
Page 1

 1 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

T3-3
Designing a Queue

 2 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

The Problem

•  We want to design and implement a type called
queue:

–  The requirements state that it must use at least two distinct
implementations namely the linked list and the array

–  any queue must understand the procedures enqueue and
dequeue, plus a few utility ones such as size, includes, etc.

–  two policies must be available: FIFO and LIFO
–  we envision other implementations in the future…
–  we are concerned with performance AND with ease of evolution

AND with variability
»  C++ is our current target platform
»  We want to avoid code redundancies! (WHY??)

 3 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Missing Interfaces

Implementation

List Array

ArrayBasedLifoQ ListBasedLifoQ ArrayBasedFifoQ ListBasedFifoQ

Let’s start with “diagrammatic overdesign…” without using UML!
In this first case, we violate the “stable interface” principle…

 4 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Minimalist

ArrayBasedLifoQ

ListBasedLifoQ ArrayBasedFifoQ

ListBasedFifoQ

Several variations are possible here!
Pros and cons?

Page 2

 5 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Duplicated Implementations

Queue

FifoQ LifoQ

ArrayBasedFifoQ ListBasedFifoQ ArrayBasedLifoQ ListBasedLifoQ

Do you see the problem?

 6 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Using Delegation

Queue

FifoQ LifoQ

ArrayBasedFifoQ ListBasedFifoQ ArrayBasedLifoQ ListBasedLifoQ

List

Array

uses

uses uses

uses

 7 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

C++ Mixin

Queue

FifoQ LifoQ

ArrayBasedFifoQ ListBasedFifoQ ArrayBasedLifoQ ListBasedLifoQ

List

Array

public public

public public
public

public private private

private private

 8 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

JAVA Interfaces and Implementations

Interface: FifoQ Interface: LifoQ

Array

List

Interface: Queue

extends extends

implements implements

implements implements

Is there a problem?

Page 3

 9 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Design Choices

•  Relationship between siblings
–  Instead of LIFO and FIFO queues, think of sets and bags:

»  Set as parent, Bag as parent, Siblings, Independent?
•  Subtyping

–  Do we want to transparently use one for the other?
•  Implementation classes as parents?
•  Implementation duplication

–  If we have interface classes, will the implementations be duplicated?

•  Bottom line:
–  Can we agree on a solution without knowing the requirements?

»  Performance may or may not be an issue…
–  Even if we agree on one solution, the picture leaves lots of room for

good and bad implementations…
–  Should we attempt to capture a space of solutions?

»  This means understanding variability, i.e., the ‘degrees of
freedom’ of the system.

•  Now let’s look at the code!

 10 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Things to Look For

•  The main program:
–  main() shows we are using subtyping in testing
–  Compiler restrictions?

»  Don’t pass a new in a parameter
–  The output_invalid and its bug: do you see it?

•  Using 2 hierarchies:
–  Why virtuals in the implementation root class?

•  Queue class:
–  The mystruct protected variable: code that is oblivious of the

actual implementation in the subclasses
»  How does it work in the subclasses?

–  The use of virtual: why not enqueue?
–  The costs of size, enqueue, and dequeue: each is different…

 11 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Bridge Structure

Implementor
OperationImp()

RefinedAbstraction

imp->OperationImp();

 Abstraction
Operation()

Client

imp

ConcreteImplementorX
OperationImp()

ConcreteImplementorY
OperationImp()

 12 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Bridge Consequences

•  implementation is separated from abstraction
–  allows for run-time configuration of implementation
–  no compile-time dependencies on implementation

»  change in implementation doesn’t require recompilation
–  Abstraction-Implementation bridge forms a layer that isolates

the rest of the system from the underlying implementation
–  implementation and abstraction can evolve independently
–  clients are shielded from implementation details

Page 4

 13 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Bridge Implementation

•  if there is only a single implementor there is no need
for the abstract implementor

•  choosing an implementor
–  at the time of constructing the abstraction by passing a

parameter to the abstraction constructor
–  after abstraction is created, chose an implementation depending

on conditions, e.g. linked list for small collections and hash table
for large

–  delegate to a factory object
•  multiple inheritance option

–  inherit publicly from Abstraction and privately from a
ConcreteImplementor

»  statically binds abstraction to implementation
»  not a true Bridge implementation
»  similar in structure to Adapter (Class)

 14 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Discussion of Structural Patterns (1)

•  look very similar, but what distinguishes them are
their intents

•  Adapter and Bridge both use indirection but for
different reasons

–  Adapter to match an interface a client expects to the one an
adaptee provides, and bridge to provide a client access to
different implementations transparently

–  Bridge provides stability to clients in presence of
implementation evolution

 15 3004 T3-3 - © J.-Pierre Corriveau, 1997- 2006

Discussion of Structural Patterns (2)

•  Composite, Decorator
–  composite and decorator both use recursive composition but

for different reasons: composite for bringing apparent
uniformity to a family of arbitrarily complex structures, and
decorator for adding responsibilities to an object in an open-
ended way

–  decorator uses object composition to
»  avoid explosion in number of classes resulting from using

subclassing to add responsibilities
»  allow for dynamically adding responsibilities

