
Page 1

 1 3004 T4e - © J.-Pierre Corriveau, 1997- present

About UML’s
Statecharts

 2 3004 T4e - © J.-Pierre Corriveau, 1997- present

Finite State Machines

•  Finite State machines (FSMs) describe behavior in
terms of states, events, and transitions:

–  They have their transitions triggered by events.
–  They are equivalently called state (transition) diagrams.
–  They are useful in automating the generation code and tests.
–  Extended FSMs (eFSMs) allow the use of state variables.
–  Douglass has suggested patterns for FSMs of real-time systems

•  For OO Development, an FSM may be developed for
each class:

–  Each object is in exactly one state at any point in time.
–  Events correspond to the messages sent by other objects.
–  Many classes do not have sophisticated state behavior - often just

one state.
–  Contrary to Structural Programming, we do not develop an FSM for

the system: behavior is distributed across objects:
»  semantically we can think of communicating eFSMs

Page 2

 3 3004 T4e - © J.-Pierre Corriveau, 1997- present

State 1 State 2

event signature

transition

Initial
transition

idle active

offHook/give dialtone

OnHook/ send disconnect

event(parameters: type) [guard condition] / action ^sends
Event signature:

final
transition

event signature

event signature
event signature

Basic UML Notation for State Machine

 4 3004 T4e - © J.-Pierre Corriveau, 1997- present

Statecharts = Hierarchical eFSMs

•  The notation used in UML is taken almost directly
from Harel Statecharts:

–  Statecharts embellish traditional state machines by providing
notation for nesting and concurrency.

–  The embellishments help simplify visually state machines, which
can, otherwise, become quite complex.

»  But the embellishments introduce semantic difficulties…

•  Hierarchical eFSMs lend themselves to iterative
development: (the usual stub idea…)

–  but remember that a single transition may make an FSM non-
deterministic!

–  and non-determinism is not the only problem of communicating
state machines: deadlocks and livelocks must be detected…

–  and Binder insists on statecharts being flattened if tests are to be
extracted from them…

Page 3

 5 3004 T4e - © J.-Pierre Corriveau, 1997- present

Nested States

State 0

State 1

State C

State 2

State A

State X

State B

e1

e2

e3

e4

e6

e5

e0

 6 3004 T4e - © J.-Pierre Corriveau, 1997- present

UML State Structure

Dialing

digitString = ‘ ‘

entry/ stop_dial_tone
on event_name :action
do/ time_digits
exit/flush_digits

State Name

State Variable

entry action: do on entry
do activity: do while in state
exit action: do when leaving state
on event: stay in state but perform
 an action triggered by
 an event.

Such rich semantics give modeling flexibility, but also create headaches for
testers…
And UML-RT does NOT have the exact same semantics…

Page 4

 7 3004 T4e - © J.-Pierre Corriveau, 1997- present

Conditional Connector

Digit Collect
entry/play dialtone

Connect

 idle

Treatment

last digit

C

Setup

Busy

[Called Number busy]
[Called Number idle]

[invalid number]

or

offhook

 8 3004 T4e - © J.-Pierre Corriveau, 1997- present

And Concurrency

Passed

Taking Class

lab 1 lab 2
lab done lab done

Incomplete

Term Project project done

Final Exam pass

Failed

fail

Page 5

 9 3004 T4e - © J.-Pierre Corriveau, 1997- present

Explicit Fork and Join

B1

B2

 A C

B
B3

 10 3004 T4e - © J.-Pierre Corriveau, 1997- present

History Indicator

B1

B2

 A C interrupt

H

B

B3

e5

Page 6

 11 3004 T4e - © J.-Pierre Corriveau, 1997- present

Sending Events to Other Objects

Off On

toggle_power

toggle_power

VCR

TV VCR

vcr

tv

Remote

power button
^television.toggle_power

power button
^vcr.toggle_power

Off On

toggle_power

toggle_power

TV

 12 3004 T4e - © J.-Pierre Corriveau, 1997- present

Understanding Hierarchical State Machines in ROSE-RT

S1

S23

S222

S21

S221

e1/AC1 S2

e6/AC6

e7/AC13

e10/AC8
e9/AC9

e6/AC11

H* H*

H* H*

e2, e3/AC2

e3/AC3

S22

H* H*
e4,e5/AC15 e8,e9/AC14

S3

e6/AC12 e4/AC4

e2/AC5

e2/AC10

AC7

Page 7

 13 3004 T4e - © J.-Pierre Corriveau, 1997- present

From Problem Statement

To Statecharts

 14 3004 T4e - © J.-Pierre Corriveau, 1997- present

The Scenario-Driven Recipe

 In UML the transition from a set of UCs to a set
of a sequences of messages and to the relevant
statecharts can be conducted in 4 steps:

1.  Definition of pre and post conditions associated
with a use case

2.  In each instance of the corresponding interaction
diagram, introduction of states before every
incoming message

3.  Naming of the states
4.  Generation of statecharts

 A glitch: this recipe downplays completely inter-UC
relationships…

Page 8

 15 3004 T4e - © J.-Pierre Corriveau, 1997- present

A Simple Example

te1

re1

message1
message2

message3

message4
message5

message6
message7

message8
message9

message10

B:	 C:	A:	 Actor2:	Actor1:	

 16 3004 T4e - © J.-Pierre Corriveau, 1997- present

Step1: Definition of Pre and Post Conditions

te1

re1

message1
message2

message3

message4
message5

message6
message7

message8
message9

message10

B:	 C:	A:	 Actor2:	Actor1:	

UC1 UC1 UC1

End 1 End 1 End 1

Warning:
Though the names
may be the same,
each instance has
its own states!

These states are
used to enforce
the necessary pre-
and post-
conditions…

Page 9

 17 3004 T4e - © J.-Pierre Corriveau, 1997- present

Step2: Introduction of States

te1

re1

message1

message2

message3 message4

message5

message6

message7
message8
message9

message10

B:	 C:	A:	 Actor2:	Actor1:	

UC 1 UC1 UC1

End 1 End 1 End 1

Step 2:
Introduce a
nameless state
before every
incoming
asynchronous
message.

 18 3004 T4e - © J.-Pierre Corriveau, 1997- present

Step3: Naming the States

te1

re1

message1

message2

message3 message4

message5

message6

message7
message8
message9

message10

B:	 C:	A:	 Actor2:	Actor1:	

idle idle idle

end end end

s1

s1

s1

s2

s2

s3

s3

s2

Again!
Though the names
may be the same,
each instance has
its own states!

challenge:
integration of
states across
several such
diagrams

Page 10

 19 3004 T4e - © J.-Pierre Corriveau, 1997- present

Step4: Generation of Statecharts

Task:
 For each instance of the sequence define a
statechart as follows:

•  Define a state for each state defined in the
sequence diagram

•  Define transitions between the states
•  Define each transition in terms of a triggering

event (i.e., an incoming message) and transition
actions (i.e., sending outgoing messages)

 20 3004 T4e - © J.-Pierre Corriveau, 1997- present

Step4: Generation of Statecharts

te1
message1

message2

message3

message5

message6

message7

message9

message10

B:	A:	Actor1:	

idle

end

s1

s2

s3

C:	

idle

s1

s2

s3

end

Te1 from toActor1/
toB.message1().send();

message2 from toB/
toB.message3().send();
toB.message5().send();

message6 from toB/
toB.message7().send();

message9 from toC/
toC.message10().send();

glitch: integration of transitions/ports…

Page 11

 21 3004 T4e - © J.-Pierre Corriveau, 1997- present

A Second Example (1)

te1

re1

message1
message2

message3

message4
message5

message6

B:	 C:	A:	 Actor2:	Actor1:	

Alt

message8
message9

te2

message7

 22 3004 T4e - © J.-Pierre Corriveau, 1997- present

A Second Example (2)

te1

re1

message1

message2

message3

message4
message5

message6

B:	 C:	A:	
Actor2:	Actor1:	

Alt

UC1

end UC1

UC1 UC1

s2

end UC1 end UC1

message8
message9

te2

s3

s5

UC1

s2 s3

s5

end UC1

For A:

s4
message7

s4

Page 12

 23 3004 T4e - © J.-Pierre Corriveau, 1997- present

A Third Example

re1

message3

message4
message5

message6

B:	 C:	A:	
Actor2:	Actor1:	

Loop

message7

UC1

end UC1

UC1 UC1

s2

end UC1 end UC1

message8
message9

te2 s3

s5

UC1

s2

s3

end UC1

For A: message1

s4

s4

s5

message2

 24 3004 T4e - © J.-Pierre Corriveau, 1997- present

Looks Simple?

•  The ultimate success of the extraction of a role state
machine depends:

–  on the exact semantics of the notation you use.
»  UML’s statecharts are one of several possible semantics.
»  Other models exist: eg., Douglass

–  on the complexity of the interaction diagram to start with:
»  UML 2.0 sequence diagrams have much more complicated

syntax and semantics than the interaction diagrams currently
in ROSE-RT. This does complicate role state machine
extraction.

•  Role state machines??
–  We obtain a state machine for each instance participating in a

single use case.
–  Other instances of the same class may participate in other use

cases!
»  We will say that instances of a class may play different roles in

different use cases.
»  Once we have role state machines, we will need to consolidate

them (to use Gomaa’s terminology).

