
Page 1

1 Architecture and Architectural Patterns -

A Brief Look at
Architecture and some

patterns for it

2 Architecture and Architectural Patterns -

subsystem 3.1 subsystem 3.2

Scalability?

Layer 2	

Layer 1	

3 Architecture and Architectural Patterns -

Domain

Packages for Scalability in UML

GUI

Bank

Account Customer

Database
Interface
 {abstract}

Coordinator

Common
 {global}
Time
Date
Money

Real
Database
System

Notice: the gray entities aim at decoupling the system

4 Architecture and Architectural Patterns -

Architecture

•  ROOM (ObjecTime) book:
–  By “architecture” we mean that part of a system that provides the

framework on which all other aspects of the system depend. A
system’s architecture is the principal factor that determines its
capacity to evolve and adapt to new requirements.

•  Scalability implies grouping:
–  Grouping objects into subsystems and layers is referred to as

clustering.
–  An architecture typically takes the form of a set of clustering

decisions.
–  An architecture is like a load-bearing wall: You can modify it but it’s a

lot of work!
–  Focusing exclusively on code and forgetting the decisions behind an

architecture during software evolution is a recipe for ‘architectural
decay’: the gradual deterioration (due to changes over time) of the
precise and identifiable boundaries and relationships between system
components.

Page 2

5 Architecture and Architectural Patterns -

About Clustering

•  Design clusters as black-box objects! Try to
decouple clusters as much as possible:

–  Avoid point-to-point messages between elements of clusters:
»  instead possibly use ‘service access points’

–  Ultimately, the role of a cluster is to protect its components
through a well-defined interface (façade pattern).

•  Inter-cluster communication may typically be
more expensive! Minimize it!

•  The bin-packing” problem: it is an NP-complete
problem to decide how to group objects into
clusters to achieve highest performance.

6 Architecture and Architectural Patterns -

Architectural Heuristics

•  Separate UI (i.e., input and output), hardware and
database responsibilities from the functionality of
the core of the system.

–  Possibly use connectors to realize locality of change: for
example, if the DB changes, only its connector should be
affected.

–  Typically work out the details of this separate clusters during
OOD, emphasizing abstraction first (through connectors).

–  Libraries and legacy code may influence the exact separation.
»  Legacy code: a procedure, computer system and/or

application that continues to be used and must be maintained
–  Avoid overlapping of services between these different clusters.

•  Several architectural patterns exist!

7 Architecture and Architectural Patterns -

Architectural Patterns according to [Buschman96]

•  Structure of the components of a s/w system together
with their interrelationships, principles and guidelines
governing their design and evolution over time.

•  Express fundamental structural organization schemas
for s/w systems

–  they provide a way to organize generic modules, specifying their type
of responsibilities, together with rules and guidelines for organizing the
relationships between them.

•  Categories:
–  decomposition of a system’s task into cooperating subtasks

»  aka from mud to structure (pipes and filters, layers, blackboard)
–  distributed applications (broker)
–  human-machine interactive systems:

»  MVC aka Presentation-Abstraction-Control
–  adaptive systems (microkernel, reflection)

8 Architecture and Architectural Patterns -

Example 1: Layer Pattern [Buschman96]

•  Intent: provide a structure for applications that can be decomposed into
groups of subtasks, each group providing a set of services for the layer
above it.

•  Context: a large system that requires decomposition.
•  Problem: Consider designing a system with a mix of high and low level

issues, where the higher ones rely on the lower level ones. Forces to be
resolved:

–  later code changes should not ripple through the system,
–  parts of the system should be exchangable,
–  parts of the system should be configurable,
–  similar responsibilities should be grouped together into coherent components,
–  no “standard” component granularity,
–  complex components may need decomposition,
–  crossing boundaries may be expensive, and
–  built by teams that need clear demarcation lines for what they are responsible for.

•  Solution: structure the system into an appropriate collection of layers
where each layer is a collaboration of components at the same level of
abstraction. Example: 7 OSI layers

Page 3

9 Architecture and Architectural Patterns -

Layering

From OSI layering principles:
- One layer does not contain another:

 they typically have separate existence!
- Objects at higher levels are typically more
application-specific
- Think of a lower layer as a service provider
- Minimize the number of layers
- Prefer a closed architecture…

 simpler reuse and evolution
- Beware of cloned services:

 locality of change is violated!

10 Architecture and Architectural Patterns -

Example 2: Recursive Control [Selic98]

•  Problem
–  Structuring control in large real-time systems

»  reach and maintain operational state
•  synchronize with external world, and
•  maintain operation despite events occurring asynchronously with internal

operation.

»  often inadequately addressed because we tend to first
focus on primary functionality

•  exception handlers contain control policies
–  language specific, and
–  fragment system control policy across collection of handlers.

•  function and control are so closely coupled that any addition of new
functionality risks compromising the control of the system.

•  Solution
–  Separate Control from Function.
–  Separate Control Policies from Control Mechanisms

»  example: detecting vs handling failure.

11 Architecture and Architectural Patterns -

Controlled
Component 1 . . . Controlled

Component N

Control
interface

Functional
(service)
interface

Central
Controller

The Basic Structural Pattern

•  Set of components that need to be controlled as a
unit

12 Architecture and Architectural Patterns -

Recursive Application

•  Hierarchical control
–  scales up to arbitrary number of levels

Controlled
Component 1 . . .

Controlled
Component N

Central
Controller

. . .

Central
Controller

Controlled
Component 1 . . .

Controlled
Component N

Central
Controller

Page 4

13 Architecture and Architectural Patterns -

•  Applicability:
–  Event-driven real-time systems requiring non-trivial, dynamic

control;
–  Evolution of both control and functionality.

•  Consequences:
–  system control issues are brought up front

»  it is more likely that they will be properly addressed.
–  simplifies implementation of complex systems

»  recursive application of the same structural pattern.
–  minimizes coupling between changes in functionality and control.
–  additional overhead.

•  Related Patterns:
–  Strategy design pattern
–  Composite design pattern.
–  Chain of Responsibility design pattern.

Bottom Line

14 Architecture and Architectural Patterns -

Example 3: Dynamic Structure [Aubin/Corriveau]

•  In dynamic systems, it is not known in advance
which particular components will be involved in a
dynamic relationship!

ABsender ABreceiver

?
ABsender[N]

?
ABreceiver[N]

15 Architecture and Architectural Patterns -

The Solution: Plug-In Roles

•  Static placeholders that are filled in at run-time

ABsender
{plug-in}

ABreceiver
{plug-in}

Plug-in role

ABsender[7] ABreceiver[11]

ABsender[N] ABreceiver[N]

16 Architecture and Architectural Patterns -

Type Genericity

•  Plug-in roles can be filled in by any component
that has the appropriate ports

–  provided that the corresponding ports are not already
connected in some other composite

–  a capsule can fit in even if it has additional ports that are not
required for the role

ABreceiver
{plug-in}

a:T1

b:T2 ABreceiver[11] x:T2

y:T1

z:TZ

Page 5

17 Architecture and Architectural Patterns -

Ports and Roles

•  The roles that a particular capsule can play are
determined by the set of its public service ports

⇒  A single capsule may be involved in multiple
collaborations at the same time

–  e.g., control and functional interactions
–  in true dynamic systems, this is the case for most objects

⇒  Multiple containment: a capsule may be in more
than one container at the same time

