
Page 1

 1 © J.-Pierre Corriveau, 1997- present

More Go4
Design Patterns

 2 © J.-Pierre Corriveau, 1997- present

•  A template method specifies an algorithm
whose steps can be overridden by
subclasses

»  defines the ordering but lets Application and
Document subclasses vary individual steps

void Application::OpenDocument (const char* name) {
 if (!CanOpenDocument(name)) {
 // cannot handle this document
 return;
 }
 Document* doc = DoCreateDocument();
 if (doc) {
 _docs->AddDocument(doc);
 doc->Open();
 doc->DoRead();
 }
}

Template Method: Motivation

 3 © J.-Pierre Corriveau, 1997- present

Template Method: Example

return new DrawDocument

Document
Save()
Open()
Close()
DoRead()

DrawDocument
DoRead()

Application

AddDocument()
OpenDocument()
DoCreateDocument()
CanOpenDocument()

DoCreateDocument()
CanOpenDocument()

DrawApplication

docs
*

create

 4 © J.-Pierre Corriveau, 1997- present

ConcreteClass
PrimitiveOperationA()
PrimitiveOperationB()

AbstractClass
TemplateMethod()
PrimitiveOperationA()
PrimitiveOperationB()

...
PrimitiveOperationA()
...
PrimitiveOperationB()
...

Template Method: Structure

Page 2

 5 © J.-Pierre Corriveau, 1997- present

•  Inverted control structure.
•  Types of operations called by the template method

–  concrete AbstractClass operations
–  primitive operations (must be overridden)
–  factory methods (ie for creating objects)
–  hook operations (may be overridden)

•  C++ access control
–  primitive operations as protected members

»  only template method can call them, and
»  are pure virtual.

–  template method should be a non virtual member function.
•  Perversion: too many primitive operations that are

overridden:
–  Must aim to minimize number of primitive operations that

must be overridden.

Template Method: Consequences

 6 © J.-Pierre Corriveau, 1997- present

The ‘Infamous’
State Pattern

 7 © J.-Pierre Corriveau, 1997- present

Context State
Request() Handle()

state Handle()

 ConcreteStateA ConcreteStateB
 Handle() Handle()

State Pattern

state

From Gamma et al.

You must consider cost of instance creation/destruction, frequency of
state changes, etc.

 8 © J.-Pierre Corriveau, 1997- present

Efficient FSMs

•  The State pattern as the recommended starting point??
–  Because other representations of FSMs are much less amenable to change

•  CASE structures:
–  if states/events are implemented as objects, they need to be assigned indices

for the CASE statement to be real-time efficient
–  from GSF: should be used only when the constraints on real-time performance

and memory usage are critical
•  Table Lookup:

–  still need indices
–  slightly slower than CASE structures
–  from GSF: should be used when real-time performance is a primary concern

and the FSM is small and simple (i.e., not hierarchical)

•  Double Dispatch:
–  states and events must be implemented as objects
–  slowest approach
–  from GSF: only use when run-time performance is not critical. Technique

allows a high degree of flexibility and reusability, which is specially
advantageous for complex FSMs.

Page 3

 9 © J.-Pierre Corriveau, 1997- present

Achieving Performance

•  There is a fundamental trade-off between
performance and evolution:

–  Static techniques (such as table look-up and CASE statements)
and optimizations are typically more difficult to evolve than
dynamic ones.

•  Two rules:
–  Reduce the overall number of messages:

»  this is easier said then done...
–  Run code and test performance as early as possible

•  What to look for:
–  frequent messages (in particular, those that carry lots of data)
–  excessive data processing in senders or receivers due to ill-

conceived data representation (typically too general):
–  passing by value rather than by reference or pointer
–  excessive creation and destruction of instances

 10 © J.-Pierre Corriveau, 1997- present

More on Inefficient Data Access

Symptoms:
•  Lots of messages used only to access data
•  Unnecessary restructuring of the same data for different

customers
•  Excessive data deciphering in receiver
•  Data organized for just-in-case rather than actual needs.

Issues:
•  Is it OK to violate encapsulation to improve speed of access?
•  Should you customize data representation for frequent/critical

users?
•  Should you write fast customized procedures (as opposed to

slower general ones) even though they are used infrequently?
•  Should you cache or (re)compute the data?
•  Does the data really belong to this object?

 11 © J.-Pierre Corriveau, 1997- present

Performance Heuristics

•  Explicit your performance requirements and memory
constraints!

–  use timing constraints à la UML
–  use (preferably automatic) performance modeling and metrics

•  Consider the frequency of use-cases and of their
corresponding sequences of messages.

–  don’t handle the worst cases in such a way that the more frequent
sequences are inefficient!

–  consider optimizing most frequently used methods
–  consider collapsing together objects that interact too much...

•  Avoid excessive delegation.
•  Revisit your data packaging:

–  understand the pros and cons of multiple copies of the same data

 12 © J.-Pierre Corriveau, 1997- present

About OOPLs

•  Know your language:
–  know about the cost of a procedure call
–  understand the cost of the features of an OOPL (e.g., RTTI)
–  Understand inlining and friends in C++

•  Know how and when to use primitives!
•  Typical sources of slow-downs:

–  dynamic typing (i.e., variables declared without a type)
–  creation and destruction of instances
–  dynamic binding

»  but virtual functions have constant overhead in C++
–  conversions and casting
–  call by value
–  class/equality checking statements
–  slow data structures in libraries

Page 4

 13 © J.-Pierre Corriveau, 1997- present

Structural vs Behavioral
Pattern

Solution in the organization of classes
vs

Solution in the operations of a class

 14 © J.-Pierre Corriveau, 1997- present

Graphic
Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

Composite Pattern

Line
Draw()

•

 Text
 Draw()

Rectangle
Draw()

Picture
Draw()
Add(Graphic g)
Remove(Graphic)
GetChild(int)

forall g in graphics
 g.Draw()

o
o

add g to list of graphics

graphics

 15 © J.-Pierre Corriveau, 1997- present

Object Structure

aPicture

aRectangle aLine

aRectangle aLine

aText

aPicture

 16 © J.-Pierre Corriveau, 1997- present

Composite Structure

Component
Operation()
Add(Component)
Remove(Component)
GetChild(int)

Client

Composite
Operation()
Add(Component)
Remove(Component)
GetChild(int)

Leaf
Operation()

children

forall g in children
 g.Operation()

o

Page 5

 17 © J.-Pierre Corriveau, 1997- present

Composite Consequences

•  makes the client simpler because it can treat the
composites and primitives uniformly. This avoids
case statements on the type of the component.

•  easier to add new kinds of components
•  can’t have the type system help in restricting

components of a composite, but have to use run-
time type checks instead

•  Beware: implementation considerations are NOT
trivial!!

 18 © J.-Pierre Corriveau, 1997- present

Pattern Hatching
(see book by J. Vlissides)

Bottom line: Remember Alexander’s philosophy!
Step 1: do an inventory of common practices
Step 2: allow discrimination between alternatives by analyzing the forces of patterns

 force: +/- wrt FR and NFR requirements
The sad reality is that, 20+ years after G04, we’re still at step 1…

 19 © J.-Pierre Corriveau, 1997- present

Iterators (1)

•  Iterators allow applications to loop through elements of some
ADT without depending on knowledge of its implementation
details.
–  There are a number of different techniques for implementing iterators, each

having advantages and disadvantages.
•  Design issues:

–  providing a copy of each data item vs. providing a reference to each data
item

–  handling concurrency and insertion or deletion while iterator(s) are
running

•  There are three primary methods of designing iterators:
1.  Pass a pointer to a function

•  Not very OO... we avoid stand-alone functions.
2.  Use in-class iterators (a.k.a. passive or internal iterators)

•  requires modification of class interface
3.  Use out-of-class iterators (a.k.a. active or external iterator)

•  handles multiple simultaneously active iterators on the same instance
•  may require special access to original class internals, usually using

friends

 20 © J.-Pierre Corriveau, 1997- present

Iterators (2)

Pointer to function iterator

template <class T>
class Vector {
public:
/* missing details */
int apply (void (*ptf) (T &)) {
for (int i = 0; i < mysize; i++)
(*ptf) (buffer[i]); //call the function
}
};
void f (int& i) { cout << i << endl; }
Vector<int> v (100);
// ...
v.apply (f);

• We need to add the function “apply” to the interface of Vector.
• And the argument of “apply” is a pointer to a function that returns void

and must match T…

Page 6

 21 © J.-Pierre Corriveau, 1997- present

Iterators (3)

In-class iterator

template <class T>
class Vector {
public:
/* missing details */
void reset (void) { i = 0; }
bool advance (void) { return i++ < mysize); }
T value (void) { return buffer[i - 1]; }
private:
/* missing details */
int i; //holds the single current position
};
Vector<int> v (100);
// ...
for (v.reset (); v.advance () != false;)
cout << "value = " << v.value () << "\n";

• We had to add reset and advance to the interface of Vector.
• There is an implicit order to the use of reset and advance.

 22 © J.-Pierre Corriveau, 1997- present

Iterators (4)

Out-of-class iterator
#include "Vector.h"
template <class T>
class Vector_Iterator {
public:
Vector_Iterator (const Vector<T> &v): i (0), vr (v) {}
bool advance (void) { return i++ < vr.size ();}
T value (void) { return vr[i - 1]; }
private:
Vector<T> &vr;
int i;
};
Vector<int> v (100);
Vector_Iterator<int> iter (v), iter2 (v);
while (iter.advance () != false)
cout << "value = " << iter.value () << "\n";

•  Because Vector has a [] operator and a size function, no need for friends.
•  Inlining improves performance and is better than friends.
•  You should check out the STL!!! (Crucial for C++ jobs!)

