
12-02-15 10:51 AMAnti-pattern - Wikipedia, the free encyclopedia

Page 1 of 5http://en.wikipedia.org/wiki/Anti-pattern

Anti-pattern
From Wikipedia, the free encyclopedia

In software engineering, an anti-pattern (or antipattern) is a pattern that may be commonly used but is
ineffective and/or counterproductive in practice.[1][2]

The term was coined in 1995 by Andrew Koenig,[3] inspired by Gang of Four's book Design Patterns, which
developed the concept of design patterns in the software field. The term was widely popularized three years
later by the book AntiPatterns, which extended the use of the term beyond the field of software design and
into general social interaction. According to the authors of the latter, there must be at least two key elements
present to formally distinguish an actual anti-pattern from a simple bad habit, bad practice, or bad idea:

Some repeated pattern of action, process or structure that initially appears to be beneficial, but
ultimately produces more bad consequences than beneficial results, and
A refactored solution exists that is clearly documented, proven in actual practice and repeatable.

Many anti-pattern ideas amount to little more than mistakes, rants, unsolvable problems, or bad practices to
be avoided if possible. Sometimes called pitfalls or dark patterns, this informal use of the term has come to
refer to classes of commonly reinvented bad solutions to problems. Thus, many candidate anti-patterns
under debate would not be formally considered anti-patterns.

By formally describing repeated mistakes, one can recognize the forces that lead to their repetition and learn
how others have refactored themselves out of these broken patterns.

Contents
1 Known anti-patterns

1.1 Organizational anti-patterns
1.2 Project management anti-patterns
1.3 Analysis anti-patterns
1.4 Software design anti-patterns

1.4.1 Object-oriented design anti-patterns
1.5 Programming anti-patterns
1.6 Methodological anti-patterns
1.7 Configuration management anti-patterns

2 See also
3 References
4 Further reading
5 External links

Known anti-patterns

Organizational anti-patterns

Analysis paralysis: Devoting disproportionate effort to the analysis phase of a project



12-02-15 10:51 AMAnti-pattern - Wikipedia, the free encyclopedia

Page 2 of 5http://en.wikipedia.org/wiki/Anti-pattern

Cash cow: A profitable legacy product that often leads to complacency about new products
Design by committee: The result of having many contributors to a design, but no unifying vision
Escalation of commitment: Failing to revoke a decision when it proves wrong
Management by perkele: Authoritarian style of management with no tolerance of dissent
Management by objectives: Management by numbers, focus exclusively on quantitative
management criteria, when these are non-essential or cost too much to acquire.
Moral hazard: Insulating a decision-maker from the consequences of his or her decision
Mushroom management: Keeping employees uninformed and misinformed; employees are
described as being kept in the dark and fed manure, left to stew, and finally canned.
Stovepipe or Silos: A structure that supports mostly up-down flow of data but inhibits cross
organizational communication
Vendor lock-in: Making a system excessively dependent on an externally supplied component[4]

Project management anti-patterns

Avalanche: An inappropriate mashup of the Waterfall model and Agile Development techniques
Death march: Everyone knows that the project is going to be a disaster – except the CEO – so the
truth is hidden to prevent immediate cancellation of the project - (although the CEO often knows
and does it anyway to maximize profit). However, the truth remains hidden and the project is
artificially kept alive until the Day Zero finally comes ("Big Bang"). Alternative definition:
Employees are pressured to work late nights and weekends on a project with an unreasonable
deadline.
Groupthink: During groupthink, members of the group avoid promoting viewpoints outside the
comfort zone of consensus thinking
Overengineering: Spending resources making a project more robust and complex than is needed
Smoke and mirrors: Demonstrating unimplemented functions as if they were already implemented
Software bloat: Allowing successive versions of a system to demand ever more resources
Waterfall model: An older method of software development that inadequately deals with
unanticipated change

Analysis anti-patterns

Bystander apathy: When a requirement or design decision is wrong, but the people who notice this
do nothing because it affects a larger number of people

Software design anti-patterns

Abstraction inversion: Not exposing implemented functionality required by users, so that they re-
implement it using higher level functions
Ambiguous viewpoint: Presenting a model (usually Object-oriented analysis and design (OOAD))
without specifying its viewpoint
Big ball of mud: A system with no recognizable structure
Database-as-IPC: Using a database as the message queue for routine interprocess communication
where a much more lightweight mechanism would be suitable
Gold plating: Continuing to work on a task or project well past the point at which extra effort is
adding value
Inner-platform effect: A system so customizable as to become a poor replica of the software
development platform
Input kludge: Failing to specify and implement the handling of possibly invalid input
Interface bloat: Making an interface so powerful that it is extremely difficult to implement



12-02-15 10:51 AMAnti-pattern - Wikipedia, the free encyclopedia

Page 3 of 5http://en.wikipedia.org/wiki/Anti-pattern

Magic pushbutton: Coding implementation logic directly within interface code, without using
abstraction
Race hazard: Failing to see the consequence of different orders of events
Stovepipe system: A barely maintainable assemblage of ill-related components

Object-oriented design anti-patterns

Anemic Domain Model: The use of domain model without any business logic. The domain
model's objects cannot guarantee their correctness at any moment, because their validation and
mutation logic is placed somewhere outside (most likely in multiple places).
BaseBean: Inheriting functionality from a utility class rather than delegating to it
Call super: Requiring subclasses to call a superclass's overridden method
Circle-ellipse problem: Subtyping variable-types on the basis of value-subtypes
Circular dependency: Introducing unnecessary direct or indirect mutual dependencies between
objects or software modules
Constant interface: Using interfaces to define constants
God object: Concentrating too many functions in a single part of the design (class)
Object cesspool: Reusing objects whose state does not conform to the (possibly implicit) contract
for re-use
Object orgy: Failing to properly encapsulate objects permitting unrestricted access to their
internals
Poltergeists: Objects whose sole purpose is to pass information to another object
Sequential coupling: A class that requires its methods to be called in a particular order
Yo-yo problem: A structure (e.g., of inheritance) that is hard to understand due to excessive
fragmentation

Programming anti-patterns

Accidental complexity: Introducing unnecessary complexity into a solution
Action at a distance: Unexpected interaction between widely separated parts of a system
Blind faith: Lack of checking of (a) the correctness of a bug fix or (b) the result of a subroutine
Boat anchor: Retaining a part of a system that no longer has any use
Busy waiting: Consuming CPU while waiting for something to happen, usually by repeated
checking instead of messaging
Caching failure: Forgetting to reset an error flag when an error has been corrected
Cargo cult programming: Using patterns and methods without understanding why
Coding by exception: Adding new code to handle each special case as it is recognized
Error hiding: Catching an error message before it can be shown to the user and either showing
nothing or showing a meaningless message
Hard code: Embedding assumptions about the environment of a system in its implementation
Lava flow: Retaining undesirable (redundant or low-quality) code because removing it is too
expensive or has unpredictable consequences[5][6]

Loop-switch sequence: Encoding a set of sequential steps using a switch within a loop statement
Magic numbers: Including unexplained numbers in algorithms
Magic strings: Including literal strings in code, for comparisons, as event types etc.
Repeating yourself: Writing code which contains repetitive patterns and substrings over again;
avoid with once and only once (abstraction principle)
Soft code: Storing business logic in configuration files rather than source code[7]

Spaghetti code: Programs whose structure is barely comprehensible, especially because of misuse
of code structures



12-02-15 10:51 AMAnti-pattern - Wikipedia, the free encyclopedia

Page 4 of 5http://en.wikipedia.org/wiki/Anti-pattern

of code structures
Shotgun surgery: Developer adds features to an application codebase which span a multiplicity of
implementors or implementations in a single change.

Methodological anti-patterns

Copy and paste programming: Copying (and modifying) existing code rather than creating generic
solutions
Golden hammer: Assuming that a favorite solution is universally applicable (See: Silver Bullet)
Improbability factor: Assuming that it is improbable that a known error will occur
Not Invented Here (NIH) syndrome: The tendency towards reinventing the wheel (Failing to adopt
an existing, adequate solution)
Premature optimization: Coding early-on for perceived efficiency, sacrificing good design,
maintainability, and sometimes even real-world efficiency
Programming by permutation (or "programming by accident"): Trying to approach a solution by
successively modifying the code to see if it works
Reinventing the square wheel: Failing to adopt an existing solution and instead adopting a custom
solution which performs much worse than the existing one
Silver bullet: Assuming that a favorite technical solution can solve a larger process or problem
Tester Driven Development: Software projects in which new requirements are specified in bug
reports

Configuration management anti-patterns

Dependency hell: Problems with versions of required products
DLL hell: Inadequate management of dynamic-link libraries (DLLs), specifically on Microsoft
Windows
Extension conflict: Problems with different extensions to pre-Mac OS X versions of the Mac OS
attempting to patch the same parts of the operating system
JAR hell: Overutilization of the multiple JAR files, usually causing versioning and location
problems because of misunderstanding of the Java class loading model

See also
Code smell – symptom of unsound programming
List of software development philosophies – approaches, styles, maxims and philosophies for
software development
Software Peter principle
Capability Immaturity Model
ISO 29110: Software Life Cycle Profiles and Guidelines for Very Small Entities (VSEs)

References
1. ^ Budgen, D. (2003). Software design (http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-

pattern%22+date:1990-2003) . Harlow, Eng.: Addison-Wesley. p. 225. ISBN 0-201-72219-4.
http://books.google.com/?id=bnY3vb606bAC&pg=PA225&dq=%22anti-pattern%22+date:1990-2003. "As
described in Long (2001), design anti-patterns are 'obvious, but wrong, solutions to recurring problems'."

2. ^ Scott W. Ambler (1998). Process patterns: building large-scale systems using object technology
(http://books.google.com/?id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001) . Cambridge,
UK: Cambridge University Press. p. 4. ISBN 0-521-64568-9. http://books.google.com/?



12-02-15 10:51 AMAnti-pattern - Wikipedia, the free encyclopedia

Page 5 of 5http://en.wikipedia.org/wiki/Anti-pattern

id=qJJk2yEeoZoC&pg=PA4&dq=%22anti-pattern%22+date:1990-2001. "...common approaches to solving
recurring problems that prove to be ineffective. These approaches are called antipatterns."

3. ^ Koenig, Andrew (March/April 1995). "Patterns and Antipatterns". Journal of Object-Oriented Programming 8 (1):
46–48.; was later re-printed in the: Rising, Linda (1998). The patterns handbook: techniques, strategies, and
applications (http://books.google.com/?id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1) . Cambridge, U.K.:
Cambridge University Press. p. 387. ISBN 0-521-64818-1. http://books.google.com/?
id=HBAuixGMYWEC&pg=PT1&dq=0-521-64818-1. "Anti-pattern is just like pattern, except that instead of
solution it gives something thats looks superficially like a solution, but isn't one."

4. ^ Vendor Lock-In (http://www.antipatterns.com/orig/vendorlockin.htm) at antipatterns.com
5. ^ Lava Flow (http://www.antipatterns.com/orig/lavaflow.htm) at antipatterns.com
6. ^ "Undocumented 'lava flow' antipatterns complicate process"

(http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp) . Icmgworld.com. 2002-01-14.
http://www.icmgworld.com/corp/news/Articles/RS/jan_0202.asp. Retrieved 2010-05-03.

7. ^ Papadimoulis, Alex (2007-04-10). "Soft Coding" (http://thedailywtf.com/Articles/Soft_Coding.aspx) .
thedailywtf.com. http://thedailywtf.com/Articles/Soft_Coding.aspx. Retrieved 2011-06-27.

Further reading
1. Laplante, Phillip A.; Colin J. Neill (2005). Antipatterns: Identification, Refactoring and Management.

Auerbach Publications. ISBN 0-8493-2994-9.
2. Brown, William J.; Raphael C. Malveau, Hays W. "Skip" McCormick, Scott W. Thomas, Theresa

Hudson (ed). (2000). Anti-Patterns in Project Management. John Wiley & Sons, ltd. ISBN 0-471-
36366-9.

External links
Anti-pattern (http://c2.com/cgi/wiki?AntiPattern) at WikiWikiWeb
Anti-patterns catalog (http://c2.com/cgi/wiki?AntiPatternsCatalog)
AntiPatterns.com (http://www.antipatterns.com) Web site for the AntiPatterns book
Patterns of Toxic Behavior (http://www.personal.psu.edu/cjn6/Personal/Antipatterns-
%20Patterns%20of%20Toxic%20Behavior.htm)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Anti-pattern&oldid=474842892"
Categories: Anti-patterns Software architecture Design

This page was last modified on 3 February 2012 at 20:08.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.


