
Page 1

 1 3004 T3a - © J.-Pierre Corriveau, 1997- present

T3a

Introduction to
Design Patterns

 2 3004 T3a - © J.-Pierre Corriveau, 1997- present

Code Libraries vs Frameworks

•  Code (or component) libraries:
–  consist of a set of related and reusable classes
–  do not impose a design on an application

•  Frameworks:
–  constitute a reusable design for a whole application or

subsystem
–  consist of a set of cooperating classes, which

»  identifies partitioning of responsibility
»  implements collaborations

–  are customized through sub-classing
–  are targeted towards a narrow application area

•  We want to reuse without committing to a
particular implementation!!

 3 3004 T3a - © J.-Pierre Corriveau, 1997- present

•  Design patterns aim to directly facilitate the
design process:
–  provide ready-made solutions to small design problems that

are part of the larger application or subsystem design,
–  refine rather than reinvent,
–  record experience in designing object-oriented software in a

form that people can use effectively,
–  are a solution to a design problem in context — “a description

of communicating objects and classes that are customized to
solve a general design problem.” [Gamma94]

Enter Design Patterns

 4 3004 T3a - © J.-Pierre Corriveau, 1997- present

Dealing with Change

•  Fundamental principle: Anticipate requirement
evolution and design for it by localizing its effects
in your design.
–  Understand variability and likelihood of change
–  Handle change by committing to decoupling, typically via the

principle of locality of change

•  In choosing a Design Pattern you must first
understand:

–  the purpose of each pattern:
» what forces are resolved

–  how patterns interrelate:
»  Several patterns may solve the same design problem

•  The selection problem

Page 2

 5 3004 T3a - © J.-Pierre Corriveau, 1997- present

Overview of Go4
Design Patterns

(book of Gamma, Helm, Johnson and Vlissides)

 6 3004 T3a - © J.-Pierre Corriveau, 1997- present

The Patterns of Gamma et al.

Motivation:
•  Design Patterns record experience of designers

solutions to OO problems which occur often
•  Patterns capture design expertise
•  Gamma’s patterns deal with general OO design

problems and proven solutions
–  Each pattern focuses on a particular OO design problem or

issue

•  Gamma’s patterns are not domain specific and do
not address concurrency, distribution, real-time
programming, GUIs, and databases.

 7 3004 T3a - © J.-Pierre Corriveau, 1997- present

Scope of Gamma’s Design Patterns

“One person’s pattern is another’s idiom”

•  No patterns for linked lists, stacks, hash tables, …
•  No domain specific patterns
•  No architectural patterns
•  Assumes features common in OO languages:

–  No language specific patterns (e.g., private derivation) in theory
–  Inheritance and polymorphism used for subtyping
–  A pattern for Smalltalk may be trivial in C++, or vice versa
–  “A language constrains what we can think about”

 8 3004 T3a - © J.-Pierre Corriveau, 1997- present

Pattern Format

•  Pattern Name and Classification
•  Intent -pattern’s intent, issues addressed
•  Also Known As -other known names for pattern
•  Motivation -scenario illustrating design problem
•  Applicability-situations where pattern applies
•  Structure -OMT/UML style picture of pattern’s structure
•  Participants -object, classes, and their responsibilities
•  Collaborations -how participants collaborate
•  Consequences -tradeoffs, what can be varied
•  Implementation -hints, techniques, pitfalls
•  Sample Code -C++ or Smalltalk sample code
•  Known Uses -from real systems
•  Related Patterns -other closely related patterns

Page 3

 9 3004 T3a - © J.-Pierre Corriveau, 1997- present

•  Pattern Name forms a basic design vocabulary
•  Problem describes when to apply a pattern
•  Solution describes the solution elements, their

responsibilities, relationships, and collaborations.
–  The solution is abstract, not implementation dependent

•  Motivation and Applicability sections illustrate and define
respectively the context of a design pattern and contain
links back to requirements, design constraints and analysis.

•  Structure, Participants and Collaborations sections describe
the design with emphasis on collaborations and contracts
fulfilled by the participants.

•  Consequences section deals with evaluating the approach
taken by the pattern.

–  linked back to flexibility requirements, and also to performance
evaluation aspects.

•  Implementation section discusses details of translating the
pattern into code.

•  Sample code is an illustration of a mapping of the design
pattern into code.

Sections of the Pattern Format

 10 3004 T3a - © J.-Pierre Corriveau, 1997- present

Guideline to Using a Pattern

•  Read the pattern once through for an overview.
•  Go back and study the Structure, Participants, and

Collaborations sections.
•  Look at the Sample Code section to see a concrete

example of the pattern in code.
•  Choose names for pattern participants that are

meaningful in your application context.
•  Define the relevant classes in your context.
•  Define application-specific names for operations in

the pattern.
•  Implement the operations to carry out the

responsibilities and collaborations in the pattern.

 11 3004 T3a - © J.-Pierre Corriveau, 1997- present

Gamma’s Patterns (Names and Classification)

Purpose

Class

Object

 12 3004 T3a - © J.-Pierre Corriveau, 1997- present

Three Key
Behavioral Patterns

Page 4

 13 3004 T3a - © J.-Pierre Corriveau, 1997- present

Behavioral Patterns Overview

•  Designs that deal with partitioning of
behavioral responsibilities

–  control flow tends to be hard to follow.
•  Behavioral class patterns: use inheritance

to partition responsibilities
–  E.g., Template Method

•  Behavioral object patterns: use object
composition to partition behavior

–  E.g., Mediator, Observer, State, Strategy, Iterator

 14 3004 T3a - © J.-Pierre Corriveau, 1997- present

The Mediator Pattern

 15 3004 T3a - © J.-Pierre Corriveau, 1997- present

Example

Cancel OK

Chicago
Courier
Times Roman
Palatino
Helvetica
Geneva

Palatino Family

Font Selector

 16 3004 T3a - © J.-Pierre Corriveau, 1997- present

Motivation

coordinator

coordinator
coordinator

coordinator coordinator

aClient

aFontDialogCoordinator

okButton

cancelButton
anEntryField

aListBox

Page 5

 17 3004 T3a - © J.-Pierre Corriveau, 1997- present

Collaborations

ShowDialog()

WidgetChanged()

GetSelection()

SetText()

aClient aFontDialogCoordinator aListBox anEntryField

 18 3004 T3a - © J.-Pierre Corriveau, 1997- present

Structure

mediator
Mediator Colleague

ConcreteMediator ConcreteColleagueA ConcreteColleagueB

 19 3004 T3a - © J.-Pierre Corriveau, 1997- present

Consequences

•  limits subclassing
•  decouples colleagues
•  simplifies object protocols
•  abstracts how objects collaborate
•  centralizes control

 20 3004 T3a - © J.-Pierre Corriveau, 1997- present

Mediator Sample Code (1)

class DialogDirector {
public:
 virtual ~DialogDirector(); //destructor
 virtual void ShowDialog();
 virtual void WidgetChanged(Widget*) = 0;
protected:
 DialogDirector(); //constructor
 virtual void CreateWidgets() = 0;
};

Page 6

 21 3004 T3a - © J.-Pierre Corriveau, 1997- present

class FontDialogDirector : public DialogDirector {
public:
 FontDialogDirector(); // constructor
 virtual ~FontDialogDirector(); // destructor
 virtual void WidgetChanged(Widget*); // arg. is a pointer to Widget
protected:
 virtual void CreateWidgets();
private: // attributes of this
 Button* _ok; // specific Dialog
 Button* _cancel;
 ListBox* _fontList;
 EntryField* _fontName;
};

Mediator Sample Code (2)

 22 3004 T3a - © J.-Pierre Corriveau, 1997- present

void FontDialogDirector::CreateWidgets () {
// code to create this specific Dialog
// this passes the current receiver to the components it builds
 _ok = new Button(this);
 _cancel = new Button(this);
 _fontList = new ListBox(this);
 _fontName = new EntryField(this);

 // fill the listBox with the available font names

 // assemble the widgets in the dialog
}

Mediator Sample Code (3)

 23 3004 T3a - © J.-Pierre Corriveau, 1997- present

void FontDialogDirector::WidgetChanged (Widget* theChangedWidget) {
// this method handles a change
// its argument is the widget that has changed
 if (theChangedWidget == _fontList) {
 _fontName->SetText(_fontList->GetSelection());

 } else if (theChangedWidget == _ok) {
 // apply font change and dismiss dialog
 // ...
 } else if (theChangedWidget == _cancel) {
 // dismiss dialog
 }
}

Mediator Sample Code (4)

 24 3004 T3a - © J.-Pierre Corriveau, 1997- present

class Widget {
public:
// The constructor requires being told about the DialogDirector.
// By subclass substitution, this pointer can be to any subclass
// of DialogDirector.
 Widget(DialogDirector*);
 virtual void Changed();
 virtual void HandleMouse(MouseEvent& event);
 // ...
private:
 DialogDirector* _director;
};
void Widget::Changed () {
 _director->WidgetChanged(this);
}

Mediator Sample Code (5)

Page 7

 25 3004 T3a - © J.-Pierre Corriveau, 1997- present

class Button : public Widget {
public:
 Button(DialogDirector*);

 virtual void SetText(const char* text);
 virtual void HandleMouse(MouseEvent& event);
 // ...
};
void Button::HandleMouse (MouseEvent& event) {
 // ...
 Changed(); // see code in class Widget
}

Mediator Sample Code (6)

 26 3004 T3a - © J.-Pierre Corriveau, 1997- present

class ListBox : public Widget {
public:
 ListBox(DialogDirector*);
 virtual const char* GetSelection();
 virtual void SetList(List<char*>* listItems);
 virtual void HandleMouse(MouseEvent& event);
 // ... };
class EntryField : public Widget {
public:
 EntryField(DialogDirector*);
 virtual void SetText(const char* text);
 virtual const char* GetText();
 virtual void HandleMouse(MouseEvent& event);
 // ... };

Mediator Sample Code (7)

 27 3004 T3a - © J.-Pierre Corriveau, 1997- present

The Observer Pattern

 28 3004 T3a - © J.-Pierre Corriveau, 1997- present

Intent

Observer Pattern:

Intent: Define a one-to-many dependency between
objects so that when one object changes state, all
its dependents are notified and updated
automatically

(Notice the obvious usefulness to GUI
applications)

Also known as: Dependents, Publish-Subscribe

Page 8

 29 3004 T3a - © J.-Pierre Corriveau, 1997- present

Motivation

Motivation:

“Common side effect of breaking a system into a
collection of cooperating classes is the need to
maintain consistency between related objects.

You don’t want to achieve consistency by making
classes tightly coupled, this would increase
complexity and reduce reusability.”

 30 3004 T3a - © J.-Pierre Corriveau, 1997- present

Observers

Subject

Observers

Change
Notification

Requests,
Modifications

 31 3004 T3a - © J.-Pierre Corriveau, 1997- present

Subjects and Observers

•  A subject will notify its observers (dependents)
whenever this subject changes state.

•  Subjects don’t know or care who their observers
are.

•  Observers will register interest in the subject, and
query the subject for state information when
notified of a state change.

–  Registration and deregistration are dynamic operations

 32 3004 T3a - © J.-Pierre Corriveau, 1997- present

Structure
Subject
attach(observer)
detach(observer)
notify()
 { for all observers x
 {x update } }

observers

ConcreteSubject
getState()
 {^subjectState}
setState()
subjectState

Observer
update()

ConcreteObserver
update()
 {observerState :=
 subject getState()}
observerState

subject

Page 9

 33 3004 T3a - © J.-Pierre Corriveau, 1997- present

Participants

•  Subject
–  knows it has some number of observers

•  Observer
–  defines an updating interface for objects that should be notified

of changes in a subject
•  Concrete Subject

–  stores state of interest
–  notifies observers whenever a change occurs that could leave

some observer inconsistent
•  Concrete Observer

–  maintains reference to concrete subject
–  stores a state that should be consistent with the one of its

subject
–  implements the Observer updating interface to keep its state

consistent with the one of its subject

 34 3004 T3a - © J.-Pierre Corriveau, 1997- present

Collaborations

aConcreteSubject aConcreteObserver aConcreteObserver

setState()

notify()

update()

getState()

update()

getState()

 35 3004 T3a - © J.-Pierre Corriveau, 1997- present

Consequences

•  Subjects and observers can be varied or reused
independently of each other

•  Abstract coupling between subject & observer
–  subject only knows it has some observers, not who they are

•  Support for broadcast-style communication:
–  notification of change does not have a specific receiver

»  it is sent to all interested parties
–  observers can be added/deleted at any time

•  Unexpected Updates
–  observers don’t know about each other

»  a seemingly innocent action on a subject can cause a cascade of
(often spurious) updates

»  the problem of redundant updates is aggravated by the fact that
the update protocol does not indicate what changed

 36 3004 T3a - © J.-Pierre Corriveau, 1997- present

Some Implementation Issues

•  Mapping subjects to observers:
–  simple strategy: keep references in subject, but this is wasteful if there

are many subjects and few observers
–  alternative: keep separate subject-to-observers tables

•  Observing more than one subject:
–  we must modify the update protocol to indicate which subject is

notifying...
•  Notifying:

–  should the subject notify or the observers poll?
–  should the notification hold information of the subject?

•  Deleting:
–  we must avoid dangling references!

»  the deletion protocol must have the subject notify observers
before disappearing

»  similarly, an observer cannot just die

Page 10

 37 3004 T3a - © J.-Pierre Corriveau, 1997- present

The Strategy Pattern

 38 3004 T3a - © J.-Pierre Corriveau, 1997- present

Composition compositor Compositor
Compose() Traverse()

Fix()

compositor->Compose()
SimpleCompositor
Compose()

TeXCompositor
Compose()

Strategy: Example

 39 3004 T3a - © J.-Pierre Corriveau, 1997- present

strategy

ConcreteStrategyA ConcreteStrategyB
AlgorithmInterface() AlgorithmInterface()

Strategy
AlgorithmInterface()

Context
ContextInterface()

Strategy: Structure

 40 3004 T3a - © J.-Pierre Corriveau, 1997- present

•  Interaction between Context and Strategy
–  Context passes data to the strategy
–  Context passes itself to the strategy

•  Context services client requests by using
the Strategy:

–  The Strategy may be chosen by the client, but the
client only interacts with the context.

–  There may be a family of ConcreteStrategies for the
client to chose from.

Strategy: Collaborations

Page 11

 41 3004 T3a - © J.-Pierre Corriveau, 1997- present

•  Applies to families of related algorithms.
•  Avoids subclassing contexts.
•  Avoids conditionals for selecting one of

several behaviors.
•  Permits selection of implementations of

same kind of behavior.
•  Clients need to know about the strategies.
•  Introduces a communication overhead

between Strategy and Context.
•  Requires more objects than a simpler

solution.

Strategy: Consequences

 42 3004 T3a - © J.-Pierre Corriveau, 1997- present

•  On the interface between Strategy and
Context

–  a ConcreteStrategy needs efficient access to a
Context’s data,

–  a ConcreteStrategy needs to pass data to the context ,
–  a Context may have to be passed to a strategy:

»  Passing data to the strategy decouples context
from the strategy but may lead to passing data not
required by the strategy

»  Having a context pass itself to the strategy
requires that a context have a separate interface
specifically for letting the strategy access
context’s data.

Strategy: Implementation

