

COMP 3004

Group x – Assignment 4 – Iteration 2

Introduction
The following document defines the design of a store simulation system, from the point of view of the
simulation itself. The simulation models customers, employees and a manager acting and interacting
with each other and with the fixed store and service points. The document considers three primary
scenarios, one from the perspective of each actor: shopping, managing, and working a shift.
For this second and final iteration, our system supports the following functionality:

• managing and logging of events
• opening and closing of the store
• generating customers, both automatically at intervals and manually
• queueing of customers
• multiple queue selection strategies for customers
• processing of customers
• opening and closing of service points
• multiple management strategies for the store manager.
• reuse of employees when a service point closes and reopens

Design Overview

Introduction
When designing our simulation, we had several important questions to answer. As an event-driven
simulation with multiple concurrent actors, one of the largest questions was how we handled time.
Additionally, we had several other subsystems to worry about: logging, the user interface, and of
course the actors and various other objects in the simulation itself. Our design attempts to separate all
of these various subsystems, so that that any of the different pieces can be replaced with minimal effect
on the rest of the system. The simulation core could, in principle, be used to run an entirely different
type of simulation by changing only the actor and prop classes.

Time
The largest question we had to tackle in this design was our handling of time. Since the simulation
contained multiple concurrent actors and events, some method would be needed to arbitrarily serialize
things for logging purposes. We considered two main methods of implementing time.

The first method we considered was using multiple threads, one thread per actor, with the appropriate
synchronization mechanisms (mutexes, etc). The operating system's thread scheduler would provide
effective serialization, as only one thread would be able to hold the core mutex at a given time. While
this design most accurately reflected the reality we were trying to simulate, and would also have been
most efficient on multi-core CPUs, it was discarded for its complexity and potential for error.
The second method we considered, and the one we eventually chose, was to use a single priority queue
for all events, prioritized based on time. The implementation of the priority queue would arbitrarily
serialize simultaneous events by deciding which event with the same time of occurrence (and thus the
same priority) was at the front of the queue. The simulation would simply take one event off the queue,
process it, and repeat.

Actors and Props
The other large decision we had to make while designing our system was exactly what was considered
an actor. The subjects of our three use cases obviously counted: customer, manager and employee, but
what about the store itself? What about the service points? What about the queues? These elements
were clearly deserving of objects of some sort, but those objects were not necessarily actors per se.
After all, the store didn't actually act, it simply provided resources and state for other actors to use.

The design we eventually chose was to have a second type of objects, known as props. Props, unlike
actors, are not capable of processing events in the simulation, however they can have other properties
and methods available to be used by actors when needed. Additionally, while an event in the simulation
must specify the actor to whom the event occurs, it may also specify a prop for the actor to retrieve and
use during the processing of the event. In this way it is possible for an event 'enterServicePoint' to have
the customer as the associated actor, and the service point itself as the associated prop.

Patterns
While designing our system, we decided to use several design patterns. Firstly, we use the Facade
Pattern to abstract away the logging subsystem. This allows us to switch between multiple different
types of logging with no changes to the rest of the program.
We also use the Singleton Pattern in several locations. Our Manager and Store objects, and the
Simulator itself are all singletons, as having more than one of any of them at once makes no sense in
our program. The Strategy Pattern also shows up a few times. The customer's service point selection
algorithm, the queueing algorithm, and the Manager's decision algorithm are all abstracted away as
strategies, so that slotting new algorithms into these locations is easy.

The final pattern we use is the Observer Pattern. Customers can be observers of the store if they are
waiting for it to open before they start shopping.

Requirement Categories
Abbrev. Name
LOG Event Logging
SIM Simulator Core Behaviour
PARAM User-Specifiable Simulation Paramters

Functional Requirements
ID Description Motivation Iteration

FR-LOG-01 The system must log all relevant
events of the simulation. Iter 1 1

FR-LOG-02
The log of each event must contain
the time and nature of the event, as
well as any relevant context.

Iter 1 1

FR-SIM-03 The simulation must permit the
opening and closing of the store. Iter 1 1

FR-SIM-04
The simulation must support
automatic random generation of
customers entering the store.

Iter 1 1

FR-PARAM-
05

The simulation must allow the user to
manually generate customers entering
the store with a specified number of
items at a specified point in time.

Iter 1
A Final Word about the
Requirements

1

FR-SIM-06

Customers must spend an amount of
time 'shopping' proportional to the
number of items they wish to
purchase.

G-C-01 1

FR-SIM-07
After a customer is finished
'shopping', they must be processed at
a service point and leave the store.

G-C-01 1

FR-PARAM-
08

The simulation must allow the user to
control the minimum number of open
service points.

C-04 2

FR-PARAM-
09

The simulation must allow the user to
control the maximum number of open
service points.

C-01 2

FR-SIM-10
Before being processed, a customer
must join the collection of customers
looking for a service point.

G-C-01 1

FR-SIM-11

Once a customer looking for a service
point has been chosen to proceed (by,
for example, reaching the front of the
queue), they must select a service
point to be processed at.

G-C-02
A Final Word about the
Requirements

1

ID Description Motivation Iteration

FR-SIM-12

Once a customer has selected a
service point, they must join the
collection of customers waiting to be
processed by that service point.

G-C-03 1

FR-SIM-13

Once a customer waiting at a service
point has been chosen to proceed (by,
for example, reaching the front of the
queue), they must enter the service
point to be processed.

G-C-06 1

FR-SIM-14

Processing a customer at a service
point must take time proportional to
the number of items the customer has
chosen to purchase.

G-C-05 1

FR-SIM-15

Once a customer's purchases have
been processed, they must take a
constant amount of time to make
payment arrangements.

G-C-05 1

FR-SIM-16
Once a customer has made payment
arrangements, they must leave the
service point and the store.

G-C-05 1

FR-PARAM-
17

The user must be able to choose
which method customers use to select
a service point.

Iter 2 2

FR-SIM-18
The simulation manager must be able
to open and close service points based
on the current state of the store.

Iter 2 2

FR-PARAM-
19

The user must be able to choose
which method the manager uses to
decide when to open/close service
points.

Iter 2 2

FR-PARAM-
20

The user must be able to choose
which method is used to determine
which customer in a collection
proceeds next.

While the obvious choice (and the
one suggested by the assignment) is a
queue, it's not always that simple.
Having worked as a cashier at a
grocery store, free-for-alls can
happen too.

2+

FR-SIM-21
The simulation must support service
points with different usage restrictions
and timing behaviours.

A Final Word about the
Requirements 2+

FR-SIM-22 The simulation must support service
points with multiple employees.

A Final Word about the
Requirements 2+

ID Description Motivation Iteration

FR-PARAM-
23

The user must be able to choose
which management strategy is used.
Note: Not the same as FR-PARAM-
19. That specifies choosing the
manager's strategy, this specifies if
there even is a manager.

Management decisions could be
distributed across cashiers rather than
having a central manager, for
example.

2+

FR-SIM-24
Before the store can be closed, all the
customers in the store must be
processed and leave the store.

G-M-10 1

FR-LOG-25
Employees must record and calculate
time spent working and idle during
their shift

S-C-01 1

FR-SIM-26

Once a service point has been chosen
to close, it must process all customers
already in it's queue before the
employee(s) are free to go.

G-M-5 2

FR-SIM-27

The store and a fixed number of
service points must be opened before
customers can be allowed in and
processed.

G-M-3 1

FR-SIM-28 The queue of a particular service
point may be limited in size.

WebCT Announcement. For iteration
1, they are to hold only 2 customers
(not counting the one currently being
processed).

1

Non-Functional Requirements
ID Description Motivation

NFR-SIM-01 The customer wishes to spend a minimal amount of time waiting. S-C-01
NFR-SIM-02 The managers wishes to minimize the time cashiers spend idle. S-M-01

Assumptions
ID Description Reason

AS-SIM-
01

Before leaving the store, a
customer must purchase at least
one item.

A customer who purchases no items is never waiting and
uses no employee time, so permitting this case would
complicate the model for no benefit.

Use Case Diagram

Use Cases
UC-01 Shopping Traceability

Summary Customer purchases items and is processed at a service point.

External Actors Customer, Employee

Triggering
Event Customer enters store.

Pre-Conditions Store is open and a fixed number of service points are open. FR-SIM-27

Main Sequence 1. Customer enters store and spend an amount of time 'shopping'
proportional to the number of items they wish to purchase. FR-SIM-06

2. Customer joins the collection of customers looking for a service
point (in future: 'seeking queue') with at least one item.

FR-SIM-07
FR-SIM-10
AS-SIM-01

3. When the customer reaches the front of the seeking queue, they
wait until at least one service point queue is not full, and then they
select a service point to be processed at.

FR-SIM-28
FR-SIM-11
NFR-SIM-01

4. Customer joins the collection of customers waiting to be processed
by the service point that they chose in Step 3 (in future: 'processing
queue').

FR-SIM-12

5. When the customer reaches the front of the processing queue, they
enter the service point to be processed. FR-SIM-13

6. Customer is processed by the employee(s) at the service point for
an amount of time proportional to the number of items the customer
has chosen to purchase and additionally a fixed constant time to make
payment arrangements.

FR-SIM-14
FR-SIM-15

 7. Customer leaves the service point and exits the store FR-SIM-16
Result Customer exits the store

Post-Condition Customer is no longer in the store

UC-02 Managing Store Traceability
Summary Manager manages the store.

External Actors Manager, Employees, Customers

Triggering Event Manager decides that it is time for the store to open.

Pre-Conditions Store is closed.

Main Sequence 1. Manager requests that a fixed number of service points are to
be opened. FR-SIM-18

2. Manager verifies that the requested number of service points
have been opened. FR-SIM-27

 3. Manager opens store. FR-SIM-03

4. Manager checks the arrival rate of customers waiting for a
service point. FR-SIM-10

5. Manager requests that service points are opened or closed
according to the management strategy.

FR-SIM-18
FR-PARAM-19
NFR-SIM-02

 6. Repeat to step 4 after a period of time.

7. Manager marks the store as closed so that new customers do
not enter.

8. Manager ensures that all customers have been processed and
have left the store. FR-SIM-24

 9. Manager closes all open service points. FR-SIM-26

 10. Manager closes store. FR-SIM-03

Result No customers and employees are in the store, the store and all
service points are closed.

Post-Condition Store is closed.

Alternatives UC-02-ALT-01: If the manager wishes to close service points,
but the minimum number is open, then nothing happens. FR-PARAM-08

UC-02-ALT-02: If the manager wishes to open service points,
but the maximum number is open, then nothing happens. FR-PARAM-09

 UC-02-ALT-03: When the store needs to close, skip step 6.

UC-03 Working at Store Traceability
Summary An employee works at the store.

External Actors Employee, Customers

Triggering Event The manager requests that the employee open a service point. FR-SIM-18

Pre-Conditions - The service point is closed.
- The employee is not already working somewhere else.

Main Sequence 1. The employee records the beginning of their shift in order to be
able to calculate total time working and idle. FR-LOG-25

 2. The employee marks the service point as open. FR-SIM-18

3. The employee processes customers until the manager requests
the service point be closed.

FR-SIM-14
FR-SIM-15

 4. The employee marks the service point as closed. FR-SIM-18

5. The employee processes all remaining customers at the service
point. FR-SIM-26

6. The employee records the end of their shift and calculates their
final time working and idle. FR-LOG-25

Result Customers have been processed.

Post-Condition The service point is closed.

Alternatives UC-03-ALT-01: If the service point is already idle when asked to
close, step 5 will be skipped.

Responsibilities
ID Responsibility Use Case Steps

ID Responsibility Use Case Steps
RESP-01 Customer shops. UC-01-1
RESP-02 Customer enters queue to seek service point. UC-01-2
RESP-03 Customer chooses available service point. UC-01-3
RESP-04 Customer joins queue of selected service point. UC-01-4
RESP-05 Customer enters service point. UC-01-5
RESP-06 Customer's items are processed. UC-01-6, UC-03-3,

UC-03-5
RESP-07 Customer makes payment. UC-01-6, UC-03-3,

UC-03-5
RESP-08 Customer leaves service point. UC-01-7
RESP-09 Service point(s) are opened. UC-02-1, UC-02-5,

UC-03-2
RESP-10 Manager verifies that service points are opened. UC-02-2
RESP-11 Store is marked as open. UC-02-3
RESP-12 Manager checks the arrival rate of customers waiting for a

service point.
UC-02-4

RESP-13 Service point(s) are closed. UC-02-5, UC-02-9,
UC-03-4

RESP-14 Store is marked as closed. UC-02-7
RESP-15 Manager ensures all customers have been processed and left the

store.
UC-02-8

RESP-16 Store is closed. UC-02-10
RESP-17 Beginning of shift is recorded. UC-03-1
RESP-18 End of shift recorded. UC-03-6
RESP-19 Shift statistics calculated. UC-03-6

Unbound Use Case Maps

UC-01

Start1 Customer enters store.
End1 Customer exits store.

UC-02

Start2 Manager decides to open the store.
End2 Manager closes store.

UC-03

Start3 Manager asks employee to work.
End3 Employee's shift is over.

Bound Use Case Maps

UC-01

Start1 Customer enters store.
End1 Customer exits store.

UC-02

Start2 Manager decides to open the store.
End2 Manager closes store.

UC-03

Start3 Manager asks employee to work.
End3 Employee's shift is over.

Interaction Diagrams

High-Level Interaction Diagram

UC
-
0
1

UC-
0
2

UC-
0
3

Object Specifications

Customer

Overview

Name ID Description Inheritance

Customer ACT-
01

Shops at the store, purchasing one or more items and making
payment before leaving. None

Responsibilities

ID Responsibilities Collaborators Traceability
RESP-01 Customer shops.

 UC-01-1
RESP-02 Customer enters queue to seek service point.

 UC-01-2
RESP-03 Customer chooses available service point. Employee UC-01-3

RESP-04 Customer joins queue of selected service
point.

 UC-01-4

RESP-05 Customer enters service point.

 UC-01-5
RESP-07 Customer makes payment. Employee UC-01-6, UC-03-3, UC-03-5
RESP-08 Customer leaves service point.

 UC-01-7

Data Members

Variable Name Type Status Procedures
numberOfItems uint Read-Only

entranceTime Time Read-Only

waitTimeStart Time Read/Write

waitTimeTotal Time Read/Write

sp ServicePoint Read/Write

Procedures

Procedure
Name

Return
Type

Parameter
Name

Parameter
Type Responsibilities

processEvent void e Event Makes an appropriate action based on
event e.

myString string e Event Returns additional useful string to log
based on event e.

Manager

Overview

Name ID Description Inheritance

Name ID Description Inheritance

Manager ACT-
02

Responsible for opening and closing the store as well as using effective
management strategies to decide which service points to request for
open or close to better serve customers.

None

Responsibilities

ID Responsibilities Collaborators Traceability
RESP-
10 Manager verifies that service points are opened.

 UC-02-2

RESP-
11 Store is marked as open.

 UC-02-3

RESP-
12

Manager checks the arrival rate of customers waiting for
a service point.

 UC-02-4

RESP-
14 Store is marked as closed.

 UC-02-7

RESP-
15

Manager ensures all customers have been processed and
left the store.

Employees,
Customers UC-02-8

RESP-
16 Store is closed.

 UC-02-10

RESP-
19 Shift statistics calculated.

 UC-03-6

Data Members

Variable Name Type Status Procedures
myInstance Manager

initialOpenServicePoints static int

minimumServicePoints static int

maximumServicePoints static int

pollingInterval static uint

totalIdleTime uint

totalShifts uint

empPool EmployeePool

activeEmployees HashSet<Employee>

Procedures

Procedure Name Return
Type

Parameter
Name

Parameter
Type Responsibilities

getInstance Manager

Returns the instance of Manager for the
singleton pattern.

servicePointOpen void e Employee

Increases the number of service points
known to be open. If sufficient service
points are open and the store is marked as
closed, marks the store as open.

Procedure Name Return
Type

Parameter
Name

Parameter
Type Responsibilities

servicePointClosed void e Employee
Decreases the number of service points
known to be open. If there are no service
points left, closes the store.

storeEmpty void

 Closes all service points still open.

openServicePoints void change int Opens 'change' number of new service
points.

closeServicePoints void change int Closes 'change' number of open service
points.

processEvent void e Event Makes an appropriate action based on event
e.

myString string e Event Returns additional useful string to log based
on event e.

Employee

Overview

Name ID Description Inheritance

Employee ACT-
03

Works at store. Responsible for opening and closing service points,
processing customers and directing customers to service points when
requested by the store manager.

None

Responsibilities

ID Responsibilities Collaborators Traceability
RESP-06 Customer's items are processed. Customers UC-01-6, UC-03-3, UC-03-5
RESP-07 Customer makes payment. Customer UC-01-6, UC-03-3, UC-03-5
RESP-09 Service point(s) are opened.

 UC-02-1, UC-02-5, UC-03-2
RESP-13 Service point(s) are closed.

 UC-02-5, UC-02-9, UC-03-4
RESP-17 Beginning of shift is recorded.

 UC-03-1
RESP-18 End of shift recorded.

 UC-03-6

Data Members

Variable Name Type Status Procedures
sp ServicePoint

shiftStart Time

shiftLengths List<uint>

numItemsProcessed uint

customersProcessed uint

idleTime uint

Procedures

Procedure Name Return
Type

Parameter
Name

Parameter
Type Responsibilities

updateNumItems void items uint Tracks total items processed by adding
items to numItemsProcessed.

updateNumCustomers void

Tracks total customers processed by
adding one to customersProcessed.

processEvent void e Event Makes an appropriate action based on
event e.

myString string e Event Returns additional useful string to log
based on event e.

Testing
The logged output from all of our test cases can be found in the text files named 'test##.log' in the
folder 'A4-Iter2-Team1-Tests' included with this document. A brief description of what each test
demonstrates is included here.

Case 01
This case demonstrates all of the available configuration options except for customer creation.

Case 02
This case demonstrates the various customer creation options.

Case 03
This case demonstrates that customers can enter and leave the store simultaneously. The manager
demonstrates the 'lazy' management strategy (where no service points are ever opened and closed
beyond the defaults). Customer 1 demonstrates passing directly through the waiting queue when it is
empty, and all customers demonstrate the 'simple' queue selection strategy (also known as the iteration
1 queue selection strategy).

Case 04
This case demonstrates the customers using the waiting queue to wait while all of the open service
points are full. This can be seen when customer 25 reaches the front of the waiting queue at 8:55, but
has to wait until 8:59:20 to choose a service point.

Case 05
This case demonstrates the use of the 'queue size' management strategy. Multiple simultaneous closures
can be seen at 8:10, a single opening can be seen at 8:30, and a single closure can be seen at 8:40.

Case 06
This case demonstrates the 'arrival rate' management strategy and the 'simple' customer strategy.

Opening of a service point can be seen at 8:20 and every 5 min (manager polling interval) up until 8:35.
Closing of a service point can be seen at 8:40, 8:45 and 8:50. This case also demonstrates that the store
will remain open after closing time to process any remaining customers that are still waiting to be
processed.

Case 07
This case demonstrates the 'fewest items' customer queue selection strategy. Service point 1 has 2
customers in its queue with a total of 209 items. Service point 2 has 2 customers in its queue with a
total of 210 items. Customer 5 gets to the front of the waiting queue and chooses service point 1, as it
has fewer total items.

Case 08
This case demonstrates the 'fewest customers' customer queue selection strategy. Note that the service
point selected by each subsequent customer alternates between 1 and 2, demonstrating that the
customers are selecting the service point with the fewest customers.

