pierre Corriveau, 1997- present

3004 T4e - 15

uc1
tel

messageS

messagel ,
«—message2 :

message3

message4

message6 _
message7 ,

message8

Warning:

Though the names
may be the same,
each instance has
its own states!

These states are
used to enforce
the necessary pre-

and post-
message9 conditions...
messagel0
rel
CEnd 1) CEnd1) CEnd1)
© J.-Pierre Corriveau, 1997- present 3004 T4e - 16

Page 8

X

Actorl:

@D

m

>

tel

-

messa;

message3 >
message4

2

')

Actor2:

Step 2:
Introduce a

nameless state
before every

incoming
asynchronous
messages -
:> message.
message6
DD -
C) message8
message9
messagel0 CD
rel
—
End D End D End D
© J.-Pierre Corriveau, 1997- present 3004 Tde - 17

x

messagel
GD nessage2 Again!
- Though the names
ﬂge.@_@ may be the same,
. messaged each instance has
i]
message5 @ its own states!
CSD message6 challenge:
integration of
s3 s1 integ
message7 C> <> states across
C S?D _ message8 several such
message9 diagrams
messagel0 GD
rel
end end end
© J.-Pierre Corriveau, 1997- present 3004 T4e - 18

Page 9

Task:

For each instance of the sequence define a
statechart as follows:

+ Define a state for each state defined in the
sequence diagram

+ Define transitions between the states

» Define each transition in terms of a triggering
event (i.e., an incoming message) and transition
actions (i.e., sending outgoing messages)

© J.-Pierre Corriveau, 1997- present

3004 Tde - 19

>

H messagel ,
:; < message?
message3

= messageS]
message6 :

*__message?

message9

o

messagel0

Te1 from toActor1/
toB.message1().send();

message2 from toB/
toB.message3().send();
‘L toB.message5().send();

s2

message6 from toB/
toB.message7().send();

message9 from toC/
toC.message10().send();

Cend>

glitch: integration of transitions/ports...

© J.-Pierre Corriveau, 1997- present

3004 T4e - 20

Page 10

Actorl: ,_Aj_| ,_Bj_| ,_g Actor2:

te2

rel

© J.-Pierre Corriveau, 1997- present 3004 T4e - 21

Adorl: (GET 1S UCD Ade
tel | Al For A:
> _messagel
G2 s Ceh
—nessaged
T e e SUGGLLEEEEEEEEEEEEEE SEEPEE T
! —messaged 30
GO
< message7
\E Csié
«—nessage8
mgﬁ?gge9 rel |
Cenduc) CenducD
© J.-Pierre Corriveau, 1997- present 3004 Tde - 22

Page 11

| A Third Example

Loop For A:

te2 <f§>

message4 .
7
—lnessaged
message7
&
—lnessage8
wgeg rel
© J.-Pierre Corriveau, 1997- present 3004 T4e - 23

Looks Simple?

» The ultimate success of the extraction of a role state
machine depends:
— on the exact semantics of the notation you use.
» UML’ s statecharts are one of several possible semantics.
» Other models exist: eg., Douglass
— on the complexity of the interaction diagram to start with:

» UML 2.0 sequence diagrams have much more complicated
syntax and semantics than the interaction diagrams currently
in ROSE-RT. This does complicate role state machine
extraction.

* Role state machines??

— We obtain a state machine for each instance participating in a
single use case.
— Other instances of the same class may participate in other use
cases!
» We will say that instances of a class may play different roles in
different use cases.
» Once we have role state machines, we will need to consolidate
them (to use Gomaa’ s terminology).

© J.-Pierre Corriveau, 1997- present 3004 T4e - 24

Page 12

