From Use Cases
to
Objects

© J.-Pierre Corriveau, 1997- present 1

2.1 Overview of COMET

(This is NOT a scenario-driven approach!)

© J.-Pierre Corriveau, 1997- present 2

Characteristics of real-time systems include:
« timely responses (performance)
* concurrency:
— each task has one thread of execution
— many tasks (processes) execute in parallel
— tasks interact one with the other: synchronization is an issue!

« distribution
+ dynamicity:
— static versus dynamic objects
» most authors downplay the resulting issues!!

* COMET stands for Concurrent Object Model and
architectural design mEThod

© J.-Pierre Corriveau, 1997- present 3

HDL * Problem Description

« Use Case Model
« Static Model of the Problem Domain
* Object Structuring
+ Dynamic Model
— Enhanced UML ’s sequence and/or collaboration diagrams
— Statechart Model
« Consolidation (start of OOD according to Gomaa)
+ Subsystem structuring
« Structuring System into Tasks
— Consideration of Synchronization and Distributed Control
« Design of Information Hiding Classes
« Detailed Design
« Target System Configuration
+ Performance Analysis

DDL

© J.-Pierre Corriveau, 1997- present 4

Page 1

* Requirements Model:
— use cases

+ OOA models:
— static model of problem domain
— object structuring:
» classes and their relationships
— statecharts only for state dependent objects
» as opposed for all objects!
— Embellished UML interaction diagram(s) for each use case

© J.-Pierre Corriveau, 1997- present 5

Figure 19.1: use-case diagram

Figure 19.2: conceptual static model

Figure 19.3: context class diagram

Figure 19.4: entity classes

Figures 19.5, 19.6 and 19.7: class attributes (!!!)

* Bottom line: This is not a scenario-driven
approach!!
— While the use cases are used, OOD is first and foremost driven

by the ‘magically 1 obj .G ’s elevator case
study is famous for this (going from 18.4 to 18.5...)

© J.-Pierre Corriveau, 1997- present 6

2.2 Requirements Engineering
With Use Case Maps
(ITU Z.151: URN-FR)

© J.-Pierre Corriveau, 1997- present 7

Use Case 1

Problem
Description

\ Regs et .—%
UCMs ; e Ly
MSCs or | € | | €
UML 2.0 interaction = . .
diagrams

Inter-scenario
Relationships: ..
hMSCs or

High level
Interactions in .|
UML 2.0

Use Case 2 Use Case 3

State-based models
and/or code

© J.-Pierre Corriveau, 1997- present 8

Page 2

“Use-case maps trace the global dynamic
flow of causality through the components
of the system, that result from each use
case.” (Buhr and Casselman, 1996)

1
7@’ - ‘\
|

stem

© J.-Pierre Corriveau, 1997- present 9

Card invalid |\ Bank Machine
O .——- ard reader)
central controller

—,S ~
—
ea i x
X
Incorrect PIN /——'D
Transaction r_

Rejected

printer

f

© J.-Pierre Corriveau, 1997- present 10

responsibilities
P
rl y 3
r2
startpoint .1 segment end bar

Formally a start point is defined by a pre-condition (if any)
and a set of possible triggering events.

© J.-Pierre Corriveau, 1997- present "

ucml

tel: triggering event for path P1
(precondition(tel): System is in the state S1)

rel: resulting event for path P1
(postcondition(re1): System is in the state S2)|

t;_.. Cl3 c3
N T
Q)

12

© J.-Pierre Corriveau, 1997- present 12

Page 3

_ User
=

There can be several concurrent terminating paths in a UCM.

[not requested]

below
above

in ‘add to list
elgvator,

no requests

remove

at requested from list
floor

‘The elevator control system case study is adapted from
Hassan Gomaa's Designing Concurrent, Distributed,
And Real-Time Applications with UML (p459-462),

Each use case is to have a semantically equivalent UCM. m:‘;"é“m?mﬂnﬂ?sﬂ' M
Select Destination
. - y 13 i R N 14
© J.-Pierre Corriveau, 1997- present © J.-Pierre Corriveau, 1997- present ©D. Amyot

- User -
= Status&Plan
jown
u h [not requested] uested]
elect Arival Sensor
atfloor Eldy. Con
alree?g appaoaching
i loor
alread: below Elev./Mgr movin
add to on lis . above i
g decide or [onlist]
dirgction d;cig? on Elevator
4 i irection
[o/list] clevator else] ‘door
close
[else; " tatus&Plan .
tation add o o
at requested mem N\ It >
floor| at re#ouoersted door otor
‘door closing- P motor
closing-delay delay Gown
! remove
remove from list from Jist —1
Service Personnel Service Personnel
switch o motor
stop
Arch. Alternative (I) door open /] Arch. Alternative (IT) door open)
g 2 15 y . 16
© J.-Pierre Corriveau, 1997- present ©D. Amyot © J.-Pierre Corriveau, 1997- present ©D. Amyot

Page 4

- User Elevator Control System ‘-
p——

down
already on list down
select UCM Example: Commuting
at floor elevator
OnList
transport elevator
take
commute
’ elevator
add to list P I
Service Personnel Arrival Sensor Dynamic Stub Static Stub
(selection policy)
© J.-Pierre Corriveau, 1997- present ©D. Amyot 17 © J.-Pierre Corriveau, 1997- present ©D. Amyot 18

UCM Example: Commute - Car (Plug-in)

transport

drive car

LV
N

J.-Pierre Corri 1997- t *
© erre Corriveau, presen © D. Amyot

UCM Example: Commute - Bus (Plug-in)

read

transport £ N\

TSR

7 l A}
AND Fork OR Fork OR Join AND Join ’

J.-Pierre Corri 1997- t ?
© erre Corriveau, presen © D. Amyot

Page 5

+ UCMs are typically useful for obtaining and/or
verifying the responsibilities of objects:

— expressing use-cases as paths of responsibilities helps
tremendously in enforcing traceability between requirements
and the more detailed sequence diagrams:

» UC -> UCMs -> sequence diagrams

— knowing which res!)onsmllltles of an object participate in which
scenarios helps with concurrency analysis, scheduling, and
regression testing.

— a UCM documents the relationships between different path
its. So inter: io relationships should be captured
in the UCM associated with each use case.

— the information of the use case diagram must not be forgotten!
It gives the overall map for inter-UC processing.
* A public domain Eclipse plugin exists for UCM
drawing:
— See www. usecasemaps.org

© J.-Pierre Corriveau, 1997- present 2

We want to try to avoid the magic found in Gomaa!

* Poker:

— Notice the discussion of design decisions in these documents
but also the absence of UCMs!

+ Alarm System:

— Older document reorganized to have uUCMs and bUCMs
before class diagram (and CRCs) and then and only then MSCs

* 2 Groceries:
— More recent examples

© J.-Pierre Corriveau, 1997- present 22

2.3 Packaging Responsibilities:
The Watch Example
Revisited

© J.-Pierre Corriveau, 1997- present 23

* From the requirements and use-cases, identify all the
responsibilities of the system:
— identify all inputs and outputs and infer all interface responsibilities
identify all the information that must be kept by the system

— for each step of each use-case ask what the system needs to do to
carry out that step (update data, interact with environment, etc.)

— obtain a sequence of responsibilities for each scenario of each use-
case (assuming a UC is written as an p! g gr

» UCMs are designed to capture this information!

— verify the consistency and completeness of the responsibilities
with respect to requirements and use cases

© J.-Pierre Corriveau, 1997- present 24

Page 6

+ From requirements and/or use-cases:
— store:
» seconds, minutes, hours, am/pm, day-of-week, ticks
» day, month, year?
» current display, current mode (setting/displaying)
— update:
» seconds, minutes, hours, am/pm, day-of-week, ticks
» day, month
» current display, current mode (setting/displaying)
+ do we really need both variables???
— interaction:
» detect pressing/releasing S1, S2, S3
« detect long S3 (no need for long S1 yet)
» display seconds, minutes, hours, am/pm, day-of-week, day, month
» flash any field of the watch

« Next step: getting unbound UCMs!

25

© J.-Pierre Corriveau, 1997- present

Precondition: Watch displays time

User presses S3 Watch flashes
for 2+ seconds secon

User sets second

User sets minute3

User presses S1

User sets houn
using S2

‘Watch flashes
hours

Watch displays User presses S1

time

User presses S1

User sets dOWS>

User presses 3
for 2+ seconds

26

© J.-Pierre Corriveau, 1997- present

Package system responsibilities into classes:

— obey the heuristics of the next slide in order to package
responsibilities into instances, of which you will infer the
corresponding classes:

» don’t prematurely turn responsibilities into operations!
— for each class, produce a CRC card (or something equivalent)

» Introduced shortly
— for each UC (and UCM), then develop a corresponding (set of)

interaction diagram(s) and use these diagrams to scrutinize your
choice of classes:

» All instances of a same class must behave consistently across

all the diagrams in which they appear! This is crucial,
pecially for statechart desig|
» Interaction diagrams in UML 2 will be our next topic.

© J.-Pierre Corriveau, 1997- present 27

If an overall architecture has been chosen, identify its components
Review domain objects and try to assign responsibilities to them:
some may turn out to merely be containers
— <<Interface>> objects are to be kept separate from the rest of the system
— <<Entity>> objects keep persistent data
— <<C bjects process other object:
» Two flavors: dii and state-dependent control
In order to minimize the complexity of interactions and maximize
decoupling, consider the use of <<coordinator>> objects.
— But avoid ‘god’ objects, who set the state of other objects
< Try to avoid duplication of responsibilities over several classes
— But turning an operation into an object is always controversial...
— A display object regroups similar operations!
+ Consideration of inheritance and of specific implementation
details is almost unavoidably premature and detrimental
— Unless you are selecting design patterns
« Group together the responsibilities that store/update the same
data. Then identify the procedures coupled to such data.

© J.-Pierre Corriveau, 1997- present 28

Page 7

[Pres!

[Pres:

ss,Rel]

Watch

s,Rel

/ Comment: The problem here

is that the ButtonController
does everything.
Corresponding MSCs would

be simplistic...
There is no reusable object
ButtonController and extensions and
are
ticks problematic.

[Présg(),Relgase()]

[on,off]

Light Crystal

© J.-Pierre Corriveau, 1997- present

29

» Too-few objects typically entails ‘big’ objects with lots of responsibilities.
This results in:

— simplified patterns of interactions (as there are fewer objects) and, typically,
better performance than with excessive messaging.

— fewer referential attributes (again, because there are fewer objects)

— poor cohesion within an object, which entails that:

» class synthesis is complicated as an object participates in most
requi and has a plex state (i.e., lots of data members)!

» reusability is greatly reduced as it is not sufficiently fine-grained.

» maintenance is complicated as within such an object, one change can have
dramatic repercussions.

» overrides in subclasses may be more frequent.
— trickier scheduling and d

» multi-d p bjects are pr ic and greatly increase the risk of
redundant procedures/data within a same object.

* Question: Would the watch as a display and a control system be
acceptable?

© J.-Pierre Corriveau, 1997- present

m [Press,Rel]

[Press,Rel) E

Update()

Display 1

[toggle,Flash(]]

ButtonController

[Présdl) Relgase() ticks DayManager
Increme

[on,off] MonthManage!

Inar()

Ingr()

nar()

nar()

N.B. We could collapse Display and ButtonController into the different managers.

© J.-Pierre Corriveau, 1997- present

« Small reusable obf'ects are typicaIIY easier to modify and test per se
than objects with lots of (possibly large) procedures.

+ Too-many objects typically entails very specialized interfaces and
complex interactions. This may lead to:
— lots of coupling between these objects
— performance problems:

» procedure calls and access within a class is generally cheaper than
across objects.

» more time is required for creation, initialization and destruction of
all these objects.

— software evolution problems:

» the more objects, the likelier a change in the requirements will
affect several!

© J.-Pierre Corriveau, 1997- present 32

Page 8

Watch

[vser K

[Progs.Re ButtonController

[Prep Increment() DateManager

TickGenerator

N.B. This is meant to be an instance, not a class, diagram!

© J.-Pierre Corriveau, 1997- present 33

Class: Telephone
Responsibilities Collaborators

+ Acts as subscriber interface or agent customers:

« Receives subscriber actions and Network
translates them into signals for the suppliers:
network Dialer,

« Receives signal from the network and Hand-Set,
translates them to user audio signals Hook-Switch

+ Acts as a transducer to send and
receive voice and data

© J.-Pierre Corriveau, 1997- present 34

« Buttons S1 through S4:
- ing press() and r)
« ButtonController

to ButtonController

from
— Measuring delay between press and release of S3
— Storing/updating the current ‘mode’ and current display of the watch
- ding fl and toggle ges to Display
i) to Time and Date managers

« Display
— Receives flash(anltem) from ButtonController and flashes accordingly
— Receives Toggle messages from ButtonController and changes display

— Receives display(anitem) from Time and Date managers and updates
accordingly

« TickGenerator
— Sends a tick to ButtonController every 1/50th of a second

© J.-Pierre Corriveau, 1997- present 35

« TimeManager
— Storing count for seconds, minutes, hours, d-o-w, and am/pm

B ing these data bers upon tion of an update message
from the Button Controller

— Requesting Display to update accordingly
« DateManager
— Storing count for days and months, year

B ing these data bers upon tion of an update message
from the Button Controller or the Time manager

— Requesting Display to update accordingly

© J.-Pierre Corriveau, 1997- present 36

Page 9

Modeling issues:
« Consistency of message names

— update or i , P Irel or pi Irel ?

model (see in next slide

. Relgvance of sending/receiving responsibilities in CRC
cards

« Consistency between UML models and CRC cards

Design Decisions:

« Separation of the two managers
» Existence of ButtonController

« Existence of Display

» Consistency of messaging strategy
— did we decouple as much as we could?
— do we end up having a coordinator that does not coordinate....

« Relevance of operation s)arameters and of attributes in UML

© J.-Pierre Corriveau, 1997- present

Dlspley
“dispiayFidd()| 1 TimaManager
Mopgh
T aeey S
T &hous
toggle/fiash miom
press/releage | BUtoN increment. dey-ofweek
A prosy/roloase | ButtonControler dal
% e b [Feuranbode: Sting 1~ | tpdats)
User {press [kl ScurentDispley : String ‘updateDay
{rom Uss Gaeo View) ;;;Lu
{serialzation of simukanacus Inputs} m%meﬂ DateMenager
T Sday
sendTicke Smenth
Bl
- presg hag 1 argumant, aButton of typa String TlmM'Lw RIpRR)

roleese hes 1 ergument, aButton of type String
- tick has no argument
- recordTime has no argument and is called by
press and relaase whan thalr ergument Is "S3".
Its privete and aims at detecting a long S3.

The updte procedurs hes ana

s parameter to identify the field
More detgils in O0D... ing i
- we aiso naad @ procedure for counting fick... S s
Notice the type of the atfributes
37 © J.-Pierre Corriveau, 1997- present 38

Disples
|
Issues: “displ ﬁd)
1) Should we have a path to update the minutes,one ‘oggh
for the hours, etc., with lots of triggering events? fieshi)
2) We should have responsibilities along the paths! toggie/fiash
proso/raleage | BUN |
ButtnControler
s press) \ & curentiviods : String
Srolanse)) * S curentDispiey : String|
User {press 1 -
{from Use Caes View) ‘l‘l(l
i
{serialzation of simuksnacus Inputs}
- presg has 1 argumant, aButton of typa String

- roleaso hes 1 ergumsnt, aButton of type String

- tick has no argument

- recordTime has no argument and is called by
press and relaase whan thalr ergument Is "S3".
It's privete and aims at detecting a long S3.
More details in O0D...

- we also naad a procedure for cournting ficks ..

Notice the type of the atfributes

The update procedurs hes ane
parameter to identify the field
being incrementad

© J.-Pierre Corriveau, 1997- present

Page 10

