
Page 1

 1 3004 T2a - © J.-Pierre Corriveau, 1997- present

Requirements
Use Cases
Scenarios

 2 3004 T2a - © J.-Pierre Corriveau, 1997- present

About Models

•  Generally, a model captures implicitly lots of
design decisions

•  A model typically abstracts away from
implementation details:

–  advantage: the design should be reusable whatever the
implementation is

–  disadvantage: the level of abstraction may be too high, leaving
the door open for more design decisions during
implementation

–  inevitability: no design model captures all details and
subtleties of coding. Consequently:

»  there may be some semantic gap between design and code
»  coding decisions must be motivated (if not traced back to

requirements) and explained.
•  In this course, we are concerned with modeling

decisions.

 3 3004 T2a - © J.-Pierre Corriveau, 1997- present

The Problem

•  Given some problem statement:
– Where do we start?
– What models are we to use?
– How do we capture design and coding decisions?
– How do we capture traceability links?
– How do we capture alternative designs, if at all?

•  A ‘recipe’ (a s/w dev. method) should provide
answers to all these questions:

– We will adopting a general recipe called “scenario-driven
development” (next slide)

 4 3004 T2a - © J.-Pierre Corriveau, 1997- present

Scenario Driven Development

•  Capture/re-express requirements in the form of
use-cases (UCs)

•  Get a set of UCs: a use-case is a set of scenarios
•  From use-cases, which view the system as a

black-box, extract, a set of representative (high
yield or essential) scenarios, that is, interactions
between the components of the system

•  From these interaction diagrams, or concurrently
with their design, establish the architecture of the
system (e.g., using a class diagram)

•  Capture the internal workings of each class using
a state diagram called a statechart or code the
class.

Page 2

 5 3004 T2a - © J.-Pierre Corriveau, 1997- present

Learning Objectives

•  distinguish the words: requirements, use-cases,
and scenarios

•  present a general format for capturing
assumptions, requirements and use cases

•  introduce UML ’s use-case and use-case
diagrams

 6 3004 T2a - © J.-Pierre Corriveau, 1997- present

About
Requirements

 7 3004 T2a - © J.-Pierre Corriveau, 1997- present © B. Selic
 8 3004 T2a - © J.-Pierre Corriveau, 1997- present © B. Selic

Page 3

 9 3004 T2a - © J.-Pierre Corriveau, 1997- present © B. Selic
 10 3004 T2a - © J.-Pierre Corriveau, 1997- present

Why are Requirements so Important?

•  Attention to requirements is a basis of building quality
products

•  Because satisfying requirements is so fundamental,
requirements form a basis for managing a development
project

 - requirements model the problem
 - requirements form the basis of agreements
 - requirements form the basis for analysis
 - requirements form the basis for testing
 - getting requirements right saves money

•  It is crucial to acknowledge the fact that requirements will
change over time

•  We do not focus in this course on requirement gathering
techniques, nor on standards (eg from IEEE) for capturing
requirements.

 11 3004 T2a - © J.-Pierre Corriveau, 1997- present

Types of System Requirements

•  Functional requirements
 Define what the system must do

•  Nonfunctional requirements (quality of service)
 Define the constraints that apply to the system and/or to the
development of the system

–  Performance requirements (time-constraints)
–  Interface requirements (usability)
–  Resource requirements (e.g., what 3rd party s/w can you use)
–  Verification requirements (i.e., how much testing?)
–  Documentation requirements (captured in templates)
–  Security requirements (e.g., level of encryption)
–  etc.

 12 3004 T2a - © J.-Pierre Corriveau, 1997- present

Structuring Requirements

•  Organizing requirements is a very important task
–  Requirements are typically incomplete:

»  we must capture their evolution (i.e., tracking changes)
»  we must often complete them with our own assumptions

–  Requirements capture must be structured so that it facilitates quick
access to specific requirements

–  Throughout documentation, traceability is key:
»  To verify completeness
»  To motivate functionality (but not commit to design decisions!)

•  So let’s look at how to deal with assumptions and
requirements for a specific example: see Poker case
study.

Page 4

 13 3004 T2a - © J.-Pierre Corriveau, 1997- present

Use Case
Modeling

 14 3004 T2a - © J.-Pierre Corriveau, 1997- present © B. Selic

 15 3004 T2a - © J.-Pierre Corriveau, 1997- present © B. Selic
 16 3004 T2a - © J.-Pierre Corriveau, 1997- present © B. Selic

Page 5

 17 3004 T2a - © J.-Pierre Corriveau, 1997- present

Steps of UC Modeling

•  For event-driven systems, UC modeling consists
of the following steps:

–  Scope the system (by considering different Actor perspectives)
–  Identify events and actors

»  Actors are abstractions generating events
»  Think of internal and external events

–  List use-case titles (and prioritize them)
–  Produce a use-case diagram
–  Document use-cases using a scenario textual description

(STD) technique
»  We want the STDs in the design document.

 18 3004 T2a - © J.-Pierre Corriveau, 1997- present

Identifying External Events

Event
offhook -->

first digit -->

last digit -->

<--ringing

answer-->

System Resp.
dialtone

cancel dialtone

translation result

cancel ringing
and ringtone

Arrival
aperiodic
<100/min
aperiodic
<20 sec after
dialtone

interdigit time
= 4sec

aperiodic

Response
<500msec

Digit tone
<100msec

a.s.a.p

a.s.a.p after
last digit

<100msec

 19 3004 T2a - © J.-Pierre Corriveau, 1997- present

A Use-Case Diagram

Bank Clear Checks

Prepare Statement

Counter
Transaction

Identify

Loan Application

Audit

Tax Audit

Customer

Auditor

Clerk

Loan Officer

Manager

Actor

Use-Case

<<uses>>

<<uses>>

Clear Checks

<<extends>>

 20 3004 T2a - © J.-Pierre Corriveau, 1997- present

An Example Use Case
Use Case: Making a successful POTS connection
•  Actors: calling party, called party
•  Scenario:
•  Caller lifts telephone receiver
•  Caller hears dial tone
•  Caller dials digits
•  Caller receives audible ring tone

Called party’s phone rings
•  Called party lifts receiver
•  Caller and Called party are now connected and can talk
•  Called party hangs up
•  Caller receives dial tone
•  Caller hangs up

Key points: System as Black Box, event/response

Page 6

 21 3004 T2a - © J.-Pierre Corriveau, 1997- present

How to Start?

•  You must start by writing down a list of verifiable
requirements and going from them to UCs.

•  Each use case captures a cluster of scenarios:
–  the scenarios of a UC must be logically clustered together
–  a scenario is formed by a (more or less abstract) sequence of

input/output events processed by the system (as a black box)
–  through the use of words such as ‘OR’, ‘AND’, ‘eventually’,
‘optionally’, ‘repeatedly’, each step of a UC, each scenario, and
ultimately each UC can be viewed as a grammar of events

–  In OO, we use a set of UCs to describe system behavior:
»  unless otherwise documented, UCs are taken to be

independent of and concurrent with each other
»  inter-UC relationships (annotated with stereotypes) are

important to identify: the more the UCs are tied to each other,
the less partial the overall specification is!

»  there is generally no overall grammar to build for the whole
system but we do aim for req. coverage (via traceability)

 22 3004 T2a - © J.-Pierre Corriveau, 1997- present

•  We propose that each use case be documented using an
STD that ideally contains the following information:

»  a unique identifier
»  a brief textual description of the overall objective of the UC
»  the set of external actors that participate in the UC
»  a set of possible triggering events
»  a pre-condition that must be satisfied in order to enable the

execution of the UC
»  a sequence of system responsibilities (or steps) for the main

scenario (JP: if not for ALL scenarios!!!)
»  a set of possible resulting events for the UC
»  a post-condition that must evaluate to true after the execution of

the UC
»  a set of alternative scenarios (optional but important!)
»  a set of nonfunctional requirements that apply to the UC (optional)
»  a comment section that may be used by designers as a free format

text window to specify different issues related to the UC (e.g.,
which scenarios were grouped into this UC)

Organizing Use Cases

 23 3004 T2a - © J.-Pierre Corriveau, 1997- present

Example STD (1)

 24 3004 T2a - © J.-Pierre Corriveau, 1997- present

Example STD (2)

Page 7

 25 3004 T2a - © J.-Pierre Corriveau, 1997- present

UML ’s Stereotypes and Packages

•  A package can be used to regroup a set of use-
cases

–  a package can also be used to regroup other UML entities,
such as classes

–  it constitutes a grouping mechanism for scalability in UML

•  A stereotype is a user-defined label that allows
extensions to the semantics of UML

–  this is a key mechanism to introduce your own semantics into
the modeling process

 26 3004 T2a - © J.-Pierre Corriveau, 1997- present

Stereotypes for Use-Cases

•  A Basic Use-Case:
–  must describe a typical usage of the system from end-to-

end
–  must keep an external, event-driven perspective

•  An Extension
–  captures functionality that is optional or additional to one

or more basic use cases
»  We prefer to list alternatives inside an STD.

–  is related to basic a use-case using an extends arrow
•  A Reference

–  gives a name to a group of steps repeated in several use-
cases

–  is related to basic a use-case using a uses arrow

 27 3004 T2a - © J.-Pierre Corriveau, 1997- present

Examples
and

Exercise

 28 3004 T2a - © J.-Pierre Corriveau, 1997- present

On Gomaa’s Elevator Use Cases

•  Consider figure 18.2 and associated UCs
–  Stop Elevator UC:

»  sensor talks to system (not to elevator)
»  system determines whether elevator is to stop or not
»  system commands to elevator ’s door...

–  Dispatch Elevator UC:
»  awkward wording: « the system moves »…
»  the elevator does not determine its direction

–  Select Destination UC: (elevator request)
»  system is to keep a list of floors to visit for the elevator
»  step 4 is clumsy from a temporal viewpoint

–  Request Elevator UC: (floor request)
»  step 2: commitment to an early-decision approach!!

•  Let’s now look at other examples

Page 8

 29 3004 T2a - © J.-Pierre Corriveau, 1997- present

Exercise

•  Read the requirements for the watch described in the next two
pages.

•  Scope the system:
–  What must you worry about? Is it clearly stated in the reqs?

•  Identify relevant internal and external events.
•  List and possibly prioritize:

–  relevant functional requirements
–  relevant UC titles

•  Produce one Use-Case diagram.
•  Develop the use-case that addresses the setting of time. Try to

use the proposed format.
•  Time-permitting, develop other use-cases.

 30 3004 T2a - © J.-Pierre Corriveau, 1997- present

The Watch

S1!

S2!

S4!

S3!
1:0449!

P!
M!

Su Mo Tu We Th Fr Sa!

 31 3004 T2a - © J.-Pierre Corriveau, 1997- present

A watch must display and maintain current time and date. In future iterations, it is envisioned it will also have a few
bells and whistles such as a light (activated by button S4), a stopwatch, and an alarm.
The watch has 3 other buttons. S3 is the function selector to toggle between the different displays (time, date,
stopwatch, alarm and back to time). A long S3 (pressed at least 2 seconds) is used to go in update mode for the time,
date and alarm displays. In update mode, S1 can move between the items to update in the current display and S2 used
as an increment/toggle button.
The time functions consist in 1) displaying time (in the form of day-of-the-week, am/pm indicator, hours, minutes
and seconds) and 2) setting the time.
The date functions consist in 1) displaying date in the form of day and month and 2) setting the date.
Setting the time is initiated by a long S3 while in time display. S1 is used to select the item(s) to update. The order for
updates is: seconds, minutes, hours, am/pm, day-of-the-week, and back to seconds. The user chooses what to update
and in what order. For am/pm S2 acts as a toggle, for day-of-the-week it increments from ‘Su’ to ‘Mo’ to ‘Tu’ to
‘We’ to ‘Th’ to ‘Fr’ to ‘Sa’ and loops. For all other items, S2 acts as an increment by 1.
Setting the date is initiated by a long S3 while displaying the date. Using S1, the day and then the month can be
updated.
The stop-watch is accessed by S3 from the date display. It is started and stopped by S1. It can keep running even if
the display is changed to some other thing. A long S1 resets the stopwatch to zero.
The alarm display is accessed by S3 after the stopwatch display. It shows the minutes, hour and am/pm for the alarm,
as well as an on/off toggle. The alarm rings for 20 seconds when the watch reaches the alarm time and the alarm is
on.
While in alarm display mode, a long S3 will put the watch in alarm update mode. S1 is then used to select minutes,
hour, am/pm, on/off. S2 is again the increment button.
While in any update mode, current item to update will flash. Also in update mode, pressing S3 will immediately bring
the display back in normal mode.

The Watch Requirements

 32 3004 T2a - © J.-Pierre Corriveau, 1997- present

Some Conclusions

Page 9

 33 3004 T2a - © J.-Pierre Corriveau, 1997- present

Why OO people like Use-Cases

Use-cases:
•  constitute a simple, intuitive form of scenario modeling

–  temporal logic for event specification is much more complicated

•  are not object-oriented
–  only solutions to the requirements are OO!

•  make clear what external functionality is expected
–  the system is treated as a black-box
–  the interface and the DB functionality are typically separated

•  may be helpful infinding objects
–  how to do this is discussed later in COMP 3004
–  only domain (i.e., problem as opposed to solution) objects should be

mentioned in use-cases

•  are traceable to detailed interaction diagrams used later in
the design process

•  may be used as a basis for black-box testing of the system

 34 3004 T2a - © J.-Pierre Corriveau, 1997- present

Working with Use-Cases

•  Use-cases proliferate quickly:
–  It is naive to think you can simply write down all of the use-

cases and exhaustively describe the behavior of the system
–  We repeat, it is easy to confuse scenarios, their steps, and use-

cases
•  Several authors suggest finding “key” scenarios

and use-cases
–  but no one gives good guidelines for selecting such “key” use-

cases... See Wirfs-Brock tutorial
•  Don’t forget about scenario interactions (next

slide)

 35 3004 T2a - © J.-Pierre Corriveau, 1997- present

About Scenario Relationships

•  It is important to group together related scenarios into a single
scenario cluster:

–  A use-case should be thought of as a cluster of related scenarios
–  Exception handling scenarios can be viewed as extensions or

alternatives of basic use-cases
•  Individual scenarios are typically straightforward. It is

essential to capture the relationships between scenarios! The
same holds for use-cases!!

–  Such relationships typically define at least a temporal, if not a
causal order between scenarios, and/or between use-cases.

–  A use-case diagram may be used to document inter-UC
relationships. But we need lots of stereotypes!

 36 3004 T2a - © J.-Pierre Corriveau, 1997- present

The Bottom Line

•  Don’t do procedural decomposition through the
use-cases

–  don’t describe algorithms or specific paths of execution inside
the system

–  Each scenario of a UC is an end-to-end sequence of events
corresponding to a typical use of the system, which is viewed
as a black box.

•  Review use-cases with respect to completeness
and consistency

–  trace individual scenarios to requirements
–  inter-scenario and inter-UC relationships are crucial in

verifying consistency

