
Use Case Maps

Quick Tutorial

Version 1.0

© Daniel Amyot

SITE, University of Ottawa
September 1999

Table of Contents

1. Introduction 1
1.1 Structure of this Tutorial . 1
1.2 Scope . 1

2. Aims of Use Case Maps 2
2.1 Philosophy of UCMs . 2
2.2 Information Needed to Construct UCMs . 3

3. Basic UCM Path Notation 4
3.1 Notation Elements . 4
3.2 From Requirements to UCMs: an Example . 6

4. UCM Component Notation 7

5. Advanced UCM Path Notation 8
5.1 Advanced Notation Elements . 8
5.2 Example Revisited . 10

6. Using UCMs 12
6.1 Main Uses . 12
6.2 UCM Tools . 13

7. References 14

Appendix A : UCM Quick Reference Guide 15

Use Case Maps Quick Tutorial Version 1.0, September 1999 1

1. Introduction

1.1 Structure of this Tutorial
This quick tutorial is intended to provide an overview of Use Case Maps (UCMs) to people who

want to familiarize themselves with this notation. The tutorial is structured as follows:

• Section 2 presents the philosophy behind the notation and the information necessary to

use it.

• Section 3 introduces the basic UCM path notation. This section also provides a simple

example of how to construct a Use Case Map.

• Section 4 gives a brief overview of the UCM component notation.

• Advanced notational concepts are then presented in Section 5, with a more complex ver-

sion of the example.

• Finally, main uses and supporting tools are discussed in Section 6.

A summary of the UCM notation is provided as a quick reference guide in Appendix A.

1.2 Scope
This tutorial mainly targets the field of communicating systems and does not address issues

related to UCM annotations for performance analysis or goal modeling. Role modeling and

dynamic structures will be overviewed superficially, but these topics are better covered in [2] and

[3]. Mappings to other formalisms such as LOTOS, SDL, LQN, and UML-RT are not discussed

here. The tutorial focuses on the UCMs graphical notation itself, and the underlying semantics

models based on hypergraphs and XML are not addressed here (see [1] and [4] for further details

on these issues). Style and content guidelines for UCMs remain to be defined and are not dis-

cussed in the current version of this tutorial.

Use Case Maps Quick Tutorial Version 1.0, September 1999 2

2. Aims of Use Case Maps

2.1 Philosophy of UCMs
The Use Case Map notation aims to link behavior and structure in an explicit and visual way.

UCM paths are first-class architectural entities that describe causal relationships between respon-

sibilities, which are bound to underlying organizational structures of abstract components [3].

These paths represent scenarios that intend to bridge the gap between requirements (use cases)

and detailed design.

With UCMs, scenarios are expressed above the level of messages exchanged between

components, hence they are not necessarily bound to a specific organizational structure. This fea-

ture promotes the evaluation of architectural alternatives early in the design process. UCMs pro-

vide a bird's-eye, path-centric view of system functionalities, they allow for dynamic behaviour

and structures to be represented and evaluated, and they improve the level of reusability of scenar-

ios.

Use Case Maps are primarily visual, but a formal textual representation also exists. Based

on the eXtended Markup Language (XML) 1.0 standard [6], this representation allows for tools to

generate UCMs or use them for further processing and analysis [1].

The notation was developed at Carleton University by Professor Buhr and his team, and it

has been used for the description and the understanding of a wide range of complex applications

(including telecommunication systems) since 1992. UCMs have raised a lot of interest and hopes

in the software community, which led to the creation of a user group at the beginning of 1999,

with more than one hundred members from all continents [5].

Use Case Maps Quick Tutorial Version 1.0, September 1999 3

2.2 Information Needed to Construct UCMs
UCMs can be derived from informal requirements, or from use cases if they are available.

Responsibilities need to be stated or be inferred from these requirements. For illustration purpose,

separate UCMs can be created for individual system functionalities, or even for individual scenar-

ios. However, the strength of this notation mainly resides in the integration of scenarios.

It is important to clearly define the interface between the environment and the system

under description. This interface will lead to the start points and end points of the UCM paths, and

it also corresponds to the messages exchanged between the system and its environment. These

messages are further refined in models for detailed design (e.g. with Message Sequence Charts).

Because designers are often the ones who create UCMs, some design information may be

relevant. In theory, UCM can be composed of paths where responsibilities are not allocated to any

component. However, designers are likely to include architectural elements such as internal com-

ponents. In this case, the description of these components, their nature, and some relationships

(e.g., components that include sub-components) are required. Communication links between

components are usually not required, but they can be added.

Use Case Maps Quick Tutorial Version 1.0, September 1999 4

3. Basic UCM Path Notation

3.1 Notation Elements
The UCM notation is mainly composed of path elements, and also of components. The basic

path notation addresses simple operators for causally linking responsibilities in sequences, as

alternatives, and in parallel. More advanced operators can be used for structuring UCMs hierar-

chically and for representing exceptional scenarios and dynamic behavior (Section 5). Compo-

nents can be of different natures, allowing for a better and more appropriate description of some

entities in a system (Section 4).

Figure 1 illustrates four basic elements of UCMs: start points, responsibilities, end

points, and components. In this section, simple boxes are used as components.

FIGURE 1. Basic Notation and Interpretation

The wiggly lines are paths that connect start points, responsibilities, and end points. A

responsibility is said to be bound to a component when the cross is inside the component. In this

case, the component is responsible to perform the action, task, or function represented by the

responsibility. Start points may have preconditions attached, while responsibilities and end points

can have postconditions. We call route a scenario that traverses paths and associated responsibili-

ties from a start point to an end point.

Imagine tracing a path through a system of objects to explain a
causal sequence, leaving behind a visual signature. Use Case
Maps capture such sequences. They are composed of:

• start points (filled circles representing pre-condi-
tions or triggering causes)

• causal chains of responsibilities (crosses, represent-
ing actions, tasks, or functions to be performed)

• and end points (bars representing post-conditions or
resulting effects).

The responsibilities can be bound to components, which are
the entities or objects composing the system.

Start
Point End

Point

Components

Responsibilities

Use Case Maps Quick Tutorial Version 1.0, September 1999 5

Alternatives and shared segments of routes are represented as overlapping paths

(Figure 2). An OR-join merges two (or more) overlapping paths while an OR-fork splits a path

into two (or more) alternatives. Alternatives may be guarded by conditions represented as labels

between square brackets.

FIGURE 2. Shared Routes and OR-Forks/Joins

Concurrent and synchronized segments of routes are represented through the use of a ver-

tical bar (Figure 3). An AND-join synchronizes two (or more) paths together while an AND-fork

splits a path into two (or more) concurrent segments. Cardinalities (N:M) are not required to be

written as they usually result from the number of incoming/outgoing path segments.

FIGURE 3. Concurrent Routes with AND-Forks/Joins, and Some Variations

(a) OR-join (c) Permissible routes
assumed identified

Indicate routes that share common causal
segments. alternatives may be identified by
labels or by conditions ([guards])(b) OR-fork

[yes]

[no]

N:1

(b) AND-join

1:N

(a) AND-fork

Fork-join

1:N N:1

1:N

Fork along a

1:N N:1

Rendezvous Synchronize

N:1 1:N N:N

single path
Fork-join along a

single path

N:1

Join along a
single path

N:M

(c) Generic version

Use Case Maps Quick Tutorial Version 1.0, September 1999 6

3.2 From Requirements to UCMs: an Example
Figure 4(d) shows a simple UCM where a user (Alice) attempts to call another user (Bob) through

some network of agents. Each user has an agent responsible for managing subscribed telephony

features such as Originating Call Screening (OCS). Alice first sends a connection request (req) to

the network through her agent. This request causes the called agent to verify (vrfy) whether the

called party is idle or busy (conditions are between square brackets). If he is, then there will be

some status update (upd) and a ring signal will be activated on Bob's side (ring). Otherwise, a

message stating that Bob is not available will be prepared (mb) and sent back to Alice (msg).

A scenario starts with a triggering event and/or a pre-condition (start point req) and ends

with one or more resulting events and/or post-conditions (end points), in our case ring or msg.

Intermediate responsibilities (vrfy, upd, mb) have been activated along the way. In this example,

the responsibilities are allocated to abstract components (boxes Alice, AgentA, Bob and AgentB),

which could be seen as objects, processes, agents, databases, or even roles, actors, or persons.

The construction of a UCM can be done in many ways. For example, one may start by

identifying the responsibilities (Figure 4(a)), although not necessarily with diagrams like this one.

Responsibilities can then be allocated to scenarios (Figure 4(b)) or to components (Figure 4(c)).

Components can be discovered along the way. Eventually, the two views are merged to form a

bound map (Figure 4(d)).

FIGURE 4. Use Case Maps Construction

Under an apparent simplicity, UCMs such as Figure 4(d) convey a lot of information in a

compact form, and they allow for requirements engineers and designers to use two dimensions

(structure and behaviour) to evaluate architectural alternatives for their system.

BobAlice

(a) Scenario responsibilities (b) Path allocation

(c) Component allocation (d) Bound map

vrfyreq
[busy]

[idle] ring
msg

vrfy
req

mb upd ring
msg

AgentA AgentB
upd

mb

BobAlice

vrfyreq ring
msg

AgentA AgentB

updmb

vrfyreq
[busy]

[idle]
ring

msg

upd

mb

Use Case Maps Quick Tutorial Version 1.0, September 1999 7

4. UCM Component Notation

Components can be of different types and possess different attributes. Although any component

notation could be used underneath UCM paths, Buhr suggests several types and attributes relevant

for complex systems (real-time, object-oriented, dynamic, agent-based, etc.) [2][3]. The UCM

Quick Reference Guide (Appendix A — A8 and A9) illustrates all the component types and

attributes in Buhr's notation. Some of the most interesting ones are shown in Figure 5.

FIGURE 5. Dynamic Components and Dynamic Responsibilities

Rectangles are call teams and are allowed to contain components of any type. This is a

default/generic component used most UCMs. Parallelograms are active components (processes)

whereas rounded rectangles are passive components (objects). Dashed components are called

slots and may be populated with different instances at different times. Slots are containers for

dynamic components (DC) in execution, while pools are containers for DCs that are not execut-

ing (they act as data). Dynamic components can be created, moved, stored, and deleted with

dynamic responsibilities (see Appendix A — A10) such as create, put, get, and move in

Figure 5.

Slot
Team

+

Pool

create

put get

move

Process

Use Case Maps Quick Tutorial Version 1.0, September 1999 8

5. Advanced UCM Path Notation

5.1 Advanced Notation Elements
When maps become too complex to be represented as one single UCM, a mechanism for defining

and structuring sub-maps becomes necessary. A top-level UCM, referred to as a root map, can

include containers (called stubs) for sub-maps (called plug-ins). Stubs are of two kinds

(Figure 6):

FIGURE 6. Stubs and Plug-ins

• Static stubs: represented as plain diamonds, they contain only one plug-in, hence

enabling hierarchical decomposition of complex maps.

• Dynamic stubs: represented as dashed diamonds, they may contain several plug-ins,

whose selection can be determined at run-time according to a selection policy (often

described with pre-conditions). It is also possible to select multiple plug-ins at once

(sequentially or in parallel), although the composition then requires to be detailed outside

the UCM diagram.

Path segments coming in and going out of stubs can be identified on the root map.

Although they are not required to be shown visually, their presence helps to achieve unambiguous

bindings of plug-ins to stubs. A binding is a set of couples <stub_incoming_segment, plug-

in_start_point> and <stub_outgoing_segment, plug-in_end_point>. A dynamic stub has one such

binding per plug-in.

(a) Static stubs have only one plug-in (sub-UCM) (b) Dynamic stubs may have multiple plug-ins

Use Case Maps Quick Tutorial Version 1.0, September 1999 9

Different paths may interact with each other synchronously and asynchronously (see

Figure 7). Synchronous interactions are shown by having the end point of one path touching the

start point (or a waiting place) of another path. A path touching the start point (or a waiting place)

represents an asynchronous interaction.

FIGURE 7. Path Interactions

Other notational elements include (Figure 8):

• Timer: special waiting place triggered by the timely arrival of a specific event. It can also

trigger a time-out path when this event does not arrive in time.

• Abort: a path can terminate the execution of another causal chain of responsibilities.

• Failure point: indicates potential failure points on a path.

• Shared responsibility: represents a complex activity that involves negotiation between

two or more components.

FIGURE 8. Timers, Aborts, Failures, and Shared Responsibilities

Finally, the notation supports additional extensions specific to agent systems and to perfor-

mance modeling. These extensions are not addressed in this tutorial, but their respective path

annotations are included in the quick reference guide (Appendix A — A11).

Interacting paths.

Effect is of one longer path

R1 R2

R1 R2
with the constituent segments
joined end to end.

(a) Synchronous interaction

Interacting paths.

Effect is similar to one path

R1 R3

R1 R2
splitting into two concurrent
segments.

(b) Asynchronous interaction

R3

R2

(c) Ground symbols indicate possible path failure points

timeout path

waiting path

clearing path

continuation

(a) Timers may be set, reset, and timed-out

R1

R2

(b) Top path aborts bottom path after R1

R R

(d) R is a shared responsibility

Use Case Maps Quick Tutorial Version 1.0, September 1999 10

5.2 Example Revisited
New features can be added to the simple example presented previously. Figure 9 abstracts from

the component instances introduced in Figure 4. The components do not refer to Bob and Alice

any longer, but they refer to more generic call origination and termination roles (for both users

and agents). UserO and UserT are slots that can be filled with particular instances of users. The

middle part of Figure 9 shows an enhanced version of the UCM from Figure 4(d). This root map

represents a whole class of related use case instances.

FIGURE 9. More Complex Call Connection and New Notation Elements

The originating dynamic stub SO has two plug-ins (ORIGINATING and OCS). The start

point of the ORIGINATING plug-in (in1) is bound to the incoming path segment in1, and the end

point out1 is bound to the outgoing segment out1.

The OCS plug-in shows a new component (the passive object OCSlist) that represents a

list of screened numbers that the originating user (UserO) is forbidden to contact. If UserO is sub-

scribed to the Originating Call Screening service, then the OCS plug-in is selected instead of the

ORIGINATING plug-in. In this case, the called number is checked against the list (chk). If the call is

denied, a relevant message is prepared for the originating party (md).

User:TUser:O

req ring

msg

Agent:O Agent:T
SO ST

in1 in2out1 out3
out4out2

chkin1
[denied]

[allowed] out1
out2 md

in1 out1

OCSlist

vrfyin2 [busy]
out3

out4
mb

[idle]
mrb

P L
U

G
- IN

S F
O

R
SO

R O
O

T
M

AP
P L

U
G

- IN
 F

O
R

ST

Default ORIGINATING plug-in

TERMINATING plug-in

OCS plug-in

upd

Use Case Maps Quick Tutorial Version 1.0, September 1999 11

The TERMINATING plug-in improves on the original UCM by allowing the update (upd) and

the ring result to be accompanied, concurrently, by the preparation of a ring-back targeted to the

originating party (mrb).

By selecting plug-ins for the stubs in the integrated view, one can obtain a flattened map,

which still contains multiple possible end-to-end scenarios. Once stubs are defined at key points

on a path, it becomes easy to add new plug-ins, which could represent new features in our exam-

ple. Existing maps and plug-ins can further be decomposed or extended (e.g., when a radically

different service is added) with new paths and new static and dynamic stubs.

Use Case Maps Quick Tutorial Version 1.0, September 1999 12

6. Using UCMs

6.1 Main Uses
Use Case Maps are used to describe and integrate use cases representing the requirements. The

construction of UCMs can reveal problems with the use cases, which may be incomplete, incor-

rect, ambiguous, inconsistent, or at different levels of abstraction.

UCMs include high-level design information (internal responsibilities and components),

but they do not commit to messages between components (in contrast with MSCs), so they are

more easily maintainable as design scenarios.

UCMs excel at integrating individual features through the use of stubs and plug-ins, while

at the same time allowing for reasoning about potential undesirable interactions.

UCMs are not executable as is, but they can be manually translated to a model that allows

for fast prototyping and validation. LOTOS is especially well suited for representing UCMs. Map-

pings to hierarchical finite state machines (used in UML-RT) and to Layered Queuing Networks

(for performance modeling) also exist.

UCMs can also serve as a basis for the definition of abstract validation test suites based on

the design. This represents a level of completeness different from (and often better than) plain

functional testing.

Finally, the use of the UCM Navigator tool enables the automated generation of documen-

tation and of XML code, which can be processed for further analysis and potentially for partial

generation of formal models.

Use Case Maps Quick Tutorial Version 1.0, September 1999 13

6.2 UCM Tools
There currently exists only one tool that supports the UCM notation and the XML format: the

UCM Navigator (UCMNAV) [4]. Although still a prototype under development, this tool is

already robust enough for the creation and maintenance of UCMs. The path and component nota-

tions are fully supported (Figure 10). UCMNAV ensures the syntactical correctness of the UCMs

manipulated, generates XML descriptions, exports UCMs in Encapsulated Postcript or Maker

Interchange Format (for Adobe’s FrameMaker) formats, and generates reports in PostScript

(enabled for Adobe’s Portable Document Format).

FIGURE 10.The Use Case Maps Navigator (UCMNAV)

Alternatively, any drawing package or word processors (such as FrameMaker or Microsoft

Word) could be used to draw UCMs. However, syntactic errors may be introduced in the UCMs,

and no XML code can be generated.

Main Features of the UCM Navigator
• Maps are always syntactically correct
• Path transformations and connections based on internal

hypergraph-based semantics
• Nested level of stubs and plug-ins (sub-maps), with binding
• Export/import mechanism for UCM integration
• Intelligent binding of paths to structural components (paths

and responsibilities move with components)
• UCM extensions for agent goals and performance modeling
• Descriptions and pre/post condidions attached to elements
• Generation of XML files valid w.r.t. UCM DTD
• Flexible report generation in PostScript, ready for the gener-

ation of hyperlinked and indexed PDF documents
• GUI with scalable maps, zooms, and scrool bars
• Export of maps in EPS and in FrameMaker’s MIF formats
• Four platforms supported (Linux-Intel, Linux-Sparc,

Solaris, HP/UX), with a fifth one on the way (Windows NT)

Use Case Maps Quick Tutorial Version 1.0, September 1999 14

7. References

The UCM book [2] and the IEEE TSE paper [3] represent more complete tutorials on the UCM

notation, with examples. The UCM Navigator tool, together with examples, manuals, and design

information, can be found in [4]. The XML format generated by this tool is defined in [1]. Finally,

the UCM User Group and other useful information on UCMs (including a virtual library) can be

found in [5].

[1] Amyot, D. and Miga, A.: Use Case Maps Linear Form in XML, version 0.13, May 1999.

http://www.UseCaseMaps.org/UseCaseMaps/xml/

[2] Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for Object-Oriented Systems, Prentice-

Hall, USA, 1995. http://www.UseCaseMaps.org/UseCaseMaps/pub/UCM_book95.pdf

[3] Buhr, R.J.A.: “Use Case Maps as Architectural Entities for Complex Systems”. In: Transac-

tions on Software Engineering, IEEE, December 1998, pp. 1131-1155.

http://www.UseCaseMaps.org/UseCaseMaps/pub/tse98final.pdf

[4] Miga, A.: Application of Use Case Maps to System Design with Tool Support. M.Eng. thesis,

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1998.

http://www.UseCaseMaps.org/UseCaseMaps/ucmnav/

[5] Use Case Maps Web Page and UCM User Group, 1999. http://www.UseCaseMaps.org

[6] W3 Consortium: Extensible Markup Language (XML) 1.0. W3C Recommendation, February

1998. http://www.w3.org/TR/REC-xml

Use Case Maps Quick Tutorial Version 1.0, September 1999 15

Appendix A: UCM Quick Reference Guide
Imagine tracing a path through a system of objects to explain a
causal sequence, leaving behind a visual signature. Use Case
Maps capture such sequences. They are composed of:

• start points (filled circles representing pre-
conditions or triggering causes)

• causal chains of responsibilities (crosses, represent-
ing actions, tasks, or functions to be performed)

• and end points (bars representing post-conditions or
resulting effects).

The responsibilities can be bound to components, which are
the entities or objects composing the system.

Start
Point End

Point

Components

Responsibilities

A1. Basic notation and interpretation

A2. Shared routes and OR-forks/joins.

(a) OR-join

(c) Permissible routes
assumed identified

Indicate routes that share
common causal segments.
Alternatives may be identified
by labels or by conditions
([guards])

(b) OR-fork

A3. Path interactions.

A4. Concurrent routes with AND-forks/joins.

N:1

(b) AND-join

1:N

(a) AND-fork

Fork-join

1:N N:1

1:N

Fork along a

1:N N:1

Rendezvous Synchronize

N:1 1:N N:N

A5. Variations on AND-forks/joins.

single path
Fork-join along a

single path

N:1

Join along a
single path

[yes]

[no]

A6. Stubs and plug-ins.

(a) Static stubs have only one plug-in (sub-UCM)

(b) Dynamic stubs may have multiple plug-ins
A7. Timers, aborts, failures, and shared responsibilities.

N:M

(c) Generic version

Interacting paths.

Effect is of one longer path

R1 R2

R1 R2
with the constituent segments
joined end to end.

(a) Synchronous interaction

Interacting paths.

Effect is similar to one path

R1 R3

R1 R2
splitting into two concurrent
segments.

(b) Asynchronous interaction

R3

R2

(c) Ground symbols indicate possible path failure points

timeout path

waiting path

clearing path

continuation

(a) Timers may be set, reset, and timed-out

R1

R2

(b) Top path aborts bottom path after R1

R R

(d) R is a shared responsibility

Use Case Maps Quick Tutorial Version 1.0, September 1999 16

(a) Team: generic container

A8. Component types.

(b) Object: passive component

(d) ISR: Interrupt Service Request

(e) Agent: for agent systems

(f) Pool: container for dynamic components
as data

(c) Process: active component

A9. Component attributes.

(a) Stack: multiple instances

(b) Protected: for mutual exclusion

(c) Slot: placeholder for dynamic components
as operational units

(d) Anchored: in a plug-in, refers to a compo-
nent defined in another map

+

_

+

_

+

_

move

move-stay

create

destroy

copy

+

–

+

create DC in path

delete DC out of path

move DC out of slot

move DC into slot

get DC from pool

put DC in pool

create DC in pool

delete DC from pool

create DC in slot

delete DC from slot

A10. Movement notation for dynamic components (DCs).

(a) Movement of DCs as data b) Directly into or out of paths

(c) Into or out of slots (d) Into or out of pools

A11. Notation extensions

(a) Goal tags are start and end points

GT

for goals in agent systems

(b) Timestamps are start and end points

TS

for response time requirements

(c) Direction arrows can be used when

Stub

path direction is ambiguous

	1. Introduction
	1.1 Structure of this Tutorial
	1.2 Scope

	2. Aims of Use Case Maps
	2.1 Philosophy of UCMs
	2.2 Information Needed to Construct UCMs

	3. Basic UCM Path Notation
	3.1 Notation Elements
	3.2 From Requirements to UCMs: an Example

	4. UCM Component Notation
	5. Advanced UCM Path Notation
	5.1 Advanced Notation Elements
	5.2 Example Revisited

	6. Using UCMs
	6.1 Main Uses
	6.2 UCM Tools

	7. References
	Appendix A : UCM Quick Reference Guide

