
School of Electrical and Information Engineering

Computer Engineering Laboratory

© Copyright Bran Selic 2010

An Introduction to Model-Based
Software Engineering

ELEC 5620

The Tandem Tango…The Tandem Tango…

� 1990: AT&T Long Distance Network (Northeastern
US)

CO

....

CO

...

tandem tandem

tandem

tandem

tandem

tandem

tandem

tandemtandemRecovery time: Recovery time:
1 day1 day

Cost: 100’s of Cost: 100’s of

2

CO
. . .

tandem
tandem

tandemtandem

tandem
tandem

tandem

tandem

Cost: 100’s of Cost: 100’s of
millions of millions of
$’s$’s

The Hidden CulpritThe Hidden Culprit

� The (missing) “break” that
broke it

. . .;

switch (...) {

case a : ...;

break;

Wanted:

…and, it’s all HIS fault!

3

break;

case b :...;

break;

. . .

case m : ...;

case n : ...;

. . .

};
Ooops! Forgot the
“break”…

$1 billion

reward

OverviewOverview

� The Problem

� The Premise

� The Results

4

� The Results

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize

};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

A Fragment of Modern SoftwareA Fragment of Modern Software

5

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

Can you see what this
program is about?

The Enemy: ComplexityThe Enemy: Complexity

� Modern software systems are reaching levels of
complexity comparable to those of biological systems

� Systems of systems

� Furthermore, this trend will continue

� …as will the demand for greater software reliability

� Given the current track record of software projects

6

� Given the current track record of software projects
(>50%), what chances have we got?

WELCOME to HELL!

Fred Brooks on ComplexityFred Brooks on Complexity

� [From: F. Brooks, “The Mythical Man-Month”,
Addison Wesley, 1995]

� Essential complexity

� inherent to the problem

� cannot be eliminated by technology or technique

� e.g., solving the “traveling salesman” problem

7

� e.g., solving the “traveling salesman” problem

� Accidental complexity

� due to technology or methods used to solve the problem

� e.g., building a skyscraper using only hand tools

Mainstream Programming LanguagesMainstream Programming Languages

� Most mainstream programming languages abound in
accidental complexity

� These languages are:

� Difficult to understand

� Defect intolerant, with a chaotic quality

� Modern variants (e.g., Java, C#) are not significantly

8

� Modern variants (e.g., Java, C#) are not significantly
more productive compared to the original languages (e.g.,
FORTRAN)

� (The embarrassing bit) Yet, we have persistently held on
to these outdated technologies, investing enormous
financial and intellectual resources in improving them

� ..at the cost of overlooking many new and better approaches

The ImpactThe Impact

� Abstraction (modeling) of programs is extremely
difficult and risky

� Any detail can be critical!

� Eliminates our most effective means for managing
complexity

� Our ability to exploit formal mathematical methods

9

� Our ability to exploit formal mathematical methods
is severely impeded

� Mathematics is at the core of all successful modern
engineering

� We must do something different

� “Problems cannot be solved by the same level of thinking
that created them” – A. Einstein

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize

};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

Back to “Modern” SoftwareBack to “Modern” Software

10

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

Can you see what this
program is about?

…Corresponding UML Model…Corresponding UML Model

««sc_slavesc_slave»»

b1b1:Consumer:Consumer
««sc_methodsc_method»»

a1:a1:ProducerProducer

11

b1b1:Consumer:Consumera1:a1:ProducerProducer
start out1 in1

Can you see it now?

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize

};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

The Program and Its ModelThe Program and Its Model

12

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

««sc_slavesc_slave»»

b1b1:Consumer:Consumer
««sc_methodsc_method»»

a1:a1:ProducerProducer
start out1 in1

«sc_link_mp»

link1

OverviewOverview

� The Problem

� The Premise

� The Results

13

� The Results

Why Do Engineers Build Models?Why Do Engineers Build Models?

� To understand

� …the interesting characteristics of an existing or desired
(complex) system and its environment

� To predict

� …the interesting characteristics of the system by analysing
its model(s)

14

its model(s)

� To communicate

� …their understanding and design intent (to others and to
oneself!)

� To specify

� ...the implementation of the system (models as blueprints)

Engineering ModelsEngineering Models

� Engineering model:

� A selective representation of some system that captures
accurately and concisely all of its essential properties of
interest for a given set of concerns

• We don’t see everything
at once

• What we do see is adjusted

15

• What we do see is adjusted
to human understanding

Characteristics of Useful Engineering ModelsCharacteristics of Useful Engineering Models

� Purposeful:

� Constructed to address a specific set of concerns/audience

� Abstract

� Emphasize important aspects while removing irrelevant ones

� Understandable

� Expressed in a form that is readily understood by observers

� Accurate

Faithfully represents the modeled system

16

� Faithfully represents the modeled system

� Predictive

� Can be used to answer questions about the modeled system

� Cost effective

� Should be much cheaper and faster to construct than actual system

To be useful, engineering models must
satisfy at least these characteristics!

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);
SC_CTOR(consumer)

{

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}
SC_CTOR(consumer)

{

What About Software?What About Software?

� An abstract representation of a software system

Comp1

ArbiterComp2 Display

17

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

ArbiterComp2

Comp3

Display

Models of SoftwareModels of Software

� Software model: An engineering model (specified
using a modeling language) of some software that
represents:

1. Run-time views of the software: the structure and
behavior of the software in execution and/or

2. Design-time views of the software: The structure and
content of the software specification

18

content of the software specification

B

A B
0..*

C

0..1
0..*

«import»

0..*

LeftLeft RightRight

m1

m4

m2

m3

One of the primary motives for many One of the primary motives for many
modeling languages is the need to more
clearly represent software in execution

Design-time viewDesign-time view

Run-time viewRun-time view

Modeling Software: SA/SDModeling Software: SA/SD

Monitor
PH

Raise
PH

Control
PH

PH reached X

Current PH

start

stop

Input valve

19

“…bubbles and arrows, as opposed to programs,
…never crash”

-- B. Meyer
“UML: The Positive Spin”

American Programmer, 1997

Input valve
control

producer

Modern MBSE Development StyleModern MBSE Development Style

� Models can be refined continuously until the application
is fully specified ⇒⇒⇒⇒ the model becomes the system that
it was modeling!

««sc_methodsc_method»»

producerproducer
start out1

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

20

refine

NotStarted

Started

start

NotStarted

Started

start

producer

St1St1 St2St2

/generate_data()

A Unique Feature of SoftwareA Unique Feature of Software

� A software model and the software being modeled
share the same medium—the computer

� Which also happens to be our most advanced and most
versatile automation technology

Software has the unique property that it allows
us to directly evolve models into

21

us to directly evolve models into
implementations without fundamental
discontinuities in the expertise, tools, or
methods!

⇒⇒⇒⇒ High probability that key design
decisions will be preserved in the
implementation and that the results of
prior analyses will be valid

producer

But, if the Model is the System…But, if the Model is the System…

� …do we not lose the abstraction value of models?

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

22

NotStarted

Started

start

St1St1 St2St2

{out1 = i;}}

/generate_data()

Started

• The computer offers a uniquely
capable abstraction device:

Software can be represented
from any desired viewpoint at
any desired level of abstraction

The abstraction is inside the system
and can be extracted automatically

The ModelThe Model--Based Engineering (MBE) ApproachBased Engineering (MBE) Approach

� An approach to system and software development in which
software models play an indispensable role

� Based on two time-proven ideas:

(2) AUTOMATION

S1

S3

e3/action3

(1) ABSTRACTION

S1

S3

e3/action3

Realm of Realm of

23

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

S2

e1/action1

e2/action2

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

S2

e1/action1

e2/action2

Realm of
modeling
languages

Realm of
tools

ModelModel--Driven Architecture (MDA)™Driven Architecture (MDA)™

� In recognition of the increasing importance of MBE,
the Object Management Group (OMG) is developing
a set of supporting industrial standards

(1) ABSTRACTION (2) AUTOMATION

24

(3) INDUSTRY STANDARDS
• UML 2
• OCL
• MOF
• SysML
• SPEM
• …etc.

http://www.omg.org/mda/

The Value of StandardsThe Value of Standards

� Standards are good because;

� They support specialization

• Standards define interfaces between different specialization
domains

• Specialization is beneficial since it allows complex topics to receive
due attention (no need to worry too much about other specialties)

• E.g., a vendor specializing in analyzing UML models need not worry
about providing a UML editing tool

25

about providing a UML editing tool

� Standards imply vendor independence

• Users have a choice of different vendors (no vendor “tie-in”)

• Forces vendors into competing and improving their products

� Standards are not good because:

� They are almost always compromises; i.e., suboptimal solutions

� Standards are the key to success to much of modern
technological innovation

MDAMDA™™ Standards ArchitectureStandards Architecture

UML 2UML 2 CWMCWM SPEMSPEM

UML Profiles

ODMODM
RASRAS

26

Core Specifications:Core Specifications:

MOF 2, XMI 2.1, MOF Versioning, MOF QVT, MOF to TextMOF 2, XMI 2.1, MOF Versioning, MOF QVT, MOF to Text

UML 2UML 2 CWMCWM SPEMSPEM

UML 2 Infrastructure

ODMODM

(Ontology)(Ontology)
RASRAS

The MDA™The MDA™ Interpretation of MBSEInterpretation of MBSE

� A cascade of successively refined models
leading to one or more implementations

Model

Transform

..

Model

Transform

. . .

27

Model

Transform

Model

Transform

...

But, we must be But, we must be
very careful in how
we interpret these
concepts!

The Concept of “Platform Independence”?The Concept of “Platform Independence”?

� A highly desirable objective

� Separation of concerns – reduces apparent problem complexity

� Enables portability

“Platform
Independent” Software

Application

«deploy»

2828

Computing Computing
Platform Platform NN

Computing Computing
Platform Platform 22

Computing Computing
Platform 1Platform 1

. . .

«deploy»
«deploy»

«deploy»

Does “platform independence” mean that we can ignore
platform concerns when designing our application?

Interpreting the MDA™ Interpreting the MDA™ ViewView

� PLATFORM INDEPENDENCE is ...the quality that the
model is independent of the features of a platform of any
particular type

� NB: not independent of the platform as a whole

� A PLATFORM INDEPENDENT MODEL (PIM)...exhibits a
specified degree of platform independence so as to be
suitable for use with a number of different platforms of

29

suitable for use with a number of different platforms of
similar type.

29

⇒⇒⇒⇒“platform independence” does NOT imply platform
ignorance!

MBE Opportunity: Code Generation MBE Opportunity: Code Generation

� The accidental complexity of current programming
languages can be greatly reduced by the appropriate use
of computer-based automation

S1 e3/action3 switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

NotStarted

startBUG

3030

S3

S2

e1/action1

e2/action2

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

Started

start

St1 St2

…and what about more advanced
modeling languages??

Automatic code generation

BUG

BUG

MBE Opportunity: Exploiting Formal MethodsMBE Opportunity: Exploiting Formal Methods

� Given the possibility of making modeling language
constructs better behaved than programming
language constructs, it is possible to exploit formal
methods that could not handle the semantic
complexity of programming languages

� E.g., state machines, Petri nets

31

� Model checking, theorem proving

� We need to work on formal semantics of modeling
languages

MBE Opportunity: Automated Model AnalysisMBE Opportunity: Automated Model Analysis

� Complementary inter-working of specialized tools
based on shared standards

Model AuthoringModel Authoring
ToolTool Model AnalysisModel Analysis

ToolTool

SpecializedSpecialized
analysis model

QoS Annotations

32

5

3.13.1

4

ToolTool

µµµµ

Analysis results

2.52.52.52.5

Learning From Learning From ModelsModels

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)

+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

?� By formal analysis

– reliable (provided the models

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

?
� By inspection

– mental execution

– unreliable

33

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

cos

+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5
– reliable (provided the models
are accurate)

??

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

� By execution

– more reliable than inspection

– direct experience/insight

MBE Opportunity: Model ExecutionMBE Opportunity: Model Execution

� D. Harel: “Models that are not executable are like
cars without engines”

� Ability to execute a model on a computer and
observe its behavior

� Key capabilities

� Controllability: ability to start/stop/slow down/speed
up/drive execution

34

� Controllability: ability to start/stop/slow down/speed
up/drive execution

� Observability: ability to view execution and state in model
(source) form

� Partial model execution: ability to execute abstract and
incomplete models

� Executable specifications: overcoming the limitation
of paper-based specifications

MBE Opportunity: MBE Opportunity: Model TransformationsModel Transformations

� Multiple purposes:

� Model viewing: abstraction and refinement

� Domain-to-domain model transformations: e.g., UML to
queueing network model

� Model-to-code transformations (code generation)

� Multiple styles

35

� Multiple styles

� Declarative

� Operational

� Standard: OMG’s upcoming MOF Queries, Views, and
Transformations (QVT)

� We need a comprehensive theory of model transformations
comparable to compiler theory

Styles of MBSEStyles of MBSE

Model

Model onlyCode only

Model

Code

Visualization

visualize

Model

Model-centric

generate

Levels of

Abstraction

Automation

Model

Round Trip

Engineering

synchronize

36

“Who cares

about the

code?”

“What’s a

model?”

Code

“The code is

the model”

Code

visualize

“The model is the

code”

Code

generate

Time

“Manage code

and model”

Code

synchronize

Roundtrip EngineeringRoundtrip Engineering

Implementation

transformation

37

NB: Slide idea borrowed from an itemis AG presentation

transformation

Reverse

engineering

Automatic Code GenerationAutomatic Code Generation

� A form of model transformation (model to text)

� To a lower level of abstraction

� State of the art:

� All development done via the model (i.e., no modifications
of generated code)

� Size: Systems equivalent to ~ 10 MLoC

38

� Size: Systems equivalent to ~ 10 MLoC

� Scalability: teams involving hundreds of developers

� Performance: within ±5-15% of equivalent manually coded
system

OverviewOverview

� The Problem

� The Premise

� The Results

39

� The Results

Major Telecom Equipment ManufacturerMajor Telecom Equipment Manufacturer

� MBE technologies used

� UML, Rational Technical Developer, RUP

� Example 1: Radio Base Station

� 2 Million lines of C++ code (87% generated by tools)

� 150 developers

40

� Example 2: Network Controller

� 4.5 Million lines of C++ code (80% generated by tools)

� 200 developers
BenefitsBenefits
80% fewer bugs
30% productivity

increase

..and a Few Extreme Cases..and a Few Extreme Cases

� Major Equipment Manufacturer 1:

� Code production rate went from 40 LoC/day to 250
Loc/day (>600% improvement)

� Major Equipment Manufacturer 2:

� Code production rate went from 200 LoC/week to 950

41

� Code production rate went from 200 LoC/week to 950
Loc/week (~500% improvement)

� 6-person team developed 120 KLoC system in 21.5 weeks
compared to planned 40 weeks (~100% improvement)

� Fault density (per line of code) reduced 17-fold (1700%)

Automated doors, Base Station, Billing (In Telephone Switches),
Broadband Access, Gateway, Camera, Car Audio, Convertible roof
controller, Control Systems, DSL, Elevators, Embedded Control, GPS,
Engine Monitoring, Entertainment, Fault Management, Military
Data/Voice Communications, Missile Systems, Executable Architecture
(Simulation), DNA Sequencing, Industrial Laser Control, Karaoke,
Media Gateway, Modeling Of Software Architectures, Medical
Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,

Sampling of Successful MBE ProductsSampling of Successful MBE Products

42

Media Gateway, Modeling Of Software Architectures, Medical
Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,
Automated Concrete Mixing Factory, Private Branch Exchange (PBX),
Operations And Maintenance, Optical Switching, Industrial Robot,
Phone, Radio Network Controller, Routing, Operational Logic, Security
and fire monitoring systems, Surgical Robot, Surveillance Systems,
Testing And Instrumentation Equipment, Train Control, Train to
Signal box Communications, Voice Over IP, Wafer Processing,
Wireless Phone

Model

Model onlyCode only

Model

Code

Visualization

visualize

Model

Model-centric

generate

Levels of

Abstraction

Automation

Model

Round Trip

Engineering

synchronize

MBSE in PracticeMBSE in Practice

Predominant

State of the

Practice

43

State of the

Art

“Who cares

about the

code?”

“What’s a

Model?”

Code

“The code is

the model”

Code

visualize

“The model is the

code”

Code

generate

“Manage code

and model”

Code

synchronizePractice

If this stuff is so good, why
isn’t everybody doing it?

44

isn’t everybody doing it?

Root Causes of Low Adoption RateRoot Causes of Low Adoption Rate

� Categories of impediments

� Technical problems

� Social/Cultural issues

� Economic factors

� Key Point: It is not sufficient to address only the
technical issues

45

technical issues

Summary: MBSESummary: MBSE

� MBSE is an approach to software development
based on raising the level of abstraction and level
of automation beyond current standard practice

� There have been numerous successful applications of
MBSE in industrial practice

� The uptake of MBSE in practice is still slow due to

46

� The uptake of MBSE in practice is still slow due to

� Immaturity of the discipline – weak theoretical
underpinnings

� Required investment in training and tooling

� Discontinuities involved in switching to new methods and
tools

� Cultural factors

School of Electrical and Information Engineering

Computer Engineering Laboratory

© Copyright Bran Selic 2010

Supplement: The Impediments to
Greater MBSE Adoption

Bran Selic

Technical: ImmaturityTechnical: Immaturity

� Most MBE technologies are immature

� Inadequate understanding of underlying theoretical
foundations

� Most innovation developed ad hoc by commercial enterprises
to solve specific and immediate market needs

� Example: Modeling language design

48

� Example: Modeling language design

� Insufficient experience and understanding of the problem
and characteristics of potential solutions

Technical: Usability and InteroperabilityTechnical: Usability and Interoperability

� The “naked” complexity of current software technologies
is a major deterrent to their use

� Menu-mania and lack of interoperability

� Require significant intellectual investment to master

� Deflects effort and resources from core problem

� Tool design requires deep understanding of

� The technical aspects of the application domain

49

� The technical aspects of the application domain

� The habits and psychology of users

� The nature and flow of the development process

� The business context in which the tools are used

� Usability must be a fundamental part of the system
architecture

� Difficult if not impossible to retrofit

Cultural: Lack of Awareness and VisionCultural: Lack of Awareness and Vision

� Many practitioners remain unaware of the potential
and achievements of MBE

� Lack of verifiable evidence

� Enterprises are often secretive about their successes due
to competitive reasons

� Technological ruts (ratholes?)

50

� Technological ruts (ratholes?)

� Many (most?) fractitioners tend to focus on technologies
instead of solutions ⇒⇒⇒⇒ strong resistance to change

� Incremental thinking

• e.g. OOPSLA ‘07 panel on future of programming languages

� “Problems cannot be solved by the same level of thinking
that created them” – A. Einstein

The Idiosyncrasies of Software The Idiosyncrasies of Software –– 11

“Mindstuff”

Hardware

SC_MODULE(producer)
{sc_inslave<int> in1;
int sum; //
void accumulate (){

Software
Process and tools

51

Req. 3.2.4:
The system shall jump
through burning hoops and
leap over 30’ fences

Req. 3.2.4:
The system shall be
mauve with pink frills.
…

Requirements

void accumulate (){
sum += in1;
cout << “Sum = “ <<
sum << endl;}

Relative to other engineering Relative to other engineering
disciplines, this ingredient plays a disciplines, this ingredient plays a
disproportionally disproportionally dominant roledominant role in in
the engineering processthe engineering process

Some ConsequencesSome Consequences

� Products are much less hampered by physical reality
� …but, not completely free

� The effects of aptitude differences between individuals are
strongly accentuated
� Productivity of individuals can differ by an order of magnitude

� Not necessarily a measure of quality

� …or intelligence

� The path from conception to realization is exceptionally fast

52

� The path from conception to realization is exceptionally fast
(edit-compile-run cycle)
� Often leads to an impatient state of mind

� …which leads to unsystematic and hastily conceived solutions
(hacking)

� Also yields a highly seductive and engrossing experience

� …so that, often, the ultimate product becomes secondary

The Idiosyncrasies of Software The Idiosyncrasies of Software –– 22

� In all other engineering disciplines abstractions (and models) are
artifacts that are necessarily distinct from the systems that they
abstract

� Results in divergence and inaccuracy of abstractions/models

� Uniquely, in software, the abstraction can be integrated with its
system and can be extracted automatically when required

SC_MODULE(producer)

{

sc_outmaster<int> out1;

53

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

««sc_slavesc_slave»»

B1B1:consumer:consumer
««sc_methodsc_method»»

A1:A1:producerproducer

start out1 in1

«sc_link_mp»

link1

«sc_method»«sc_method»

producerproducer

0..1 «sc_slave»«sc_slave»

consumerconsumer

0..*

So, Is Programming = Mathematics?So, Is Programming = Mathematics?

54

� “I see no meaningful difference between programming
methodology and mathematical methodology” (EWD 1209)

� “[The interrupt] was a great invention, but also a Pandora’s
Box…essentially, for the sake of efficiency, concurrency
[became] visible…and then, all hell broke loose” (EWD 1303)

Edsgar Wybe Dijkstra (1930 – 2002)

Two Opposing ViewsTwo Opposing Views

“Because [programs] are put together in the context of
a set of information requirements, they observe no
natural limits other than those imposed by those
requirements. Unlike the world of engineering, there
are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002

55

“All machinery is derived from nature, and is founded
on the teaching and instruction of the revolution of the
firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC

Software Physics: The Great Impossibility ResultSoftware Physics: The Great Impossibility Result

It is not possible to guarantee that
agreement can be reached in finite time
over an asynchronous communication
medium, if the medium is lossy or one of
the distributed sites can fail
� Fischer, M., N. Lynch, and M. Paterson, “Impossibility
of Distributed Consensus with One Faulty Process”
Journal of the ACM, (32, 2) April 1985.

56

• In many practical systems, the physical platform is a primary
design constraint that cannot be overcome by layers of
software
Computer system = software + hardware

• Yet, students are still being taught that “platform concerns” are
second order issues

More on Software PhysicsMore on Software Physics

“Time has been systematically removed from
theories of computation, since it has been viewed
as representing the annoying property that
computations take time.”

E. Lee, UC Berkeley

� Failure to distinguish between computational theory and
software engineering practice

57

� Lack of fundamental quantitative skills

� Basic “back of the envelope” calculation

� Consequences

� 7-second dialtone delay

� 8 GB PC application

Social: The Great Inertial Mass ProblemSocial: The Great Inertial Mass Problem

� Numerous generations of software practitioners
were raised with this culture

� ~12-25 million programmers in the world

� ...most of them holding on to what they know and unwilling
to move outside their technological rut comfort zones

� How to overcome this enormous inertial mass?

58

� How to overcome this enormous inertial mass?

Economic: Present Day Business CultureEconomic: Present Day Business Culture

� Predominantly based on short-term return on
investment (ROI)

� Markets today force focus on quarterly results

� Business and technology development plan horizons are
rarely meaningful beyond 12 months

� Reward structure based on short-term results

� Foundational research and introduction of new

59

� Foundational research and introduction of new
technologies requires more distant horizons and
long-term investments

� Today’s model of research funding is strongly tied to short-
term market relevance

• Not conducive to research into fundamentals

• Hampers ground-breaking outside-the-box innovation

What Can We Do?

60

What is Engineering?What is Engineering?

Engineering (Merriam-Webster Collegiate Dictionary) :

the application of science and mathematics by which
the properties of matter and the sources of energy in
nature are made useful to people

61

nature are made useful to people

Why “Software Engineering”?Why “Software Engineering”?

� Misleading term
� The objective is not to develop software but useful
systems

� Software should be just one of the tools used by
engineers for solving engineering problems

� Consequences:
� Software engineers often identify themselves not by their

62

� Software engineers often identify themselves not by their
domain expertise (e.g., telecom, financial systems,
aerospace) but by their technology expertise (e.g., C++,
EJB, Linux)

“When the only tool you have is a hammer, all problems
start looking like nails”

� Technology obsolescence and suboptimal solutions

� High degree of resistance to technological innovation and
change

Getting Closer to the End UserGetting Closer to the End User

� There is an unfortunate lack of awareness of and
respect for end users

� Personal gratification should not come solely from having
designed and constructed the system, but from seeing it
in use

� The medium is not the message

� Implies achieving a deep level of understanding of

63

� Implies achieving a deep level of understanding of
the value of the system to the customer

� Implies a scope of skills and knowledge that extends far
beyond the technical domain

� Required at every level (not just system architects)

“The [engineer] should be equipped with knowledge
of many branches of study and varied kinds of
learning, for it is by his judgment that all work
done by the other arts is put to test. This
knowledge is the child of practice and theory.”

- Vitruvius

On Architecture, Book I (1st Century BC)

64

On Architecture, Book I (1st Century BC)

An Unexpected Source of InspirationAn Unexpected Source of Inspiration

“In an instant, I saw it all.”

“The glow retreats, done in the day of toil;
It yonder hastes, new fields of life exploring;
Ah, that no wing can lift me from the soil,
Upon its track to follow, follow soaring! .”

-- Goethe, Faust

65

� “In an instant, I saw it all.”

Nikola Tesla describing the moment of insight that led to the
invention of the rotating magnetic field and the alternating
current electric motor – considered one of the 10 most
important modern inventions

The Value of a Broader EducationThe Value of a Broader Education

� More than just finding inspiration for technical
solutions in non-technical sources

� Although, higher levels of general literacy are sorely
needed (particularly writing skills)

� Understanding and respect for the greater social,
cultural, economic context in which technical
inventions function

66

inventions function

� Understand when and how to apply technological solutions

� Avoid often futile attempts to solve non-technical issues
with yet more technology

� Reduce current glut of confusing and problematic
technologies that cause more problems than they solve

Understanding the Business CaseUnderstanding the Business Case

� There is often a justifiable reason why the “best”
technical solution is not the best solution for a
given situation
� E.g., cost of retraining

� Perhaps the most frequent (and most futile) complaint of
software developers worldwide

� Based on the assumption that technical concerns (e.g.,
technical elegance) are always paramount

67

� Based on the assumption that technical concerns (e.g.,
technical elegance) are always paramount

� Often reflects a lack of awareness of overriding non-
technical issues

� Engineers must be trained to understand and
appreciate the greater business context

Speaking of Business…Speaking of Business…

� Prepare software experts for work in a business-
oriented environment
� They work for organizations that solve business problems

� They may become entrepreneurs

� “Must know” topics
� Economics fundamentals: how markets work

Basics of business management and administration

68

� Basics of business management and administration

� Basics of accounting and key legal aspects (e.g., IP law)

� Professional ethics

� Basics of psychology and sociology

� Project management/work organization

� The essentials of marketing

� Presentation skills

On the Technical SideOn the Technical Side

� Abstraction plays a central role in software
� More so than any other engineering discipline

� Mathematics is an excellent foundation for
developing and honing abstraction skills
� …and may even be directly applicable to the technical
problems ☺☺☺☺

� Mathematical logic

Probability theory

69

� Probability theory

� Discrete mathematics

� Optimization theory

� History of technology and mathematics

� An understanding of the physics underlying
software

Theory and PracticeTheory and Practice

� “The difference between theory and practice is
much greater in practice than it is in theory”

� The divide is growing
� Most practitioners disdain theory

� Unfortunate, since some theory could help them
substantially

� Most theoreticians don’t understand practice

70

� Most theoreticians don’t understand practice
� Unfortunate, since they could work on more useful lines
of research

� Educational requirements:
� Instill an appreciation for the value of theory

� Instill an understanding of the pragmatics of industrial
software development

Teaching the PragmaticsTeaching the Pragmatics

� Educational examples tend to be naïve and small

� Little or no team programming

� “Greenfields” (vs maintenance) type of development

� Small scale gives an incorrect basic impression about the
nature of software development

� Proposal: develop a multi-year “product” project in

71

� Proposal: develop a multi-year “product” project in
SE courses

� Requires work in teams (learning the dynamics of teams)

� Requires understanding of others’ designs (and an
appreciation of the value of documentation)

ConclusionsConclusions

� Software development is engineering

� …which does not preclude the notion of software science

� Software offers a truly unique engineering medium

� Dominated by ideas rather than physical reality

…but not completely

� The ability to define and realize our own realities

� This requires a unique combination of new and old

72

� This requires a unique combination of new and old
engineering principles

� We have yet to discover the right balance

� An understanding of users and their circumstances is crucial

� Developing an engineer’s sense of responsibility and perspective

� Inevitably, this requires a broader outlook and interests that
extend beyond specific technologies

“Concern for man himself and his fate must always
constitute the chief objective of all technological
endeavors...in order that the creations or our minds
shall be a blessing and not a curse to mankind. Never
forget this in the midst of your diagrams and
equations.”

73

equations.”

-- A. Einstein, 1931

