
Page 1

 1 © J.-Pierre Corriveau, 1997- present

From Use Cases
to

Objects

 2 © J.-Pierre Corriveau, 1997- present

2.1 Overview of COMET

(This is NOT a scenario-driven approach!)

 3 © J.-Pierre Corriveau, 1997- present

COMET and Real-Time Systems

Characteristics of real-time systems include:
•  timely responses (performance)
•  concurrency:

–  each task has one thread of execution
–  many tasks (processes) execute in parallel
–  tasks interact one with the other: synchronization is an issue!

•  distribution
•  dynamicity:

–  static versus dynamic objects
»  most authors downplay the resulting issues!!

•  COMET stands for Concurrent Object Model and
architectural design mEThod

 4 © J.-Pierre Corriveau, 1997- present

Overview of COMET

•  Problem Description
•  Use Case Model
•  Static Model of the Problem Domain
•  Object Structuring
•  Dynamic Model

–  Enhanced UML ’s sequence and/or collaboration diagrams
–  Statechart Model

•  Consolidation (start of OOD according to Gomaa)
•  Subsystem structuring
•  Structuring System into Tasks

–  Consideration of Synchronization and Distributed Control
•  Design of Information Hiding Classes
•  Detailed Design
•  Target System Configuration
•  Performance Analysis

 HDL

 DDL

Page 2

 5 © J.-Pierre Corriveau, 1997- present

OOA in COMET

•  Requirements Model:
–  use cases

•  OOA models:
–  static model of problem domain
–  object structuring:

»  classes and their relationships
–  statecharts only for state dependent objects

»  as opposed for all objects!
–  Embellished UML interaction diagram(s) for each use case

 6 © J.-Pierre Corriveau, 1997- present

First Steps for the ATM

•  Figure 19.1: use-case diagram
•  Figure 19.2: conceptual static model
•  Figure 19.3: context class diagram
•  Figure 19.4: entity classes
•  Figures 19.5, 19.6 and 19.7: class attributes (!!!)

•  Bottom line: This is not a scenario-driven
approach!!

–  While the use cases are used, OOD is first and foremost driven
by the ‘magically’ chosen objects… Gomaa’s elevator case
study is famous for this (going from 18.4 to 18.5…)

 7 © J.-Pierre Corriveau, 1997- present

2.2 Requirements Engineering
With Use Case Maps
(ITU Z.151: URN-FR)

 8 © J.-Pierre Corriveau, 1997- present

A Scenario-Driven Modeling Approach

Problem
Description

Use Case 1 Use Case 2 Use Case 3

MSCs or
UML 2.0 interaction
diagrams

UCMs

State-based models
and/or code

Inter-scenario
Relationships:
hMSCs or
High level
Interactions in
UML 2.0

Reqs

Page 3

 9 © J.-Pierre Corriveau, 1997- present

Use-Case Maps

“Use-case maps trace the global dynamic
flow of causality through the components
of the system, that result from each use
case.” !(Buhr and Casselman, 1996)!

User"

System"

 10 © J.-Pierre Corriveau, 1997- present

Bank Machine UCM

card reader

user interface

printer

central controller

CBS

Bank Machine

x
x

x x

x

x

x

Card invalid

Incorrect PIN

Transaction
Rejected

 11 © J.-Pierre Corriveau, 1997- present

A UCM Path Segment

start point path segment end bar

r1 r3

r2

responsibilities

Formally a start point is defined by a pre-condition (if any)
and a set of possible triggering events.

 12 © J.-Pierre Corriveau, 1997- present

A Bound UCM Example

C1

C2

C3

r1

r2

r3

r4

te1

re1

ucm1

te1: triggering event for path P1
 (precondition(te1): System is in the state S1)

re1: resulting event for path P1
 (postcondition(re1): System is in the state S2)

Page 4

 13 © J.-Pierre Corriveau, 1997- present

Superimposition of Scenarios

A

B

C D

E

F

G

H

I

J

There can be several concurrent terminating paths in a UCM.

Each use case is to have a semantically equivalent UCM.

 14 © J.-Pierre Corriveau, 1997- present © D. Amyot

Example

 15 © J.-Pierre Corriveau, 1997- present © D. Amyot

Choice of Architecture (1)

 16 © J.-Pierre Corriveau, 1997- present © D. Amyot

Choice of Architecture (2)

Page 5

 17 © J.-Pierre Corriveau, 1997- present © D. Amyot

Path Sensitization

 18 © J.-Pierre Corriveau, 1997- present

Stubs

© D. Amyot

 19 © J.-Pierre Corriveau, 1997- present

Plug-Ins (1)

© D. Amyot
 20 © J.-Pierre Corriveau, 1997- present

Plug-Ins (2)

© D. Amyot

Page 6

 21 © J.-Pierre Corriveau, 1997- present

The Bottom Line

•  UCMs are typically useful for obtaining and/or
verifying the responsibilities of objects:

–  expressing use-cases as paths of responsibilities helps
tremendously in enforcing traceability between requirements
and the more detailed sequence diagrams:

»  UC -> UCMs -> sequence diagrams
–  knowing which responsibilities of an object participate in which

scenarios helps with concurrency analysis, scheduling, and
regression testing.

–  a UCM documents the relationships between different path
segments. So inter-scenario relationships should be captured
in the UCM associated with each use case.

–  the information of the use case diagram must not be forgotten!
It gives the overall map for inter-UC processing.

•  A public domain Eclipse plugin exists for UCM
drawing:

–  See www.usecasemaps.org

 22 © J.-Pierre Corriveau, 1997- present

About the Examples

We want to try to avoid the magic found in Gomaa!
•  Poker:

–  Notice the discussion of design decisions in these documents
but also the absence of UCMs!

•  Alarm System:
–  Older document reorganized to have uUCMs and bUCMs

before class diagram (and CRCs) and then and only then MSCs

•  2 Groceries:
–  More recent examples

 23 © J.-Pierre Corriveau, 1997- present

2.3 Packaging Responsibilities:
The Watch Example

Revisited

 24 © J.-Pierre Corriveau, 1997- present

From Use Cases to UCMs

•  From the requirements and use-cases, identify all the
responsibilities of the system:

–  identify all inputs and outputs and infer all interface responsibilities
–  identify all the information that must be kept by the system
–  for each step of each use-case ask what the system needs to do to

carry out that step (update data, interact with environment, etc.)
–  obtain a sequence of responsibilities for each scenario of each use-

case (assuming a UC is written as an event-processing grammar…)
»  UCMs are designed to capture this information!

–  verify the consistency and completeness of the responsibilities
with respect to requirements and use cases

Page 7

 25 © J.-Pierre Corriveau, 1997- present

System Responsibilities

•  From requirements and/or use-cases:
–  store:

»  seconds, minutes, hours, am/pm, day-of-week, ticks
»  day, month, year?
»  current display, current mode (setting/displaying)

–  update:
»  seconds, minutes, hours, am/pm, day-of-week, ticks
»  day, month
»  current display, current mode (setting/displaying)

•  do we really need both variables???
–  interaction:

»  detect pressing/releasing S1, S2, S3
•  detect long S3 (no need for long S1 yet)

»  display seconds, minutes, hours, am/pm, day-of-week, day, month
»  flash any field of the watch

•  Next step: getting unbound UCMs!

 26 © J.-Pierre Corriveau, 1997- present

U-UCM ‘User Sets Time’

User presses S3
for 2+ seconds

User sets seconds
using S2 Watch flashes

 seconds

User presses S1

Watch flashes
 minutes

User sets minutes
using S2

User presses S1

Watch flashes
 hours

User sets hours
using S2

User presses S1

Watch flashes
 day of week

User sets dOW
using S2

User presses S3
for 2+ seconds

Watch displays
time

User presses S1

x
x

x

x

x

x

x
x

x

Precondition: Watch displays time

 27 © J.-Pierre Corriveau, 1997- present

From UCMs to Objects

Package system responsibilities into classes:
–  obey the heuristics of the next slide in order to package

responsibilities into instances, of which you will infer the
corresponding classes:

»  don’t prematurely turn responsibilities into operations!
–  for each class, produce a CRC card (or something equivalent)

»  Introduced shortly
–  for each UC (and UCM), then develop a corresponding (set of)

interaction diagram(s) and use these diagrams to scrutinize your
choice of classes:

»  All instances of a same class must behave consistently across
all the diagrams in which they appear! This is crucial,
especially for statechart design.

»  Interaction diagrams in UML 2 will be our next topic.

 28 © J.-Pierre Corriveau, 1997- present

Packaging Responsibilities

•  If an overall architecture has been chosen, identify its components
•  Review domain objects and try to assign responsibilities to them:

some may turn out to merely be containers
–  <<Interface>> objects are to be kept separate from the rest of the system
–  <<Entity>> objects keep persistent data
–  <<Control>> objects process messages between other objects

»  Two flavors: coordinators and state-dependent control
•  In order to minimize the complexity of interactions and maximize

decoupling, consider the use of <<coordinator>> objects.
–  But avoid ‘god’ objects, who set the state of other objects

•  Try to avoid duplication of responsibilities over several classes
–  But turning an operation into an object is always controversial…
–  A display object regroups similar operations!

•  Consideration of inheritance and of specific implementation
details is almost unavoidably premature and detrimental

–  Unless you are selecting design patterns

•  Group together the responsibilities that store/update the same
data. Then identify the procedures coupled to such data.

Page 8

 29 © J.-Pierre Corriveau, 1997- present

User

Watch

S1

S2

S3

ButtonController

Crystal

Battery

Too Few Objects

S4

Light

ticks

[on,off]

[Press,Rel]

[Press,Rel]

[Press,Rel]

[Press,Rel]

[Press(),Release()]

Comment: The problem here
is that the ButtonController
does everything.
Corresponding MSCs would
be simplistic…
There is no reusable object
and extensions and
modifications are potentially
problematic.

 30 © J.-Pierre Corriveau, 1997- present

Too Few Objects

•  Too-few objects typically entails ‘big’ objects with lots of responsibilities.
This results in:

–  simplified patterns of interactions (as there are fewer objects) and, typically,
better performance than with excessive messaging.

–  fewer referential attributes (again, because there are fewer objects)
–  poor cohesion within an object, which entails that:

»  class synthesis is complicated as an object participates in most
requirements and has a complex state (i.e., lots of data members)!

»  reusability is greatly reduced as it is not sufficiently fine-grained.
»  maintenance is complicated as within such an object, one change can have

dramatic repercussions.
»  overrides in subclasses may be more frequent.

–  trickier scheduling and development :
»  multi-developers objects are problematic and greatly increase the risk of

redundant procedures/data within a same object.

•  Question: Would the watch as a display and a control system be
acceptable?

 31 © J.-Pierre Corriveau, 1997- present

User

Watch Display

S1

S2

S3

ButtonController

Crystal

Battery

DayAMManager

DayManager

Too Many Objects

S4

Light

[toggle,Flash()]

ticks

[on,off]

Increment()

Increment()

[Press,Rel]

[Press,Rel]

[Press,Rel]

[Press,Rel]

[Press(),Release()]

Update()

Incr()

SecsManager

MinsManager

HoursManager

MonthManager

YearManager

Incr()

Incr()

Incr()

Incr()

Incr()

N.B. We could collapse Display and ButtonController into the different managers.

 32 © J.-Pierre Corriveau, 1997- present

Too Many Objects

•  Small reusable objects are typically easier to modify and test per se
than objects with lots of (possibly large) procedures.

•  Too-many objects typically entails very specialized interfaces and
complex interactions. This may lead to:

–  lots of coupling between these objects
–  performance problems:

»  procedure calls and access within a class is generally cheaper than
across objects.

»  more time is required for creation, initialization and destruction of
all these objects.

–  software evolution problems:
»  the more objects, the likelier a change in the requirements will

affect several!

Page 9

 33 © J.-Pierre Corriveau, 1997- present

N.B. This is meant to be an instance, not a class, diagram!

User

Watch

Display

S1

S2

S3

ButtonController

TickGenerator

TimeManager

DateManager

A Better Object Model?

[toggle,Flash()]

ticks

Increment()

Increment()

[Press,Rel]

[Press,Rel]

[Press,Rel]
[Press(),Release()]

Update()

Incr()

 34 © J.-Pierre Corriveau, 1997- present

A CRC Card

Class: Telephone

Responsibilities
•  Acts as subscriber interface or agent
•  Receives subscriber actions and

translates them into signals for the
network

•  Receives signal from the network and
translates them to user audio signals

•  Acts as a transducer to send and
receive voice and data

Collaborators
customers:
Network
suppliers:
Dialer,
Hand-Set,
Hook-Switch

 35 © J.-Pierre Corriveau, 1997- present

Initial CRCs (1)

•  Buttons S1 through S4:
–  Sending press(aButton) and release(aButton) messages to ButtonController

•  ButtonController
–  Receiving messages from buttons
–  Measuring delay between press and release of S3
–  Storing/updating the current ‘mode’ and current display of the watch
–  Sending flash(anItem) and toggle messages to Display
–  Sending update(anItem) message to Time and Date managers

•  Display
–  Receives flash(anItem) from ButtonController and flashes accordingly
–  Receives Toggle messages from ButtonController and changes display
–  Receives display(anItem) from Time and Date managers and updates

accordingly
•  TickGenerator

–  Sends a tick to ButtonController every 1/50th of a second

 36 © J.-Pierre Corriveau, 1997- present

Initial CRCs (2)

•  TimeManager
–  Storing count for seconds, minutes, hours, d-o-w, and am/pm
–  Updating these data members upon reception of an update message

from the Button Controller
–  Requesting Display to update accordingly

•  DateManager
–  Storing count for days and months, year
–  Updating these data members upon reception of an update message

from the Button Controller or the Time manager
–  Requesting Display to update accordingly

Page 10

 37 © J.-Pierre Corriveau, 1997- present

Modeling Issues & Design Decisions

Modeling issues:
•  Consistency of message names

–  update or increment, press/rel or press/release?
•  Relevance of operation parameters and of attributes in UML

model (see in next slide)
•  Relevance of sending/receiving responsibilities in CRC

cards
•  Consistency between UML models and CRC cards

Design Decisions:
•  Separation of the two managers
•  Existence of ButtonController
•  Existence of Display
•  Consistency of messaging strategy

–  did we decouple as much as we could?
–  do we end up having a coordinator that does not coordinate….

 38 © J.-Pierre Corriveau, 1997- present

Corresponding UML Model

 39 © J.-Pierre Corriveau, 1997- present

B-UCM 1: Watch keeps time

Issues:
1) Should we have a path to update the minutes,one
for the hours, etc., with lots of triggering events?
2) We should have responsibilities along the paths!

