[image: image1.jpg]

[image: image2.png]

 PAGE
21

[image: image3.jpg]Game Elements

Wonder Boards

Each boardrepresents the Wonder theplayercan buid and the resource
it produces from the tartofthe game (shown on the upper leftofthe
board). These boards aredouble-sided and offer two diferentversions
ofthe Wonder Each Wonder is composed o two,thee or four stages,

represented onthe board. Each stagehas construction cost and gives
abonuswhen inihed.

Coins

The coins comeintoplayin commercatransactionstyinga ity tots two
neighboringcite.

Thereisnolmitt therumber o coinsaplayer canaccumae duringagame.
Aocumulated coins are worthvictorypointsat the end ofth game.

Conflict Tokens
The Conflcttokers areused toreprest themiltaryvictories and defeats
between neighboringcite.
Atypesoftokensareused:
- the Defeat tokens with a value of 1 are used t the end of eachof
the3ages.
- theVictorytokens witha vale of+ areusedat the end f Age .
- theVictory tokens withavale of+3 areusedat the endofAgell.
- theVictorytokens witha vale of+5 areused at the end f Age .

Cards
7 Wonders, all the Age cards representstructures.
There are 7 iffrent types ofstrcturs, ey recogaizable by the bor-
der color of thircard.
- Raw Materials (brow cards): thesestructuresproduce resouces:

gmm&m (oraycard):thesetructures produceresources:

- &ml\gumva (bluecards): thesetructuressorevictarypints.

Q

« St Sructures green cards): thee sructuresscoe victory
points depending on your progressn the tree sintificfeds:

+ Commercial (yellow cards): these buildings ear coins,
produce resources, change commerce rules and sometimes earn
victory poits.

 Military Structures (red cards) these buildings increase your military
‘might. This comesinto play during Conflict resolution. ()

~ Guilds (urple cards): these buikdings allow players to score points
according to specific crteria.

Note thedge l deckcntarsnoRaw Materas (brown crcs) r Mans-

factured Goods (gray cards), butit does contain the Guids (purple cards).

Cardscost

The area n the upperlft ndicatesthe contruction cost. I thatarea s
empty,thestructue s freeand rquires o esources ot constuction.
Example: the Maketplacei fre, the Mine costs onecon the Boths
require e stane tobe i and theArena requirs twostonesand

StartinginAge lsome stuctures canbebilither by paying therequiste
resoure(s) o, aermaivlythy canbe buitforfreeftheplayer as buit
during th preious age the structure indicated on the card.

Example: theconstructon ofthe Sable requires one brick,anewood
and ore are (Rpossessionaf the Apottecary.

The lower rightarea inicates whichstuctures (f any) maybe bl for
freeinthe followingagedue tothiscard.

Example: it during g | the riptoriamwilabow th buidingof
the Livaryand the Courthouse forfee duringAge .

The ower centeareaindicatesinwhichconfiguration-number ofplayers
~thecardisused.
Example:ina 4 player game, the 3 and 4 cardsareused.

Game Set-up

One deck of cards per Age
For eachofthe 3 decks,retum tothe b al cads which are not used
based onthenumber of layers.
Example: a6 player game, the 34,44, + and+ cars areused. The
7+ ards arereturmedto the box.
Woreover,forthe Age Il deck:

~ Removethe10 Guids (urple cards) andrandonily(and ety kep

onlythe number required based on the number of players.
« Then,shufflethe ept uidscardskeptwith he cther cards tomake:

upthe Agelldeck.

3Players :5Guids
APlayers

Hote:
~Ifyoutave corectly removedtie cards atthe beginning ofthe game,
allothe cardsinplay shouldbe dealta the beginning of eachAge (7

ardsperplyer).
~Forinquirngminds,the umber of Guids tobe kept s equal tothe
mmberofplayers 12

Wonders

Shufflethe 7 Wonder cards,face down,and and one t eachlayer. The
cardanditsacingdetermine the Wondersboard givento each player as
wllasthe sidetobe used during the game.

Hotes:
~For your first fow games. you shoul s side A ofthebaards asthey

aresinplr touse.
~falthe players agree, the Wondersboards canbe hosennsteadof

andomygien.
Coins
Each player egins the game with 3 vlue "1 oins whichthey place on

thei board.

The remainingcoins ormthe bank (layers may "makechange between
thevalue™3"and ™" cons s needed).

Conflict Tokens
The Conflict tokens forma reserve, next to the coins.

[image: image4.jpg]Constructionin 7 Wonders
Throughout all 3 ages in a game, the players will get to build structures
(cards) and Wonders (board).

+ Most structures have a resource cost. Some are free and some have:
‘acoin cost. Some also have a resource cost and a free construction
nstion.

'+ The Wonders all have a resource cost.

Coin Cost

Some brown cardscost acoin whichmust bepad o the bankonthe turn
inwhich ey are constucted.

Exampe:the corstruction of the Timer yard costs T cain

Free Construction
Some ardshavenocost and can e putnto payfrfee.
"Exampe:the corstruction of the Easten Tradng Pst s ee.

Resource Cost

Some ardshave aesource cost.

Toconstuc them, the payer st producethe orresponding esources
AND/OR by them romane f s o her two eighboringcite.

Production

Theresaurcs ofacity areproducedby tsWonder bord,tsbrown cards,
tgraycards andsome yellow carcs.
Tobuildastrcture, aplaye’ ity must produce the esources ndicated
onitscard.

Exanpe:Gizaproduces 2tones 1 Cay, O, 1 apyrus ana | et

itsplayercan i the Barracks (et :10re)or the Srptarim
(est:1Pagyas) st ity podeces e miredresares

itsplayer cannot i the Aquedct(cos:3Stones) as s ity only
procucs twoof thetreestores requiredty that structure

h’ﬁ
Important: the resources ar not spent duringconstruction.

They canbeusedeach tur,for theentire game. The production
ofactyisnever reduced (th cardsplayed areneverdisarded).

Commerce
Oftn, a payerwil wat o bulld a trcture equiing resourceshe or
she does ot produce.
I thee resourcesare produce by a neighborng cty - players sting
vty tothelef o ightof that laye - thepaye willbe bl to pur-
case the mising resource(s) tough commerce.
Theresourcesaplaye canbuy fromthei eigboring e ar:
 theresouesintalyproducedby thecty sindcatedonte boare)
~ the resources fromits brown cards (raw materials)
 theresources fromits ray cards (ranufactured goot)
However,tisimpossile tobuy theresources produced by some commer-
altructres(yllow cars)or by some Wonders: thes resources are
reservedtother unes.
For ach esource ought, the playe ust gve 2 coins 0 the oumer of
theresoure.
Carfications:
« salingaresource o aneighbaring ity DOESNOT preventa player
fromusingt.duringthesame tun fo s own construction urposes.
s posile,during th same tur, t buy one o moreresources
fombothneghboringites.
 the resources bought can oly b used on the turn n whic they
arebougit.
« players canneverrefuse toslresoures.
 Some commerial tructures yeowcac<)reduc the monetary
castsofbuyingresources from 2 to Tcon.
 ifbothctes eighboringa layer produce acoveed resurc,that
Playesfeeto purchasefom iterplaer
« tobuyresources the payer st hve thecons a the beginning o
thetum.Thecoins eared trough commerce duringa tum cannot
beusedon that ur,any during the next one.

Example A :aplayer wants to ik a Universiy (cost:2 Wood +1Gass +
TPapys). Hercity only producesasinge Woodand asinge Glass.
Oneafer neghborsproduces a wood rsource, et oter
producesapapyrus esouree.

The iayerpays 2cain toeach eighbaring playertogaintheir
respective resourcs and il e strcture.

Exanpe B: duringa game turn, bothneighooringcites buyfrom her2
Stanes foratota o8 coins (2per reserce).

Inthesame tum, she canbuila Litary ast: 2Seones ¢ ext)
thanks o her esauces eventhough e hassolthem toher
negntoringites

Exampe: the pyermentioned previslywoudie to uida Forum
eost: 20y steprocees 0ay andaeignboringtyaboprocessome.
Atthebegiming of e , shedoes ot ave enaughcaiinthe
treasury Evenfthereignboringaty buysane of e esources tis tum,
secant spendihe cais gainedtoimmedately uy the msing ey,
Thismoney wionybeavaiable for commerc sartig on the
falowingturn. The orstructonof he Forumistereforeimpossbe
th tum,the player wilave totake a iferent action..

Free Construction (Chains)

Some strctures in Age Il and Age I ave, o the righ o ther resouce
ot the name ofastructure of preious ag.

Ithe player has bult th tructur named there uring a prevous Age,
that playercan bl the struture o e, meaning WihoutKaving to
fulilthresoucecost.

Examplethe Liary canbe bult forfree g Ag I te payer as
buit the Srptarum duringAgel.

Exanpe:buit during Age the Theateralows aplayer to buid the
Satueforree uring Age ll andts,inturn,alkows apeyer tobuidthe
Gardens fortree curngAgel

[image: image5.jpg]Game Overview

A game beginswith Age |, continues ith Ag | and ends it g .V
torypoitsarecountedonlyat the endof Age .

Overviewof anAge
Atthebeginningof eachAge,eacplarreceivesaandof T car, dalt
randomiy romthecoresponding deck.
s Aqeis madeupof game tums Durngeach turntheplayersputito
playasinge car, simutaneousy.
Agametumtakespac asolows:
* Ltnooseacard
- 2 Ation
- 3Give your hand fcardsto thepayer stingto your eftor it
andreceve anothes andofcartsfrom e layestingexttoyou.

1. Choose a Card

Each playe loksa thel Fand without showing 1 e layers and
selctsacardbefore lacngt e down befuretem.

Theremaining crtsare placed etween thelr lft-hand neghbor and
themselves see endof anAge.

2. Action
Once everylayer has selete i rhe cad,they perform thir acton
simutaneotsly.
Three actons areposile withthechosen ca:

- 2 Bidthestrcture

- b i astage oftheir Woncer

- ¢ Disardthe cardtoain 3cins
Notehring our st game.youcan olow the &:ton feacplayer,
oneafertheothe, tobecone morefamlar withthegame..

2a.Buidthe Structure
Mostate, theplayerwil i thestructure represtedbytesclcted
card s Constructionn Woncers).
Important:aplayercannever buid two entical structures
(meaning those with th same name/the same lustration).
D PLACEENT.
The brown and graycards are iced beneath one another startng
from the upper et comer o the Wonders bard. Thisallows players
togquiklyseeallesources producedbyeach player.
The ot cards are place fac up, i theara i ron of the layer's
Wonders bard. Al o tis area correspondstoa payer'city.
Inordertosavespace, stackyour cadsbycolorwhie avingthe ame
ofeachstrctrevsile.

2b,BuidaStage of a Wonder

Tobuid eachstage of s berWonder,the playerwiluse acardof their
ahoceasaconstrctonmarker:

Todotta, theplaer must py the prceshownonthe Worderbardand
o theanesow o thestructure'scard.

The laye thenplays th car,ace down, aiden under te Woncer
boardtoshowthattistage of their Wonderis now bit. T cad then
s o othereffec, andis o corsideredto b astructure.
Exanple:aplayerwantsto ui thesecondsageo s Wonder the
Lihthouseor Aexandia Hechooses onecard romhishand. Hs Gy
grants i the two unts o rereguiedfo s cnsttion, e te-
reforeplace iscardinfontofte wonder stag, hafcoreredty s
bwardinonde o nditetiat s tagehas been consrcted

Qarfcaton:

~ Thestageafa WonderMUSTbeitinrer,mearing romeftorigh.

 theconstructonfthe Wonder s not mandatoy. A playercanwin
thegame withouthaving fnisted o evenstrted) tecorstrction
oftisor er Wonder.

 the crt s to markth constructio o a Woncer sagereains
iden. Playrs wouldbe aisedtouse acard they donotwan to
givetheirneghbor (seeHoveontothe next hand).

- most Wondersave 3 stages uttheserenot ssocitedwith Ages.
Itstherefore possie o buid mattile Wonder tage ina single
Ageortobeginconstrction uringage .

 eachstage cannly bt nceper game.

2. Discrd the Cad o Gain3Con
Aplayecanchooseto discardhisrher cadtotake Soins romthebark
andaddthemtohis o hertresuy.

The cardsdscarded thiswayremainacedown and orma iscad piin
thecenter o the tabe.t canbeuseolto dicardacard youcannotbid
Bt ich wouidbe fnteret t yourneghbor.

Note:ifaplyer haschosena card utisunae to buideiterte st
rear the Wonderstage thatplyers then et to dizardthecard
adtakes 3coins romthe .

3 Move on to the next hand

Eachplaprtakesth handof carts handed from i or e neighbor.
Be carefu: th direction ofthe handsrotationchanges with
eachge:

 during Age |, the hand o cars i passed to the player
sitingothe f dockwse).

 duringAge , the hand ofcrcs s passed t te layer
sitingtotheright (couter-cockwise).

 during Age I, the handof cars s asedtothe player
siting o the f dlockwse).

Specialcas:sithtum

et eginning o the ixth and fnaltunof each e the payers wil
receiveatwo-cardhand fom thei neghboring piaye.

Each player thenchooss oe (ke i previous trrs) and the second s
then dicarded, acedown.

Theseletedcartisthenplayed ormal.

Thenthe Ageds.

Qarifaton: e wnseeted and dicardedcars dscrded without the
playersgetting 3coinstorit

Exanple: Suphiegetsa handof] carts t e begiming o te st Age
Inte fisttum, sheputs intoplay oneo rercards.

St thenands e remeinig 5 cats o the player stingtoter e,
andgetsa endofcards frmthe layertoerrght

Later, during hesith gane tum, sh gets a2card hand fom te plyer
toherrigt. S dscards cne andpus e tteroneinpay acarding
tothe ganes us.

O

Endofanfge
Each Age s ate it st game tum.
The layers must thenpoceet the resoiutonof iltary conficts.
s playercomparesthetotanumberofsildspresen ntheimitary
trctures redcars) withth toalof achofthetworeighboringcite:
 faplayertasa ighr ttaltan aneighboringiythat
PlayetakesalctorytokencorrespondingtotheAgjust
played (Agel: 1. Agll: SorAgl:5)
- Ifapiayer asalowertotathanthat of aneghboringciy,
thatplayr takesaDefattoken (1 victory oie)
 faplayr asan eqaltoaltotatof a neighboring iy,
notokenistaken
Each layerterefre gets, depnding n the ituation, 0, r 2tokens
whicharelacedon i orer Wonder boart.
Exanple:Age hasjus ended Alexandia (3Shiks)sresa borer
WthRhode (5SHieks) tothelen, and Eptesu 2k to e riht.
M taks oeattoken (1vitorypain) andpiscsitonte
efsideoftei bardaswelasa ictoytoken 3 vitoryponts,
AgeI). pocedonthe ightsideof theirboart.

5;6

[image: image6.jpg]End of the Game
‘The game ends at the end of the tird Age, afterthe Conflct tokens have
esntandeon.
‘Each layer totas theirciviizaion poins and the player withthehighest
[Esiaa—
Incaseof ate, th player with the most oins inhisorhertreasury s the.
‘winner. Atie on coins is not broken further.
Ntz -2 bookle of scorecards s i the box to help you count he points
foryour st ew games...or keep rackof your more memorablegames!
Totaling the points

Countthe ietory paintsintis o
« L Mitaryconfits
- 2 Treasrycontents
- 3 Wonder
- 4 Cilanstructures
- & St stuctures
- . Commeralstructures
- 1.Guids

1. iliary Conflicts
Eacplyerattsthe Vitoryan Deeat ok (s totalcanbeegate).
‘Exanpie: Aleanca s st th game wththe follwing ke
14346 1 -0oratoslof6 ponts

2. Treasury Contents

Forvery3 insinther osessionattheendofthegame,ayersscare
vtoryoit.Leftover cons crenopaints

"Exanple: Aleanca 1 st gane et Hesirs nther-
reasiy, whehearn them 4 vitorypoins (et of S clsplus e
partiaiz).

3.Wonders
Eachplayrthenaddstotheirsorethe victary ot from thirwonder.
Exanple: Alexanda s bt a3 stagesofteir Wonder Gice);

10 vitorypoins (3 orthefist leseand o thethiare aced to
teirtota.

4. Cvilian Structures

Eachplayer adsthevitaypont o thei Cvanstrctures. s amount
isindcatedoneoc hanstrcture,

‘Emp: Aexandia ot theolowingcilan siucues: Atar
(2VP) Aqedict(VF) and TonnHal V) ora total of B ictorypons

5. Scientific Structures

Thescientifc carts eamvictory poits in twoverydifferrt ays: fom
setsof denticalsymbols and fomset f ifernt symbots.

Be careful: th victory points earned by both methods are
cumulatve.

Sets of identical symbols
Foreachofthe 3 xstingscientiicsymbol,the aye i the olowing

points:
- ooy lsymbo:Twtorypont @
* 2idetialsynbos: dvictarypoits @ @
 idetialsymoos: ictorypoits 6D 6 @

,ﬂ;mmwm Bvitorypoints D @ @
e

the mumberof points gabed's eqaltotherumer of ymbo spuaret
thereare d greencards foreachsymbo fora matirum of I vetary

potsper iy of syntoks

s inum canbe e easedwitthe ScnteGutda e Wor-

deroftyton: Sidentclsymbos arn 25 v oy poitsand 6 et
alsymbalsean 35 victoryponts

"Exanple: et astult Gscentifcstocareswit e folowig
symoobs: 3,(¥, 2@, 1. They score9points fo the famiy of 30
(@x3),4pointsforits @ (2x2)and inally Tor the @ (i), for a total
arldvictoypons.

Setsof iferentsymbols

For each roup of 3 difernt symbos, each
e SO
"Exanple: Contiunge boveexanpie Aeantitas it i
e rctuesbutony asasinge group of 3 aerentsymbs, ey
scoreextapoits o atotaof2victrypints.
ItAeandiahad uitan xtr stucur withte @ symb ey
woukvescared: 9+4+4) + (7+]) - 3lvictry ot

6. Commercial Structures
Somecommercialstructuresfrom Agel rant victorypoints.
Exanple: Alexandahasbut the Cranbe of Commere. Thsstructure
s worth 2vitory points o eschraycardpresent i e Oty -
il peyed thograycas - dvitarypoints.

1.Guilds

Each Guidis wotha number fvitory ointsdepenting o the conflgu-
ratonof the player'styand/that of thetwo neigboring it see
descriptonof the trctres).

IEGEAVEES

~Block your apponents: o win at 1 Wonders,you st keep an eye
onyourtwoneihboringcitesto analyzeteirtrategy. rytoblock
thembyusingthecarts whchwouldgivethem an advantage. Youcan
s them o uid your Wonder stags or by dicrdingthem when
youneedcair,

- Stategies: mutiplestrategies canleadtovictory: speialze strc
taresof a ingecoororcollc thedifferent typs o stuctres,
Wage war o glctyour mitary, producing oods n bundance o
relyonconmerce...

T marcho rogess: i youbuldsientfc strctures,ryto make
group of iferentsymbols, s they tendto cammore pins.

Board Game by Antoine Bauza
Table of Contents
	1 Introduction
	3

	1.1 – Motivation
	3

	1.2 – Terminology
	3

	2 Game Rules
	5

	3 Requirements
	15

	3.1 – Functional Requirements
	15

	3.2 – Non-Functional Requirements
	19

	3.3 – Assumptions
	19

	4 Use Cases
	21

	4.1 – Use Case Diagram
	21

	4.2 – Use Cases
	22

	4.3 – Responsibilities
	26

	4.4 – Unbound Use Case Maps
	28

	4.5 – Bound Use Case Maps
	32

	5 Design Decisions
	35

	5.1 – Decisions
	35

	5.2 – Structural Model (7 Wonders)
	37

	5.3 – Structural Model (Bots)
	38

	6 Object Specifications
	39

	7 Interaction Diagrams
	81

1

Introduction
Designed by Antoine Bauza, 7 Wonders is a card-based board game for a group of up to seven players. The players, all assigned with distinct Wonders, are pitted against each other in a contest to build the most successful civilization by the end of three Ages.

1.1 – Motivation
Outlined in this document are a brief introduction to the project, functional and non-functional requirements for the software, as well as use cases and assumptions made throughout the process. A proposal for the game's interface is also given.

This project aims to transform Seven Wonders into an online multiplayer game, allowing people to play at distances using their computers. The official board game rules will be followed, with additions to accommodate network play on the computer platform. Therefore, the modeling process of coming up with requirements and use cases would be necessary in building a solid program.

1.2 – Terminology

A number of key terms are used throughout this document, which are listed alphabetically in this section. Definitions are included to aid with referential use. Terms covered in the official rules of 7 Wonders itself are not described here – refer instead to the Game Rules section.

	Term
	Definition

	Artificial Player
	A player controlled by the system. Artificial players can be used in place of human players.

	Board
	See the definition for Wonder (terms used interchangeably).

	Bot
	See the definition for Artificial Player (terms used interchangeably).

	Discard
	The act of disposing a card into an exclusive pile. The contents of discarded cards are hidden from players.

	Game
	This most often refers to the software or game content in general.

	Guest Player
	A player that is connecting to the host player, i.e., a player that joins an existing game.

	Host Player
	The player who creates a game to play with others or by himself (with artificial players). The host player is always human.

	Human Player
	A player that is not controlled by the system, and plays using their machine.

	Interface
	The means of which the system communicates information to the player on their screen. May be referred to as the graphical user interface.

	Session
	A game that has started, running and active with players.

	Structure
	Each card in the game represents something that can be built. This term can essentially be substituted with the word “card”.

	System
	The software implementation of 7 Wonders itself.

	Wonder
	The board that a player uses, with its own unique starting resource, building requirements, and special effects. This term may be substituted with the word “board”.

2

Game Rules
Below are scanned pages of the official game rules for 7 Wonders. Pages that were irrelevant to the project, such as two-player games, became omitted.

Each section has been given identifiers to use with requirements traceability, which can be seen as boxes next to the appropriate section. The notation for the identifiers, which will be used later on, begins with GR, followed by an abbreviation for the section (e.g., QR for Quick Rules), then a number for the subsection. If necessary, these identifiers will also include a number representing the approximate paragraph line for ease of traceability.
[image: image7.jpg]Description of the Wonders

The boards eprsenting the Gites and their Wonders re double:side (A and) to alowfor some varetyinyour games.

Side [A]

“Tne Asides of the Wonders are organized aczording o the same princple:
«thefirs stage s worth 3victory points.
«thethirdstageisworth T victory points.

«the second stage gives a speal effect specific o the Wonder:

The Colossusof Rodes

The Lighthouse of Alexandria The Temple of Artemis in Ephests
the player adds 2 ild totheirttalineach onfict resolation.

th player ains resource oftheir choiefrom th 4 Raw materialtypes the player takes 3 coins rom the bank nd ads themtotei treasury.

[Sone iy, Wood, Ore]every urn. Canfcaton: the Seonsretaken romthebankony nce, inmedatey
Ctarifcation: hsresource cannot be sold throughcommerce. afterthis stage has been buit.

The Hanging Gardens ofBabyion
attheend ofthegame, th playe qin an extr cientfc symbolof the payer ca, onc per Age,buld astrctreof e choie o ree.

their hoie Clanfication: thepeyer canplac the cardused 2 corstrc ionmarker
Clanifcaion: thechaceofsymbolis madeat th endof the game, wen abovethe Wonder bard and rplce t undemeath when this abltyhas
countingvetory points, and ot when thstage o the Wonder s, beened.

The tatue of Zeusin Olympia The Mausoleum of Halicamassus

{0eplayer canlook thoughalof the s dcardedsinethebegining
o thegame (hosediscardefor coin s wel s those dicarded . the
endof anage pickone, andbuiifor ee.

Canfaton: tisspecalabity takes e attheendofthe trninwhich
s tageisult, W piayer icardeards st (xsinhecase of the th
tumofan age) theptyercanalsochoose fomamong them.

The Pyramids of Giza

the yramics don't have a specialabilty thelrsecond stage s worth 5
victory paints.

[image: image8.jpg]Face[B]

TheB sides o the Wonders are skghty more complex Neverthlss,bothsie e baancedand canbeusedinthesame gare.

The Colossus of Rhodes

The olosss s uitin2stages:
the st tage s worth i, coins and3victry oits.
the secondstageis worth e, coins and victorypoints.

The Hancing Gardens of Babyion
the firsttage s worth 3 victory ponts.
theecondtagegvesthe iayethe agion f playing theirseerth
e cardnstead o discrting . Th cardcan b playe by paying
scosts disarded o eam 3 cins o sedinthe kg ofthethrd
phase of the Wonder
the thirdtagegratsthe layer it symbol o thirchoce.
Canfation
~durigthesith .t playercanthereorepay bothcards teyhave
intand. Fthesecondstageofthe Wonder o bu, theBasyon piyer
canthen it tanthesixth turnandtenpeytheseventhcardsteal
ofdszardingic
thechoic ofthe symbolls made atthe endof the game and ot nte
tuminwhichthestageof the Wonder s it

The Pyramics of
thePyramis are un 4 tages,each wathvictorypoints (35.57) for
atotalof 20pons.

The Lighthouse of lexandria
e iststae allows thepaer to ginone resoureof thlr choce
fromamongthe 4 aw mateias toe,Cay,Woo, Ore] eachturn.
the second sage allows te layer to i one manufactured good
oftheirchoce cosenfrom among the3types s, Textle, Papy-
ns]eahtum.
thethirdstag sworth victory ponts.
QarifEtion:teseresaurcescannt b bougheby neghtoringctes

The Statueof Zeus i Olympia
h st stage allowsthe player to urchase raw mateil Stone,
lay,Wood, re rom o ertwoneighboring s o the price
ofone oiinsteadoftwn
e secondtages woth S ity poits
the third tage allows theplayer 0 "oy’ a Guk (purle card) of
theirciic buitbyone o thei two eighhring s,
Oaifeations:
thellststageisequialnt o the two Tadig Posts,Estemar Western
(ebow) -theefectsnotamuste, butthe onstruconofiter
the Eastermar Wester TatingPosts remais posse.
forthethinstae, the choiceofte Guid smadeattheendofthegane,
en cauntingpoits. The player ot the vetary ponts s tey
bttt G,
~Capyinga Gukdhas noefTeton he ty ofthecoped Guid's owrer

@OF T
The Temple o Atemis i Ephesus
thfirststag sworth 4 coins and 2victory ois.
 the second stageis worth coins a3 victoryports.
thethirdstage s worth 4 coins and S victary poits.
Carifaton: the o ar talen rom the ank ony anc, immediately
afertestagenas eentuit

The Mausoleumof Halcamassus
he st stage s worth 2 victory poits and the paye can ook at
alof the carts dicarded sice the eginingo the game and b
oneforfree.
the scondsage s worth] victory ot andte lyercan ook at
alof the carts dicarded sice the eginingo the game and b
oneforfree.
~whenthey ukithe tirdstage,theplayr canlookatallofthe ards
disartedsinc thebeginning of thegame and b oneforre.
Carifcaton: s speclctonstakenat the ndof theturninwhictie
sageistuit /fpayer dcardcardsonthat rnforempe,diingtie
6thtumof nage).the plyercanalchoose rom anorgthosecrds.

[image: image9.jpg]AGEI AGEII

TEWRLE
s

o

THEATER
S

TAVERN
W

EAST TRADING POST
o

AGEII AGEN

AGEM

T pmeon 7 iz
PO@ T
)

QE))

NOTHECAR . (7 s

- @@

@0 HAEN '
e
STRONGFOST | & & ceo
Qee0 gL
MARKETPLACE CARAVANSERY LIGHTHOISE .
b N @IQIQ@ID|]
co2- 00 oe
VINEVARD
L 5
uaza e
e o e @2l YD

YvERSITY (Y

LE @

[image: image10.jpg]Description of the symbols
Agelcards

thecardproduceste pitred raw material,

.m, 'ﬂu .sm .wm

”mmnmmummmmmm
eacnturn.

Carfeaton:theplayescanuseone ORthetteresourcetobuilasrc:

tureorawonderphase)butNOTothinagiventum Neighooringpiyers
My purchasceter regardlessof wtat theowrer choose toprodicz.

thecard producesth pctured manufactured goods.

Qs Qun @roms
D
[To—
R
S S

[————

thecardisworththe amount fcoins pictred,thecoins aretaken
fromthe bankony nce, when thecadispayed.

startngon theturolowingtheoein whichths
buldingas constreted, e ayes puchases aw
matril rom theneighboringcity ndicated by
thearmow for cainnsteadof 2.

fromthe turn folowingthe oe nwhich s
structure wa bl thepaye aysthe mant-

(2> facturedgootsbughtromhisorhereigtors
Tooininseadof2.

Carifation o the asern Tading s the Westen TadingPost and

theMartepace:arows show towheh eghtorigcity ot towheh

thedscountappies

~

Boards

1 Onceper age, paer canconstrut abuling fom i o e
hantforfre.

Theplayercanplaytheasardof eachagensteadf dcar:
dingitTiscardcanbeplyedbypayingtsost discardedto
gain3ooisarusdinthe onstrutiona s rer Wonder

Theplayercanlookat alcartsdiscardedsicethe begin-
ingofthe gamepick oneand bl o fre

The laer can,at the e e game, opy”a
\’ /1 Gltotsorterciot uapecard), bt byone
9 ttisorhertwoneigborngotis.

Agellcards

..Mummmmmmmmm
[T TR

thecardiswort csinper brown ardbuitinthe
player'scity ANDinthe two eighboring tes.

Cantaton:Thebrowncaruitinthereghborig
ctisonthesanetum sthe Wneyartareaunted

thecardisworth2aoinsper raycardbutinte
player'scity ANDinthe two eighboring tes.

< . Carlfcation: Te gy cas it ineghboring
atisontesae nasthe azasrarecounted

eadhtum, thecardproduces unitof oneof the:

@@ 1@ irmteEspriteper s

Qarieation:theseresourescanmot e bought
tyneigtvoringctes.

the cardproduces one o one o thethree
mnutactredgoots et oyersco.
Carifetion:theseesourzs camotbebought
beneigntoringctes

@101

Agelllcards

...meumgnm]mm

thecardgie Scoins per Wonderstageconstrctedints
omecityatthetimeitcomesintoply (3, 6.9or o).
At the ent o thegame,tecat i wort ictoy point.
perWonder stagebuit it homecity (1.2 Sor A points),

thecardgves coinper rown cardpresentinapayer sty
whenitisplayed. tthe ndaf the game, thecardisworth
itorypointforeachbrowncrdpresetintheplyer sty

hecardghves o for eachgrayardpresent it pyers
citywentomesintopy. e ndof the gane, e
isworth 2vitoy ot o each gray card presntinte
player'scity.

thecardgve ainper elowcardinth layer's ity tself-
incuded, et layed. At theend o the game, thecard
s worth victory ot fo eac yellow cad presentna
payerscty.

Carifation o the Are,th Port,the Chamber of Commere andte

Lihthaus: thecainsare takenony once whenthestructue st The

VEtory paintsarecounteda theend o thegame. acading ot arts

and Wonder phass uitat tatpoir.

Guilds

Nost Gudsare worth victory pins based on buidings bt by your
neghbors.

Hote: e toarrows anbotsides fthe picured ca. meansthat
thecart fromtheneghtoringcties e couted ut ot those of te
plaer it card

. ‘SpiesGuid: victory point foreachredcard
9 - prsentinbothneigborng s,
! MagitratesGuld: victory ot for ach
N - bhecardprsentinheneihboring i,
Workes Gl victorypantoeachbromn
9 - cardpresentintheneighoringcies.
Graftmans Guld: 2 vilory pons for each
< . raycardpresentntheneighboringies.
Traders i victory ot for s yellow
9 . canintheeihboringces.
' Prilosophers Guild: victory paintfo each
9 - greencard rsentinthe neihboring e,

Theather Guids am victry poits accocingto speifc e,

Buidersui: ictorypointforeacnWon-
dertage bt i the neghboring cities AND

9V npwomay

Sipowners Gul victorypointfor e brown,

BEE

- Caricatin: theSipowners G caunts towards
thstotat

SrategtsGul:vicorypoit o eachdfeat
<Q (> okenpresentntheneghborng s
Scentists Guld: the payer gais anextra
e .‘* sclntflcymbolof s r herchoie

Oaiftaton: thechole ofthegmbolsmade
atthe end o the game andnot when the
Galds bt

Carifeation: Resourcesproducedbybords ae NOTconidered ascards
(Vineyare Bozar ..).

[image: image11.jpg]SET-UP

~Echiplayergetsa Wonder boardand 3 consof vl .

«Forthe: decks ofcards,returntothe box the crtsunusedbased
onthenumber o players.

i, forthe Age A dek, randomly slect guids (purle cart)
andshulethemino the deck.

payers: SGads 4 players: 6 G Splayer:
Gpayers: BGaddsTplaes: 9Gaits

GAME OVERVIEW

A game beginsinAge | continueswith Age fand encs wit Age I
Victorypoinsarecountedat the end o Age .

Overview of an Age

At the beginning of each Age, each player gets ahand of 1 cards, dealt
randomiy (allcards from the plefor that Ageare given ou).

Each Ageis played over § game turns, in which the payers will put into
plyasinglecard,multaneously.

1.Choose a card
Each player looksat theif hand without showingit tothe other
Players anselctsa cad beore placngt e downbefoe
them.

Onceevery payer s seleted i or e cr, ey peform the.

action.

2. Action
‘Three actionsare possible with the chosen card:

- build the structur e an the card (you cannot buildthe same
struture twice:thecardisplaced nthe player' play e,
faceup.

~ build a stage of their Wonder (inthe order given by the
board, from et toright): the cad is partially placed under the
boar,face domn.

 take 3 coins from the bani the card s discarded, face down.

3.Move on to the next hand
Each player takes the hand of cards given o them by their neighbor.
The direction of hand rotation changes with every age:
dockuise o Age [counter-cockwse for Age .
‘and clockwise again or Age I,
On the sxth game tum ofeach Age, thlast cad s not passec:
it scarted,fcedown.

Quick Rules

BUILDING IN 7 WONDERS

Structures
« Caincost:the cot i paid o the bank.
~ free construction:the structure s built for free.
« Resource cost:the indicated resources are produced by the
player's ity and/or bought using the commerce rues.
- Free construction etain)- ¥, i the previous Age a player as
bl srucure namedexttothe rescurce o, tentiat
s ——

Wonder

- Resource cost:the esourcesndcated are prociuced by te
players ity an/or boughtusing the commerc s

Prodisction

~the resources of acityare produced by its Wonder board its
rowmcarts, gy s andbysomeot el cars.

~tobe ableto buld a structure o astage of a Wonderwithout
using commerce, a player's city must produce the resources
indicated on the structure’s card or wonder’s board.

~esources are not spent during construction. They canbe spent.
eachturn, fortheentire game. A ciy'sproduction cannever
sty

Commerce
B ——
~each resource bought s paid 2 coins to’ts owner (players can
‘never refuse trade).
selingaesute e ot prevet s cunr o beng b
Touse 1, ittt same . or el o onstruton.

END OF AN AGE

Exch Ageendsafter s sihgame .

e players it henproced it theesotionf mitaryconfits.

Exchplayercomparsthetotal amount of s symbos

presentonter miftarystuctures (rd crd) vith th ot

of eacho theirneghbringcies:
 Faplayerbasa e totalfanthat o a
eighboringcity,thtplyer taksa bty token
comespondingothe gewiich s ended
(hge: L Agel- dorke)
 Faplaerhasalover ot thn that o a
eighboringciy, it payertakesa Defeat (oken
(Avictory point)
 Faplayerhasa totaleqalt thatof aneighboringcty, o
okers artaken

Duringeac g eachpaertherfre g, dependingonthecas, 0,

or2tokenswhchareplced o isorher Wonderboar.

END OF GAME AND SCORING

Aetheendot Age I, one the conflcttokenshave ben hnded o,
theplayerstotal teivictorypoints:

1 Mitary Conllcts: poits rom Confict okens.

2 Feasrytontens corypoiebrevryais(etoercansarenopat.
2 Worder:points are eamedasinicated onthe Wonder s board

4 Gvitan Stracare: pointindicated onthe carss.

5 CommerciaSuctres points ndcated onte cards,

& Guds poits idted on thecards.

7ScinceStructures

@ o/
Total: 21 points

[image: image12.jpg]AGEN

Cards list and chains
LUMBER YARD 3 3 WORKERS GUILD = D £
(Card's rame >
Gt eqencyty - s STONEPIT oy CRATISMERS GULD. E]»
the mumber of payers. >
Sk
TRADERS GULD
Constrction’ ost =%

oRe Ve FOUNDRY (7 | PILGSOPHERS GULD
o s

o)) o @y

“TREE FARM SPIES GUILD
EXCARTION

o ®I&

TIMBER YARD.
o & /&
0o ©/a

BUILDERS GUILD

[image: image13.png]o)

Player Plays a Game

<sinclude>> =sinclude=>

<<includez
Flayer Plays Their Tum

Player Creates 2 Game !

Flayer Joins a Game

A

System

[image: image14.png]SeveriWonders

WicrosonXna Framewark Game

DryadEngine

XNAInpULInputhManager

UlScreen

Program Sevenanders Sams Sarmairtermal BinanGeralzeUlifies | [PhysicsUiiiies
-
Board Fiayer Deck
EniiyManager Timeranager| [Networdfanager
- a a
[
Behavour Gard Enify TmageConainer Timer NeiObject
- -] -
DebugBehaviour Playarea B ‘AnimationPlayer —<interfacess SyncedProperties
: > Timerhnterface
<<realife
! Animation nimatontanager
! -
intertace=>) | | [Rendemvanager Y
Renderable Lc]1 image TmageNanager
-
[
WaienuSeresn | [Credfsgereen ¥
RandomUtities <<inerface=> BackBuTerGoordinateystem Coordmatesystem
Renderer L
LobbyScreen JomGamesaeen
<<realize>» |
XORShitRandom SpriteBatchRenderer =<interface>> | <eqiize»» | PMySicalCamera
camera Lp - __
HUD
Cegen
Class A Als a B (Generalization) Class B
Ahas a B (Composition)
-

Als assosiated with B (Association)

‘Almplements interface B (Realization)
=srealize=>

Auses B (Usage)

[image: image15.png]GameState SevenwondersBot CompPlayer
-
L
' Strategy DiscardCardStrategy

EndGameBonusBenaviour

DebugBehaviour

Reauirernent

SeienceChoiceBehaviour

‘AduResourceBehaviour

GoldRequirement

‘AdUStatsF romStucturesBehaviour

‘AdaStatBehaviour

ResourceRequirement

DiscountBehaviour

WimicColourSirategy

RandomCardstrategy

[image: image16.png]50 A Player Starts And Plays A Game Of 7 Wonders,

LobbyScreen HetworkManager Deck HUD Sevenionders.

11.1.1: Update()

1112 Updateg |

11.12.1 getintance £xt()

[image: image17.png]sd During a game of 7Wonders, a player takes their turn..

[image: image18.png][sd A Player Sets Up A Game Of 7 Wonders,

LobbyScreen Wetianager | [SevenWonders.

[image: image19.png]

3

Requirements

This section contains what features must be implemented. Each requirement has its own unique identifier, description, plus where the decision to come up with it can be traced to. The source of traceability may either be from the official game rules (see Game Rules for notation information), assumptions, other requirements, or team decisions.
3.1 – Functional Requirements

Functional requirements define what behavior and functionality the software must have. They have been categorized appropriately below, based on different game states or areas of functionality.

	ID
	Functional Requirement
	Traceability

	Pre-Session

	FR-PS-01
	The system prevents starting of a session under three players or over seven players.
	GR-QR-01

A-01

	FR-PS-02
	Players can choose their own Wonder or have the system randomly select for them.
	GR-GS-02

	FR-PS-03
	The player can choose which side (A or B) they would like to play for their Wonder.
	GR-GS-02

	FR-PS-04
	The game decides which cards will be used and not used, based on the number of players in the session.
	GR-QR-01

GR-GS-01

	FR-PS-05
	Human players must be able to connect to a host player if they wish to join a game.
	A-06

	FR-PS-06
	The host player may start the session when their desired participants have joined.
	A-06

	FR-PS-07
	The host player can wait for human players to join before starting the session.
	A-06

	FR-PS-08
	The host player can add artificial players before the session begins.
	A-03

	FR-PS-09
	A player can freely exit before the session starts.
	A-08

	FR-PS-10
	A host player can exit before the session begins, closing the game for others.
	A-08

	FR-PS-11
	Each player begins the session with three coins of value one.
	GR-QR-01

	Player Turn

	FR-PT-01
	Once a player reaches a stage of their Wonder that rewards Shields, coins, and/or victory points (depending on their specific Wonder), they receive them immediately.
	GR-DW-01

through

GR-DW-16

	FR-PT-02
	Once each player has chosen their card(s) to play, the rest of the hand is passed to the neighbour either to the left or the right, based on the Age.
	GR-GO-07

	FR-PT-03
	A player can build a structure by selecting the card from their hand if they have enough resources or satisfy the requirements (e.g., other cards in play, buying resources from neighbours).
	GR-GO-05

	FR-PT-04
	A player's turn decision is kept hidden from everyone else until all have finished making their choices.
	GR-GO-03

	FR-PT-05
	A card can be discarded to gain three coins.
	GR-GO-08

	FR-PT-06
	A card cannot be played if the player has an identical card active.
	GR-GO-05

	FR-PT-07
	If a player has enough resources for the next stage of building their Wonder, they can choose to build it by discarding any card from their hand.
	GR-GO-06

	FR-PT-08
	A player with enough coins can choose to buy resources from a neighbouring player to play a card. By default, the player gives two of their coins to their neighbour per resource.
	GR-CO-06

	FR-PT-09
	 The game facilitates the effect(s) of a structure if it has been built, based on the card's symbols.
	GR-DS-01

through

GR-DS-04

	FR-PT-10
	A player may exit an ongoing session.
	A-08

	FR-PT-11
	A player is able to build a structure in Age II or III for free, requiring zero resources, if they have previously played a card that specifies the name of the new structure (a la Card Chaining).
	GR-CO-07

	FR-PT-12
	Scientific structures with the same scientific symbols can be stacked in play, providing for exponentially more victory points based on the size of the stack is.
	GR-EG-06

	Age-Related

	FR-AR-01
	The session begins in Age I.
	GR-GO-01

	FR-AR-02
	When an Age begins, each player is dealt a hand of seven random cards from the associated deck.
	GR-GO-02

	FR-AR-03
	On the sixth turn of an an Age, each player will receive two cards from their neighbour. After choosing the card they wish to play, the leftover is discarded.
	GR-GO-10

	FR-AR-04
	After the sixth turn of an Age, the system calculates military conflict points for each player and their neighbour, depending on the amount of Shields and the current Age.
	GR-GO-11

	FR-AR-05
	After the military conflicts have been resolved, the subsequent Age begins (unless the last Age was III).
	GR-GO-01

GR-GO-11

	End-Game

	FR-EG-01
	Once the military conflicts of Age III have been resolved, the session is considered over and each player's victory points are calculated.
	GR-EG-01

	FR-EG-02
	The system calculates victory points in a specific order: military conflicts, treasury contents (one point for every three coins), Wonder, civilian structures, scientific structures, commercial structures, and then guilds.
	GR-EG-01

	FR-EG-03
	The rankings based on each player's points are displayed after the game ends.
	A-05

	Interface-Related

	FR-IR-01
	The interface allows for the player to view the Wonder, resources, and active cards of every other player.
	A-07

	FR-IR-02
	A player can view all the details of a card that is active or in their hand.
	GR-QR-06

GR-GO-03

A-07

	FR-IR-03
	The interface lets the player choose which neighbour to buy resources from.
	GR-CO-06

	FR-IR-04
	Every other player is notified when a player leaves.
	A-08

	FR-IR-05
	Every other player is notified if an artificial player replaces an exiting player.
	A-04

A-08

	FR-IR-06
	An artificially intelligent bot is indicated as such to any other human players in the game.
	A-03

	FR-IR-07
	Once a player reaches a stage of their Wonder that has a choice of bonus or special ability (depending on their specific Wonder), the interface offers the corresponding options for player usage.
	GR-DW-01

through

GR-DW-16

	FR-IR-08
	The interface indicates which cards cannot be played (due to lack of resources, for example).
	A-07

	FR-IR-09
	There will be a list which displays all the cards that have been played during the session.
	A-07

	FR-IR-10
	The interface will display the resources available to the player.
	A-07

	FR-IR-11
	Players are notified about the beginning of an Age.
	GR-GO-02

A-09

	FR-IR-12
	Players are notified of the events that occur at the end of an Age.
	GR-GO-11

A-09

	FR-IR-13
	The system offers a scoreboard for players to view the session's statistics.
	A-05

	FR-IR-14
	The interface lets the player choose either to host a new game or join another host's game.
	A-06

	Artificial Players

	FR-AP-01
	A human player who exits a session prematurely is replaced by an artificial player that will resume controlling the Wonder.
	A-03

A-04

	FR-AP-02
	An artificial player decides on its own how it should make its moves, choosing an action each turn just as every other player does.
	A-03

	FR-AP-03
	All artificial players present in a game session disappear once it ends.
	A-02

3.2 – Non-Functional Requirements

Non-functional requirements deal with the quality of which the program must satisfy. These concern aspects such as accessibility, usability, and maintainability.

	ID
	Non-Functional Requirement
	Traceability

	NFR-01
	The system responds instantaneously as the player makes actions, such as selecting cards and making menu decisions.
	A-10

	NFR-02
	The system successfully facilitates network connections between players.
	A-06

	NFR-03
	The system calculates victory points after Age III instantaneously.
	GR-EG-01

A-10

	NFR-04
	The system advances Ages after the sixth turn instantaneously.
	GR-GO-11

A-10

3.3 – Assumptions

Throughout figuring out the problem space, assumptions needed to be made in order to capture software requirements. Many of the requirements above will therefore trace back to items below. The following table identifies them along with their justifications.
	ID
	Assumption
	Justification

	A-01
	Games must be played with no less than three players.
	The two-player version differs significantly, so the software need only cover games from three to seven players.

	A-02
	If a human player exits a session that contains no other human players, the game session ends.

	There is no point in continuing a game with no human players.

	A-03
	The game allows for play with artificially players.
	The player can play with the computer in case there are no available human opponents.

	A-04
	The session will continue with at least one human player, even if another human exits.
	If a human player exits, removing their Wonder would disrupt the game flow.

	A-05
	The players wish to be able to see a ranked scoreboard.
	Players will want to easily know how well they and others are doing.

	A-06
	The game allows for human players to play together from separate machines.
	The game is for up to seven players. People may be able to play from a distance instead of just playing on the same machine.

	A-07
	The player may be able to view any card, Wonder, and resources that are active during the game.
	The player should be able to have the information they need to make the informed decisions.

	A-08
	A player can exit the game if they wish.
	Players need not be forced to stay in a game if they are unable.

	A-09
	Players wish to know the current state of the game.
	The board game itself displays important game information.

	A-10
	The players wish to play the game without unnecessary slowdown.
	The use of a software should smooth out the experience of the original board game.

4

Use Cases

A use case depicts a scenario, the system's interactions from “actors”, and the paths of events that may follow. In the case of 7 Wonders, the external actors include the player and the system.
4.1 – Use Case Diagram

The following diagram corresponds to the use cases in Section 4.2. Actors are depicted as stick figures. Ellipses represent use cases, dashed arrows with an <<include>> stereotype represent an “includes” relationship, and regular lines represent association.

4.2 – Use Cases

Each use case is detailed in its own table, describing their sequence of events.

	ID
	Name
	Description

	UC-01

UC-01
	Player

Plays a Game

Player

Plays a Game
	A player starts and plays a game of 7 Wonders.
Actors:
· Player

· System
Triggering Event:
A new game of 7 Wonders is started.
Pre-Condition(s):
The player is not in a game.
Main Sequence:
1. Player arranges a game with three to seven players (execute UC-03 if player chooses to host, or UC-04 if player chooses to be a guest)

2. Until all three Ages have been played:

2.1. System deals the cards out appropriately for the current game and current Age to each player

2.2. Until everyone has played six turns

2.2.1. System displays the current game state

2.2.2. Every player plays their turn (execute UC-02)

2.2.3. The system passes the player's hand to the next player over in the direction as determined by the Age

2.3. System applies combat victory points to players for winning or losing battles, notifying them

2.4. System advances to the next Age and notifies Players

3. System notifies the players that the game is over, presents the players with the final scoreboard and statistics, and waits for them to leave the game

4. Player leaves the game
Post-Condition(s):
· Game has ended

· The player is not in a game
Resulting Event:
The player leaves the game.
Alternative Scenarios:

Alternative Scenarios:

· System is halted or terminated unexpectedly:
· The system that has been halted or terminated enters an undefined state

· For all other players' 7 Wonders systems, treat it as if a player has ended the game early and skip to Step 3 in the Main Sequence
· Player Leaves Game Early
· Can happen at any time during Step 2

· For the player leaving, skip to Step 4

· The player who leaves is replaced with an artificial player, and the other players are notified

· If the last human player is leaving, the game is forcibly ended

· Alternative Post-Condition: game may not have ended
Traceability:
· FR-PS-04, FR-PS-11

· FR-PT-01, FR-PT-02, FR-PT-10, FR-PT-12

· All FR-AR

· All FR-EG

· All FR-IR

· All FR-AP

· All NFR

· A-01, A-02, A-04, A-05, A-06, A-08, A-09,
A-10

	UC-02

UC-02
	Player Plays Their Turn

Player Plays Their Turn
	During a game of 7 Wonders, a player takes their turn.
Actors:
· Player

· System
Triggering Event:
 The system enters a player turn round.
Pre-Condition(s):
· The player is in a game

· It is a player turn round
Main Sequence:

Main Sequence:
1. If the player has unlocked an optional passive ability, the system asks if they would like to use it now

2. Until the player has played the proper number of cards for their current turn:

2.1. The system applies remaining applicable passive effects that will affect the player's turn

2.2. The player selects a card to play

2.3. The system notifies the player about their options for playing the selected card and describes the effects that each selection would apply

2.4. The player selects an option

2.5. The system takes the selected card from the player's hand and updates some of the game state to reflect the in-progress turn

2.6. The system displays the partially updated game state

3. If not every player is finished their turn, the system waits for every other player to be finished, and then the player is notified
Post-Condition(s):
It is no longer the player's turn to move.
Resulting Event:
The game state has been advanced.
Alternative Scenarios:

· Player deselects a card
(Alternative Step 2.4.b)
2.4.b. Player deselects the card (return to the
 most recent Step 2.2 in the Main
 Sequence)
Traceability:
· All FR-PT except FR-PT-10

· FR-IR-01 through FR-IR-11

· FR-AP-02

· NFR-01, NFR-02

	UC-03
	Player Creates a Game
	A player sets up a game of 7 Wonders.
Actors:
· Player

· System
Triggering Event:
The player chooses to host a new game of 7 Wonders.
Pre-Condition(s):
The player is not in a game.
Main Sequence:
1. At their discretion, the host player waits for guest players to join their game, or adds artificial players to his game.

2. By default, the player can choose to be given a random Wonder. Alternatively, they can specifically select their own.

3. Once there are between three to seven players, the host player may choose to begin the session.
Post-Condition(s):
The player is in a session.
Resulting Event:
The players begin the session.
Traceability:
· FR-PS-01 through FR-PS-10

· FR-IR-14

	UC-04

	Player

Joins a Game

	A player joins a game of 7 Wonders as a guest.
Actors:
· Player

· System
Triggering Event:
The player chooses to join a game of 7 Wonders as a guest.
Pre-Condition(s):
The player is not in a game.
Main Sequence:

Main Sequence:
1. The player finds and specifies a game to join that is available, i.e., has not already began as a session and has not been filled.

2. The guest player waits in the lobby for the host to initialize the session.

2.1. While waiting, the player can choose to be given a random Wonder. Alternatively, they can specifically select their own.
Post-Condition(s):
The player is in a session.
Resulting Event:
The players begin the session.
Traceability:
· FR-PS-01 through FR-PS-10

· FR-IR-14

4.3 – Responsibilities

These responsibilities are derived from the use cases, and are used with the use case maps further on. The use cases from which they come from are shown in the right-most column.

	ID
	Responsibility
	Use Case(s)

	RESP-01
	The system decides what cards will be used for the current Age and the number of players.
	UC-01

	RESP-02
	The system randomly deals the cards to each player.
	UC-01

	RESP-03
	The system displays the current game state.
	UC-01

	RESP-04
	The system passes the player's hand to their neighbour.
	UC-01

	RESP-05
	The system applies combat victory points to the players.
	UC-01

	RESP-06
	The system checks for any human players that have exited.
	UC-01

	RESP-07
	The system replaces any exiting human players with an artificial player.
	UC-01

	RESP-08
	The player is notified that any exiting human player has been replaced by artificial players.
	UC-01

	RESP-09
	The system determines whether six turns have been played.
	UC-01

	RESP-10
	The system notifies the player that the game has terminated unexpectedly.
	UC-01

	RESP-11
	The system discards the seventh card of each player's hand if it was unused.
	UC-01

	RESP-12
	The system determines whether Age III has ended.
	UC-01

	RESP-13
	The system advances to the next Age.
	UC-01

	RESP-14
	The system displays the scoreboard to each player.
	UC-01

	RESP-15
	The player exits the game.
	UC-01

	RESP-16
	The system determines if the player has unlocked a optional passive ability.
	UC-02

	RESP-17
	The player decides to activate their passive ability.
	UC-02

	RESP-18
	The system applies remaining applicable passive effects to the player.
	UC-02

	RESP-19
	The system displays the cards in the player's hand.
	UC-02

	RESP-20
	The player selects a card to play.
	UC-02

	RESP-21
	The system notifies the player about their options in playing the chosen card.
	UC-02

	RESP-22
	The player selects an option for how they wish to play their card.
	UC-02

	RESP-23
	The system takes the chosen card from the player's hand.
	UC-02

	RESP-24
	The system displays the partially updated game state.
	UC-02

	RESP-25
	The system checks for whether the player has finished choosing their card(s) to play.
	UC-02

	RESP-26
	The system determines whether every player has completed their turn.
	UC-02

	RESP-27
	The system advances the game state.
	UC-02

	RESP-28
	The player decides on being given a random Wonder or selecting a specific one to play.
	UC-03

UC-04

	RESP-29
	The host player waits for a guest player to join.
	UC-03

	RESP-30
	The host player adds an artificial player.
	UC-03

	RESP-31
	The host checks that there are enough players.
	UC-03

	RESP-32
	The host begins the session.
	UC-03

	RESP-33
	The system presents to the player games they can choose to join.
	UC-04

	RESP-34
	The player specifies an available game to join.
	UC-04

	RESP-35
	The system verifies whether or not the game to be joined is accessible.
	UC-04

	RESP-36
	The system connects the player to the game as a guest.
	UC-04

	RESP-28
	The player decides on being given a random Wonder or selecting a specific one to play.
	UC-03

UC-04

	RESP-37
	The guest player waits for the host player to begin the session.
	UC-04

	RESP-38
	The system initializes the session on behalf of the host player.
	UC-04

4.4 – Unbound Use Case Maps

The unbound use case maps here correspond to their counterparts in Section 4.2. Triggering and resulting events are labeled in each following table, as well as the associated responsibilities for ease of viewing.

UUCM-01

	TE-01A
	A new game of 7 Wonders is started.

	TE-01B
	The system is halted or terminated unexpectedly.

	RE-01
	The player leaves the game.

	ID
	Responsibility
	Use Case(s)

	RESP-01
	The system decides what cards will be used for the current Age and the number of players.
	UC-01

	RESP-02
	The system randomly deals the cards to each player.
	UC-01

	RESP-03
	The system displays the current game state.
	UC-01

	RESP-04
	The system passes the player's hand to their neighbour.
	UC-01

	RESP-05
	The system applies combat victory points to the players.
	UC-01

	RESP-06
	The system checks for any human players that have exited.
	UC-01

	RESP-07
	The system replaces any exiting human players with an artificial player.
	UC-01

	RESP-08
	The player is notified that any exiting human player has been replaced by artificial players.
	UC-01

	RESP-09
	The system determines whether six turns have been played.
	UC-01

	RESP-10
	The system notifies the player that the game has terminated unexpectedly.
	UC-01

	RESP-11
	The system discards the seventh card of each player's hand if it was unused.
	UC-01

	RESP-12
	The system determines whether Age III has ended.
	UC-01

	RESP-13
	The system advances to the next Age.
	UC-01

	RESP-14
	The system displays the scoreboard to each player.
	UC-01

	RESP-15
	The player exits the game.
	UC-01

UUCM-02

	TE-02
	The system enters a player turn round.

	RE-02
	The game state has been advanced.

	ID
	Responsibility
	Use Case(s)

	RESP-16
	The system determines if the player has unlocked a optional passive ability.
	UC-02

	RESP-17
	The player decides to activate their passive ability.
	UC-02

	RESP-18
	The system applies remaining applicable passive effects to the player.
	UC-02

	RESP-19
	The system displays the cards in the player's hand.
	UC-02

	RESP-20
	The player selects a card to play.
	UC-02

	RESP-21
	The system notifies the player about their options in playing the chosen card.
	UC-02

	RESP-22
	The player selects an option for how they wish to play their card.
	UC-02

	RESP-23
	The system takes the chosen card from the player's hand.
	UC-02

	RESP-24
	The system displays the partially updated game state.
	UC-02

	RESP-25
	The system checks for whether the player has finished choosing their card(s) to play.
	UC-02

	RESP-26
	The system determines whether every player has completed their turn.
	UC-02

	RESP-27
	The system advances the game state.
	UC-02

UUCM-03

	TE-03
	The player chooses to host a new game of 7 Wonders.

	RE-03
	The players begin the session.

	ID
	Responsibility
	Use Case(s)

	RESP-28
	The player decides on being given a random Wonder or selecting a specific one to play.
	UC-03

UC-04

	RESP-29
	The host player waits for a guest player to join.
	UC-03

	RESP-30
	The host player adds an artificial player.
	UC-03

	RESP-31
	The host checks that there are enough players.
	UC-03

	RESP-32
	The host begins the session.
	UC-03

UUCM-04

	TE-04
	The player chooses to join a game of 7 Wonders as a guest.

	RE-04
	The players begin the session.

	ID
	Responsibility
	Use Case(s)

	RESP-33
	The system presents to the player games they can choose to join.
	UC-04

	RESP-34
	The player specifies an available game to join.
	UC-04

	RESP-35
	The system verifies whether or not the game to be joined is accessible.
	UC-04

	RESP-36
	The system connects the player to the game as a guest.
	UC-04

	RESP-28
	The player decides on being given a random Wonder or selecting a specific one to play.
	UC-03

UC-04

	RESP-37
	The guest player waits for the host player to begin the session.
	UC-04

	RESP-38
	The system initializes the session on behalf of the host player.
	UC-04

4.5 – Bound Use Case Maps

The bound use case maps below correspond to the previous unbound ones. Following each map are descriptions for triggering and resulting events.
BUCM-01

	TE-01A
	A new game of 7 Wonders is started.

	TE-01B
	The system is halted or terminated unexpectedly.

	RE-01
	The player leaves the game.

BUCM-02

	TE-02
	The system enters a player turn round.

	RE-02
	The game state has been advanced.

BUCM-03

	TE-03
	The player chooses to host a new game of 7 Wonders.

	RE-03
	The players begin the session.

BUCM-04

	TE-04
	The player chooses to join a game of 7 Wonders as a guest.

	RE-04
	The players begin the session.

5

Design Decisions
This section documents design decisions that have been taken with respect to classes and objects chosen for the system. Included is a Unified Modeling Language (UML) diagram in Section 5.2.

5.1 – Decisions

	ID
	Design Decision
	Traceability

	DD-01
	Use a peer-to-peer model for networking
We decided to use a peer-to-peer model for simplicity. Rather than implement a server to relay messages, we can create a complete mesh between each of our peer nodes and simply send every message directly to everyone. This simplifies coding, since we do not need to handle hosting a game differently with extra server code.
	Group Decision

	DD-02
	Computer Players connect over the network as a separate client
Rather than have specialty cases in the game code for computer players, we can write them as separate clients that connect and handle their own actions. This is simpler to implement and easier to test, since there is a clear divide using a common interface. The divide allows us to ensure that game code is not broken or made messy in the process of creating the computer players – each project with their separate requirements can implement what they need how they need them and be designed around the common network interface.
	Group Decision

	DD-03
	Singletons
It made sense that some key main system classes (Game, EntityManager, RenderManager) be Singletons. Only one instance of each of these should ever exist, only one is needed, and access to their instances is required across the code. The code and design is more straight-forward thanks to this decision.
	Group Decision

	DD-04
	Cards, Boards, Behaviours, and the Strategy Pattern
The Strategy Pattern is extremely useful for implementing the game Cards and their Behaviours. We wanted to be able to reuse a generic Card class, rather than implement the various cards specifically. Using the Strategy pattern, we could do this and keep the code very clean and simple, organizing each Card's individual action into a class called Behaviour.

On top of this, the Behaviour class and Strategy pattern could be used again in implementing the Wonder Stages on the various Boards.
	Group Decision

	DD-05
	StrategyBot and the Strategy Pattern
In order to provide a bot which allowed the user to choose and switch between game strategies, we used the Strategy pattern again. In addition to allowing us to mix and match, this pattern allows the bot to be easily expandable, as it makes strategies more modular.
	Group Decision

	DD-06
	Dragging and dropping cards in order for play
To make an action with a card, the player must select a card from their hand with the mouse and drag it to a slot according to what move they wish to make. The basis of this design decision was from playing the board game in reality: the player would hold a card and place it in front of them to signify that they made their turn. This seemed more natural than selecting cards and actions with the keyboard, or even having to click upon a series of menus to make an action. Implementation-wise, this simplified the process by not needing to create said menus. The player just needs to drop the card in the appropriate place to play.
	Group Decision

	DD-07
	Graphical display of relevant statistics for each player
The game displays all the resources, victory points, shields, and other statistics at the top of the screen with a tallies of how much the player has accumulated for each. This decision reduces interface clutter, and lets the player instantly view how many of a type of resource they have instead of trying to count all the symbols they have. Card chaining information is hidden until the player selects a card that can be chained, which helps in cleaning the interface up.
	Group Decision

	DD-08
	Testing of bot behaviours and strategies
We were able to test how our bots were behaving and what strategies they were using. To do this, we added instances of them into a running game and looked at how they were playing their cards. As they were active debugging information was printed through their consoles, aiding us greatly in fixing their implementations.
	Group Decision

5.2 – Structural Model (7 Wonders)

5.3 – Structural Model (Bots)

This diagram involves the implementation of bots (artificial players) in the software.

6

Object Specifications
NetObject
	Name
	ID
	Description
	Inheritance

	NetObject
	OS-01
	Used in networking process, used to make sure that everyone is up to date, and also handles overflow
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	ownerID
	Private int
	Read/write
	setOwnerID()

getOwnerID()

	uid
	Private int
	Read/write
	getUID()

setUID()

	nextUpdateID
	Private int
	Read/write
	getNetUpdate()

getNextUpdateID()

updateResponse()

	cachedUpdate
	Private byte[]
	Read/write
	getNetUpdate()

updateResponse()

	cachedUpdateID
	Private int
	Read/write
	getNetUpdate()

updateResponse()

	cachedUpdateResponseCount
	Private byte
	Read/write
	getNetUpdate()

updateResponse()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getOwnerID
	int
	--
	--
	Returns the current value of the ownerID variable

	setOwnerID
	void
	ownerID
	int
	Sets the value for the ownerID variable

	getUID
	int
	--
	--
	Returns the current value of the uid variable

	setUID
	void
	uid
	int
	Sets the value for the uid variable

	createNetUpdate
	Byte[]
	--
	--
	Returns the next update this object wants to send over the netgame to its respective counterparts

	handleNetUpdate
	void
	update
	Byte[]
	

	updateSuccessful
	void
	update
	Byte[]
	Notifies the NetObject that the byte[] update was successfully updated across all games

	getNetUpdate
	Byte[]
	--
	--
	

	getNextUpdateID
	int
	--
	--
	Returns the value for the next ID to be updated

	updateResponse
	void
	updateResponseID
	int
	If the update was successful, calls the updateSuccessful procedure

Network Manager

	Name
	ID
	Description
	Inheritance

	Network Manager
	OS-02
	Used to handle everything to do with the networking of the game. Located in the game engine
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	GameMessageType
	Enum
	Read
	Connect()

sendMessage()

sendEventMessage()

setupPendingConnection()

handleIncomingMessage()

	inNetGame
	Boolean
	Read/write
	Disconnect()

isInNetGame()

setInNetGame()

handleIncomingMessage()

	clientID
	Int
	Read/write
	getClientID()

setupPendingConnection()

handleIncomingMessage()

	nextFreeClientID
	Int
	Read/Write
	handleIncomingMessage()

sendUpdates()

	nextFreeUID
	Int
	Read/Write
	claimUID()

handleIncomingMessage()

	peerNode
	NetPeer
	Read/write
	NetworkManager()

Connect()

Disconnect()

refreshAvailableGames()

sendMessage()

handleIncomingMessage()

handleUpdates()

	connectedClients
	HashDictionary<int, NetConnection>
	Read/write
	Disconnect()

getNumConnectedClients()

sendEventMessage()

setupPendingConnection()

handleIncomingMessage()

sendUpdates()

	pendingConnections
	HashedLinkedList<NetConnection>
	Read/write
	Disconnect()

handleIncomingMessage()

sendUpdates()

	pendingConnectionClientID
	Int
	Read/write
	setupPendingConnection()

handleIncomingMessage()

	pendingConnectionHandshakeCount
	Int
	Read/write
	handleIncomingMessage()

	pendingConnectionMessageSent
	boolean
	Read/write
	handleIncomingMessage()

sendUpdates()

	pendingConnectionWaitTime
	Double
	Read/write
	handleIncomingMessage()

sendUpdates()

	netObjects
	HashDictionary<Tuple<int,int>, NetObject>
	Read/write
	registerNetObjects()

deregisterNetObjects()

sendUpdates()

	Registered
	hashedLinkedList<NetObject>
	Read/write
	registerNetObject()

deregisterNetObject()

registerNetObjects()

	deregistered
	hashedLinkedList<NetObject>
	Read/write
	deregisterNetObject()

deregisterNetObjects()

	availableGames
	LinkedList<Tuple<IPEndPoint, byte[]>>
	Read/write
	refreshAvailableGames()

getKnownAvailableGames

handleIncomingMessage()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	NetworkManager
	--
	appID
	String
	Constructor

	getClientID
	Int
	--
	--
	Returns the current value of the clientID variable

	claimUID
	Int
	--
	--
	Returns the current value of the nextFreeID variable

	Connect
	Void
	Host
	String
	Calls the appropriate connect procedure given the parameter type

	Connect
	Void
	endpoint
	IPEndPoint
	Calls the appropriate connect procedure given the parameter type

	Connect
	NetConnection
	endpoint, gmt, data
	IPEndPoint, GameMessageType, byte[]
	Connects

	Connect
	NetConnection
	Host, port, gmt, data
	String, int, GameMessageType, byte[]
	

	Disconnect
	Void
	--
	--
	Terminates all of the connections with the clients and terminates and pending connections

	isInNetGame
	Boolean
	--
	--
	Returns the current value of the inNetGame variable

	setInNetGame
	Void
	inNetGame
	Boolean
	Allows the inNetGame variable to be set to a true or false value

	getNumConnectedClients
	Int
	--
	--
	Returns an integer representing how many clients are connected

	refreshAvailableGames
	Void
	--
	--
	Clears the current available games and does another search to see what games are available at the current time

	getKnownAvailableGames
	LinkedList<Tuple<IPEndpoint, byte[]>>
	--
	--
	Returns the current value of the availableGames variable

	registerNetObject
	Void
	netObj
	NetObject
	Adds the netObj to the HashedLinkedList of netObjects

	deregisterNetObject
	Void
	netObj
	NetObject
	Removes all the copies of the netObj from the HashedLinkedList of netObjects

	registerNetObjects
	Void
	--
	--
	

	deregisterNetObjects
	Void
	--
	--
	

	sendMessage
	Void
	Data, destinations, gmt, ndm
	Byte[], list, GameMessageType, NetDeliveryMethod
	

	sendMessage
	Void
	Data, destination, gmt, ndm
	Byte[], NetConnection, GameMessageType, NetDeliveryMethod
	

	sendEventMessage
	Void
	Data
	Byte[]
	Sends event messages in reliable order

	setupPendingConnection
	Void
	pendingConnection
	NetConnection
	Sets up the new connection and adds the client to the list of already connected clients

	handleIncomingMessage
	Void
	Msg
	NetIncomingMessage
	Stores the game info, approves the connection, handles errors,

	handleUpdates
	Void
	--
	--
	Checks for registering/deregistering netObjects and also checks for incoming messages

	sendUpdates
	Void
	elapsedTime
	Double
	Handles pending connections, if there is nothing to be updated it will skip the current netObject

Renderer

	Name
	ID
	Description
	Inheritance

	Renderer
	OS-03
	Responsible for rendering the images/text/anything that wants to be displayed on screen
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	--
	--
	--
	--

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	Begin
	Void
	--
	--
	Begins the rendering process

	End
	Void
	--
	--
	Ends the rendering process

	renderImage
	Void
	Image, position
	Image, Vector2
	Renders the image passed in with the image variable at the position designated by the position parameter

	renderText
	Void
	Text, position, font, color
	String, Vector2, SpriteFont, Color
	Renders the text specified by the text parameter, at the designated location with the assigned font and colour

Entity

	Name
	ID
	Description
	Inheritance

	Entity
	
	Used to store and control the information for all the entities to be used in the game. Located in the game engine
	Renderer

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	Health
	Int
	Read/write
	getHealth()

setHealth()

update()

	Body
	Body
	Read/write
	getBody()

setBody()

init()

cleanup()

dispose()

render()

	Visible
	Boolean
	Read/write
	isVisible()

setVisible()

render()

	renderLayer
	Float
	Read/write
	getRenderLayer()

setRenderLayer()

update()

	Scale
	Vector2
	Read/write
	getScale()

setScale()

render()

	Flip
	SpriteEffects
	Read/write
	getFlip()

setFlip()

render()

	imageContainer
	ImageContainer
	Read/write
	setImage()

render()

	animationPlayer
	AnimationPlayer
	Read/write
	setImage()

getAnimationPlayer()

cleanup()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	isVisible
	Boolean
	--
	--
	Returns the true or false value of the visible variable

	setVisible
	Void
	Visible
	Boolean
	Allows the visible variable to be set to true or false

	getRenderLayer
	Float
	--
	--
	Returns the current value for the renderLayer variable

	setRenderLayer
	Void
	renderLayer
	Float
	Allows the renderLayer variable to be set to a float value

	getScale
	Vector2
	--
	--
	Returns the current value of the scale variable

	setScale
	Void
	Scale
	Vector2
	Allows the scale variable to be set to a Vector2 value

	onScaleChange
	Void
	--
	--
	Currently does nothing but can be overwritten when you want to handle scale change events

	getFlip
	SpriteEffects
	--
	--
	Returns the value of the flip variable

	setFlip
	Void
	Flip
	SpriteEffects
	Allows the flip variable to be set to a SpriteEffects value

	setImage
	Void
	imagePath
	String
	Sets the image variable to the value passed into the imagePath parameter

	onImageChange
	Void
	--
	--
	Does nothing right now, but can be overwritten to handle image change events

	getAnimationPlayer
	AnimationPlayer
	--
	--
	Returns the current value for the animationPlayer variable

	getHealth
	Int
	--
	--
	Returns the health of the entity

	setHealth
	Void
	Health
	Int
	Allows the health variable to be set to the value of the health parameter

	getBody
	Body
	--
	--
	Returns the body of the entity

	setBody
	Void
	B
	Body
	Sets the body of the entity

	Init
	Void
	--
	--
	Enables the entity body and initializes the user data

	cleanup
	Void
	--
	--
	Disables the entity body and destroys all user data. Also pauses the animations

	Dispose
	Void
	--
	--
	Removes this instance of the entity from the game

	onDispose
	Void
	--
	--
	Does nothing right now

	Update
	Void
	elapsedTime
	Double
	Checks to see if the entity still exists. If it doesn’t then remove it from the game

	Render
	Void
	R
	Renderer
	Renders the entity in the game

Game

	Name
	ID
	Description
	Inheritance

	Game
	OS-04
	Holds and controls the basic setup and executable information for the game. Located in the game engine
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	gameInternal
	GameInternal
	Read/write
	Content()

Game()

Initialize()

Exit()

Run()

	Instance
	Game
	Read/write
	getInstance()

setInstance()

	Args
	String[]
	Read/write
	getArgs()

run()

	viewableArea
	CoordinateSystem
	Read/write
	Game()

getViewableArea()

	viewableAreanInPixels
	CoordinateSystem
	Read/write
	Game()

getViewableAreaInPixels()

	physicsWorld
	World
	Read/write
	Game()

getPhysicsWorld()

	inputManager
	InputManager
	Read/write
	Game()

getInputManager()

	networkManager
	NetworkManager
	Read/write
	Game()

getNetworkManager()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getArgs
	String[]
	--
	--
	Returns the value of the args variable

	getViewableArea
	CoordinateSystem
	--
	--
	Returns the viewableArea variable for the game

	getViewableAreaInPixels
	CoordinateSystem
	--
	--
	Returns the viewableAreaInPixels variable for the game

	getPhysicsWorld
	World
	--
	--
	Returns the physics world being used for the game

	getInputManager
	InputManager
	--
	--
	Returns the input manager being used to play the game

	getNetworkManager
	NetworkManager
	--
	--
	Returns the networkmanager used to connect all the clients

	Initialize
	Void
	--
	--
	Sets up the input, controls and game

	loadContent
	Void
	--
	--
	Will load in any content needed in the running of the game

	unloadContent
	Void
	--
	--
	Will destroy any content previously loaded into the game

	Update
	Void
	gameTime
	GameTime
	Updates the cycles of the game

	Render
	Void
	gameTime
	GameTime
	Calls the renderer to do any rendering that needs to be done for the game

	canPlayersJoinGame
	Boolean
	--
	--
	Returns a true or false value that determines if more players are able to join the game

	getGameMetaData
	Byte[]
	--
	--
	Returns any meta data from within the game

	handleEventMessage
	Void
	Data
	Byte[]
	Will handle any event messages passed through the game

	Exit
	Void
	--
	--
	Exits the game

	Run
	Void
	Args
	String[]
	A game can only be run once. This runs the game

Seven Wonders

	Name
	ID
	Description
	Inheritance

	SevenWonders
	OS-05
	This is no longer engine related, this is pure game related material.
	DryadEngine.Game

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	randomNumberGenerator
	XORShiftRandom
	Read/Write
	getRandomNumberGenerator()

	inGame
	Boolean
	Read/write
	startGame()

handleEventMessage()

	Players
	LinkedList<Player>
	Read/write
	startGame()

getPlayer()

getCurrentPlayer()

getNumPlayers()

	currentPlayerIndex
	int
	Read/write
	startGame()

getCurrentPlayer()

getCurrentPlayerIndex()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getInstance
	SevenWonders
	--
	--
	Returns the instance of the game that will be running

	Initialize
	Void
	--
	--
	Initializes all of the rendering and materials that will be needed for the game

	loadContent
	Void
	--
	--
	Loads in all the content that will be used with the game

	unloadContent
	Void
	--
	--
	Unloads all the content that was previously loaded in, to be done after the game

	handleEventMessage
	Void
	Data
	Byte[]
	Handles any debugging messages necessary

	Update
	Void
	gameTime
	GameTime
	Updates the game loop, will handle all requirements necessary for running the game

	Render
	Void
	gameTime
	GameTime
	Renders everything to do with the game

	StartGame
	void
	--
	--
	This is called when a new game starts. Handles setting up the new players and initializing the GUI

	getPlayer
	Player
	index
	int
	Returns the player in the list specified by the index provided to the method

	getCurrentPlayer
	Player
	--
	--
	Returns the player that the game is currently focusing on

	getCurrentPlayerIndex
	int
	--
	--
	Returns the index number of the player that the game is currently focusing on

	getNumPlayers
	Int
	--
	--
	Returns the number of players that are in the game

	getRandomNumberGenerator
	XORShiftRandom
	--
	--
	Returns a random number

	advanceToNextRound
	void
	--
	--
	Passes the hand to the next player (direction is based on age)

	advanceToNextAge
	void
	--
	--
	Increases the age and gets rid of the remaining cards. Also tabulates the scores for every player

Player
	Name
	ID
	Description
	Inheritance

	Player
	OS-06
	Used to control all actions and data pertaining to the player
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	ResourceType
	Enum
	Read/write
	getResourceCount()

setResourceCount()

getTotalResourceCount()

	board
	Board
	Read/write
	getBoard()

setBoard()

	hand
	LinkedList<Card>
	Read/write
	getHand()

setHand()

	resources
	Byte[]
	Read/write
	getResourcesCount()

setResourcesCount()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getBoard
	Board
	--
	--
	Returns the board that is assigned to the player

	setBoard
	Void
	board
	Board
	Assigns a board to the player

	getHand
	LinkedList<Card>
	--
	--
	Returns the current card hand that is in the player’s possession

	setHand
	Void
	hand
	LinkedList<Card>
	Sets the players hand to the hand that was passed to the method

	getResourceCount
	Byte
	Resource
	ResourceType
	Returns the number of the specified resource

	setResourceCount
	Void
	Resource, count
	ResourceType, byte
	Sets the amount of resources to the specified resource type

	getTotalResourceCount
	Byte
	Resource
	ResourceType
	Returns the total resource count of the player

Card
	Name
	ID
	Description
	Inheritance

	Card
	OS-07
	Used to control all actions and data that can be applied to the cards in the game
	Entity

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	frontImagePath
	String
	Read/write
	Card()

	backImagePath
	String
	Read/write
	Card()

	behaviour
	Behaviour
	Read/write
	Card()

Play()

	outOfPlay
	Boolean
	Read/write
	Card()

Select()

Play()

Discard()

Update()

	collidingPlayArea
	PlayArea
	Read/write
	Deselect()

onCollisionHandler()

onSeperationHandler()

	cardSelected
	Boolean
	Read/write
	Select()

Deselect()

Update()

	fixedMouseJoint
	FixedMouseJoint
	Read/write
	Select()

Deselect()

Update()

	originalPosition
	Vector2
	Read/write
	Select()

Deselect()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	prepareResources
	Void
	--
	--
	Loads the images for all of the cards

	Select
	Void
	--
	--
	Sets the card to being selected, sets the original position, and fixes it to the mouse for movement

	Deselect
	Void
	--
	--
	Sets the card to being not selected, and releases the card from the mouse. If the card was over the “Play area” then it attaches the card to that area, or does the same for the “Discard” area. If it is over neither of these areas then it returns the card to its original position

	Play
	Void
	owner
	Player
	Handles whatever action needs to be done when a card is played (depending on which card was played)

	Discard
	Void
	owner
	Player
	Handles when a card is discarded. Adds gold to the player’s resources and gets rid of the card

	onCollisionHandler
	Bool
	F1, f2, f3
	Fixture, Fixture, Contact
	Handles the collision between a card and the play areas where cards can be placed

	onSeperationHandler
	Void
	F1, f2
	Fixture, Fixture
	Handles the separation between a card and the play areas

	update
	Void
	elapsedTime
	Double
	Updates the mouse’s target world position and moving the card with the mouse. Also handles scrolling through cards

HUD
	Name
	ID
	Description
	Inheritance

	HUD
	OS-08
	Used to display the Heads Up Display of the game, including the displaying of resources, backgrounds, cards, etc.
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	playedCards
	String[]
	Read/write
	Update()

	viewedPlayer
	Player
	Read/write
	setViewedPlayer()

update()

	bundleIndex
	Int
	Read/write
	prepareResources()

	g
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	homeIcon
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	leftArrow
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	rightArrow
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	cityName
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	cardsTitle
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Attack
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Clay
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Glass
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Lumber
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	MathResource
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Ore
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Parchment
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Silk
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Stone
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Tablet
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	VictoryPoints
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Wheel
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	Coin
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	strip
	UI.WidgetGraphic
	Read/write
	HUD()

update()

	attackNum
	UI.WidgetText
	Read/write
	HUD()

update()

	clayNum
	UI.WidgetText
	Read/write
	HUD()

update()

	coinNum
	UI.WidgetText
	Read/write
	HUD()

update()

	glassNum
	UI.WidgetText
	Read/write
	HUD()

update()

	lumberNum
	UI.WidgetText
	Read/write
	HUD()

update()

	mathNum
	UI.WidgetText
	Read/write
	HUD()

update()

	oreNum
	UI.WidgetText
	Read/write
	HUD()

update()

	parchmentNum
	UI.WidgetText
	Read/write
	HUD()

update()

	silkNum
	UI.WidgetText
	Read/write
	HUD()

update()

	stoneNum
	UI.WidgetText
	Read/write
	HUD()

update()

	tabletNum
	UI.WidgetText
	Read/write
	HUD()

update()

	victoryNum
	UI.WidgetText
	Read/write
	HUD()

update()

	wheelNum
	UI.WidgetText
	Read/write
	HUD()

update()

	AlgerianfontStyle
	UI.FontStyle
	Read/write
	prepareResources()

	CentaurfontStyle
	UI.FontStyle
	Read/write
	prepareResources()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	prepareResources
	Void
	--
	--
	Loads the fonts and images to be used when creating the heads up display

	setViewedPlayer
	Void
	p
	Player
	Used for setting which player that the HUD is currently viewing

	Update()
	Void
	--
	--
	Adds all of the elements of the HUD. Also makes any changes necessary to the HUD (updating resource counts, updating the list of played cards, updating the view depending on which player’s board is being viewed)

	OnProcessInput
	Void
	input
	Input
	Will handle the input on the HUD, things like the home button and list of played cards

Board
	Name
	ID
	Description
	Inheritance

	Board
	OS-09
	Used to control the behaviours and data specific to the different boards that the player can use
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	owner
	Player
	Read/write
	buildWonderStage()

	boardName
	String
	Read/write
	getBoardName()

	boardTextureName
	String
	Read/write
	getBoardTextureName()

	wonderStagesBuilt
	byte
	Read/write
	buildWonderStage()

	behaviours
	Behaviour[]
	Read/write
	buildWonderStage()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getBoardName
	String
	--
	--
	Returns the name of the board

	getBoardTextureName
	String
	--
	--
	Returns the name that is used to represent the board texture. Useful for displaying the board in the HUD

	buildWonderStage
	void
	--
	--
	Calls the behaviour to build the next available wonder then increments how many wonders have been built on the board

JoinGameScreen
	Name
	ID
	Description
	Inheritance

	JoinGameScreen
	OS-10
	This is the menu screen that appears after the player selects to join a game. It handles showing the available games and selecting a game from those available
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	gamesMenu
	UI.WidgetMenuScroll
	Read/write
	onUpdate()

	displayedGames
	LinkedList<Tuple<IPEndPoint, byte[]>>
	Read/write
	onUpdate()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	onPostInit
	void
	--
	--
	Refreshes the list of available games

	onProcessInput
	void
	input
	Input
	Handles the input of button pressing when selecting from the list of games, or the back button to return to the main menu screen

	onUpdate
	void
	frameTime
	float
	Handles displaying the available games and highlighting the options as the user scrolls through them

CreditsScreen
	Name
	ID
	Description
	Inheritance

	CreditsScreen
	OS-11
	This screen displays the names of the students who worked on creating the game
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	header
	UI.WidgetText
	Read/write
	--(only in constructor)

	creditsText
	UI.WidgetText
	Read/write
	--(only in constructor)

	backText
	UI.WidgetText
	Read/write
	--(only in constructor)

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	onProcessInput
	void
	input
	Input
	Handles the pressing of the back button which results in going back to the main menu page

MainMenuScreen
	Name
	ID
	Description
	Inheritance

	MainMenuScreen
	OS-12
	This is the menu screen that first appears to the user. It allows them to choose from different options with regards to starting a game, seeing the credits, or exiting the game
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	menuItems
	String[]
	Read
	-- (only in constructor)

	mainMenu
	UI.WidgetMenuScroll
	Read/write
	onProcessInput()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	prepareResources
	void
	--
	--
	Prepares the font and background image to be used

	OnProcessInput
	void
	input
	Input
	Handles the button presses of the different menu options and sends the game to the appropriate screen depending on the menu option selected

LobbyScreen
	Name
	ID
	Description
	Inheritance

	LobbyScreen
	OS-13
	This is the menu screen that appears after a player decides to start a game. It allows the player to select a board and start the game
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	gameInfoText
	UI.WidgetText
	Read/write
	OnUpdate()

	selectedBoard
	int
	Read/write
	OnProcessInput()

OnUpdate()

	boards
	string[]
	Read/write
	OnUpdate()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	OnProcessInput
	void
	input
	Input
	Handles the input from the player. Handles scrolling through the game boards, selecting a game board, starting a game, and quitting back to the main menu

	OnUpdate
	void
	frameTime
	float
	Updates the list of boards as the player scrolls through it

Deck
	Name
	ID
	Description
	Inheritance

	Deck
	OS-14
	Contains the shuffled cards for each age
	None

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	AGE
	byte
	Read
	-- (only constructor)

	HAND_SIZE
	int
	read
	dealHand()

	AGE_1_CARDS
	Card[]
	Read
	-- (only constructor)

	AGE_2_CARDS
	Card[]
	Read
	-- (only constructor)

	AGE_3_CARDS
	Card[]
	Read
	-- (only constructor)

	cards
	ArrayList<Card>
	Read/write
	dealHand()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	dealHand
	LinkedList<Card>
	--
	--
	Responsible for going through the deck of cards at each age and randomly selecting cards to go to each player. This simulates the dealing process

StrategyBot
	Name
	ID
	Description
	Inheritance

	StrategyBot
	OS-15
	The central hub for the strategies, handles selecting which strategies to use in the game
	SevenWondersBot

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	DELIMETERS
	Char[]
	read
	Update()

	strategies
	LinkedList<strategy>
	Read/write
	handleCardPlayed()

handleCardDiscarded()

handleAdvanceToNextRound()

handleAdvanceToNextAge()

update()

	playedThisRound
	boolean
	Read/write
	hasPlayedThisRound()

setPlayedThisRound()

	readLineDelegate
	ReadLineDelegate
	Read/write
	readInput()

	readLineResult
	IAsyncResult
	Read/write
	readInput()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	handleCardPlayed
	void
	Player, card
	Player, Card
	This procedure handles what to do when a card is played. Calls itself for every strategy

	handleCardDiscarded
	void
	Player, card
	Player, Card
	This procedure handles what to do when a card is discarded. Calls itself for every strategy

	handleAdvanceToNextRound
	void
	--
	--
	Handles advancing to the next card round. Calls itself for every strategy

	handleAdvanceToNextAge
	void
	--
	--
	Handles advancing to the next age of the game. Calls itself for every strategy

	hasPlayedThisRound
	bool
	--
	--
	Returns the value of the boolean ‘playedThisRound’

	setPlayedThisRound
	Void
	playedThisRound
	bool
	Sets the value of ‘playedThisRound’ to whatever is passed in the parameter

	readInput
	String
	--
	--
	Reads and returns whatever was input, to then be used to pick a strategy in the update method

	update
	void
	elapsedTime
	double
	Uses the input to select which strategy to use/remove. Also allows user to list the strategies, and in an extreme case where the chosen strategy doesn’t allow the bot to move, it allows the user to force a move from the bot (discard a card)

SevenWondersBot
	Name
	ID
	Description
	Inheritance

	SevenWondersBot
	OS-16
	The game area for the bot players
	compPlayer

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	currentGameState
	GameState
	Read/write
	getCurrentGameState()

getCurrentPlayer()

handleEventMessage()

update()

	currentPlayerIndex
	int
	Read/write
	getCurrentPlayer()

getCurrentPlayerIndex()

handleEventMessage()

	inGame
	boolean
	Read/write
	handleEventMessage()

update()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getCurrentGameState
	GameState
	--
	--
	Returns the current state of the game

	getCurrentPlayer
	Player
	--
	--
	Returns the player that the game is currently focusing on

	getCurrentPlayerIndex
	int
	--
	--
	Returns the index number of the player that the game is currently focusing on

	handleEventMessage
	void
	data
	Byte[]
	On a very high level this handles playing a card, discarding a card, and building a wonder

	handleCardPlayed
	void
	Player, card
	Player, Card
	This procedure does nothing in this class. It is virtual and is intended to be overwritten.

	handleCardDiscarded
	void
	Player, card
	Player, Card
	This procedure does nothing in this class. It is virtual and is intended to be overwritten.

	handleAdvanceToNextRound
	void
	--
	--
	This procedure does nothing in this class. It is virtual and is intended to be overwritten.

	handleAdvanceToNextAge
	void
	--
	--
	This procedure does nothing in this class. It is virtual and is intended to be overwritten.

	sendGameEventMessage
	void
	eventMessagetype, data
	EventMessageType, byte[]
	Handles sending messages over the network

	update
	void
	elapsedTime
	double
	Updates the game state, and checks to see if anyone has quit. If someone has quit then exit the game

RandomCardBot
	Name
	ID
	Description
	Inheritance

	RandomCardBot
	OS-17
	Handles the actions for the AI that chooses the cheapest cards to play at random
	SevenWondersBot

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	playedThisRound
	boolean
	Read/write
	doMove()

reset()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	handleCardPlayed
	void
	Player, card
	Player, Card
	Calls the doMove procedure when a card is played

	handleCardDiscarded
	void
	Player, card
	Player, Card
	Calls the doMove procedure when a card is discarded

	handleAdvanceToNextRound
	void
	--
	--
	Calls reset to allow the bot to move again

	handleAdvanceToNextAge
	void
	--
	--
	Calls reset to allow the bot to move again

	doMove
	void
	--
	--
	If the bot has not already played this round, evaluate the cheapest card to play in terms of cost and play that. Also sends this message across the network to the other players. If there are no available cards then discard a card

	reset
	void
	--
	--
	Sets the ‘playedThisRound’ value to false so that the bot will be able to play again

DiscardCardBot
	Name
	ID
	Description
	Inheritance

	DiscardCardBot
	OS-18
	Handles the actions for the AI that discards cards at random to gain as much money as possible
	SevenWondersBot

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	playedThisRound
	boolean
	Read/write
	doMove()

reset()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	handleCardPlayed
	void
	Player, card
	Player, Card
	Calls the doMove procedure when a card is played

	handleCardDiscarded
	void
	Player, card
	Player, Card
	Calls the doMove procedure when a card is discarded

	handleAdvanceToNextRound
	void
	--
	--
	Calls reset to allow the bot to move again

	handleAdvanceToNextAge
	void
	--
	--
	Calls reset to allow the bot to move again

	doMove
	void
	--
	--
	If the bot has not already played this round, selects a card at random and discards it

	reset
	void
	--
	--
	Sets the ‘playedThisRound’ value to false so that the bot will be able to play again

ColouredCardBot
	Name
	ID
	Description
	Inheritance

	ColouredCardBot
	OS-19
	AI that prioritizes the resource cards over other cards
	SevenWondersBot

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	ColourPriorities
	byte
	read
	doMove()

	priorities
	IEnumerable<ColourPriorities>
	Read/write
	doMove()

	playedThisRound
	bool
	Read/write
	doMove()

reset()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	handleCardPlayed
	void
	Player, card
	Player, Card
	Calls the doMove procedure when a card is played

	handleCardDiscarded
	void
	Player, card
	Player, Card
	Calls the doMove procedure when a card is discarded

	handleAdvanceToNextRound
	void
	--
	--
	Calls reset to allow the bot to move again

	handleAdvanceToNextAge
	void
	--
	--
	Calls reset to allow the bot to move again

	addColouredCardsToList
	void
	List, colour
	LinkedList<Card>, Card.CardColour
	Adds the card to a certain list of specifically coloured cards to be used to determine rank of importance

	doMove
	void
	--
	--
	Prioritizes the resource cards (brown and gray cards) over the other cards and always plays those (if they are available). If no resource cards are available then it plays another card which it can afford. If it cannot afford any then a card is randomly discarded

	reset
	void
	--
	--
	Sets the ‘playedThisRound’ value to false so that the bot will be able to play again

CompPlayer
	Name
	ID
	Description
	Inheritance

	CompPlayer
	OS-20
	Handles networking tasks
	NetGameInfo, NetEventHandler

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	SLEEP_MILLIS
	int
	Read
	run()

	networkManager
	NetworkManager
	Read/write
	getNetworkManager()

updateInternal()

	exiting
	boolean
	Read/write
	Exit()

Run()

	tickerTapeClock
	TickerTapeClock
	Read/write
	Run()

	args
	String[]
	Read/write
	getArgs()

run()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getGameMetaData
	Byte[]
	--
	--
	Returns null

	canPlayersJoinGame
	bool
	--
	--
	Returns whether or not more players can join the game

	exit
	void
	--
	--
	Sets the ‘exiting’ variable to true to allow the game to exit

	getArgs
	String[]
	--
	--
	Returns the ‘args’ variable

	getNetworkManager
	NetworkManager
	--
	--
	Returns the network manager

	handleEventMessage
	void
	data
	Byte[]
	This procedure is empty in this class. It is virtual and intended to be overwritten

	updateInternal
	void
	elapsedTime
	double
	Updates the network manager, and sends the updates across the network

	update
	void
	elapsedTime
	double
	This procedure is empty in this class. It is virtual and intended to be overwritten

	run
	void
	args
	String[]
	This procedure does not return until the CompPlayer is finished executing everything that it needs to

DiscountBehaviour
	Name
	ID
	Description
	Inheritance

	DiscountBehaviour
	OS-21
	Handles what to do in the case that a resource can be acquired at a discounted price
	Behaviour

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	targets
	TargetedPlayers
	Read/write
	doAction()

	discountedResources
	Byte[]
	Read/write
	doAction()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	doAction
	void
	owner
	Player
	This handles discounting resources from either the player to the owner’s right, the owner’s left, or both neighbours

AddStatBehaviour
	Name
	ID
	Description
	Inheritance

	AddStatBehaviour
	OS-22
	Handles the event where a player can add a ‘stat’ at the end of the round/game (stats are victory points, gold, sciences, etc)
	Behaviour

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	stat
	StatType
	Read/write
	doAction()

	statAmount
	byte
	Read/write
	doAction()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	doAction
	void
	owner
	Player
	Increases the specified stat count of the owner

AddResourceBehaviour
	Name
	ID
	Description
	Inheritance

	AddResourceBehaviour
	OS-23
	Handles the event where a player can add a ‘resource’ at the end of the round/game (resources are ore, wood, silk, etc)
	Behaviour

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	resource
	resourceType
	Read/write
	doAction()

	resourceAmount
	byte
	Read/write
	doAction()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	doAction
	void
	owner
	Player
	Increases the specified resource count of the owner

ResourceRequirement
	Name
	ID
	Description
	Inheritance

	ResourceRequirement
	OS-24
	Determines whether or not a player meets the resource requirements to play a card
	Requirement

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	costs
	Byte[]
	Read/write
	getCosts()

meetsRequirement()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getCosts
	Byte[]
	--
	--
	Returns the costs

	meetsRequirement
	bool
	player
	Player
	Returns whether or not the player meets the resource requirements required

GoldRequirement
	Name
	ID
	Description
	Inheritance

	GoldRequirement
	OS-25
	Determines if the player has enough gold to purchase whatever they are attempting to purchase
	Requirement

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	costAmount
	byte
	Read/write
	getCostAmount()

meetsRequirement()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	getCostAmount
	byte
	--
	--
	Returns the cost amount

	meetsRequirement
	bool
	player
	Player
	Returns whether or not the player has enough money to purchase whatever they are attempting to purchase

	meetsChain
	bool
	player
	Player
	Returns whether or not a chain will be fulfilled

	applyCost
	void
	player
	Player
	Updates the player’s gold count by subtracting the costAmount from their current gold amount

TradeDialog
	Name
	ID
	Description
	Inheritance

	TradeDialog
	OS-26
	The UI for the player when making a trade (resources for gold)
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	COST_TEXT_PREFIX
	String
	read
	showNextTrade()

	TOTAL_COST_TEXT_PREFIX
	String
	read
	tradeLeft()

tradeRight()

	card
	Card
	Read/write
	Cancel()

Accept()

	costForPrev
	byte
	Read/write
	tradeLeft()

tradeRight()

accept()

shownextTrade()

	costForNext
	byte
	Read/write
	tradeLeft()

tradeRight()

accept()

shownextTrade()

	remainingResources
	Byte[]
	Read/write
	tradeLeft()

tradeRight()

shownextTrade()

	leftCostText
	UI.WidgetText
	Read/write
	shownextTrade()

	rightCostText
	UI.WidgetText
	Read/write
	shownextTrade()

	totalCostText
	UI.WidgetText
	Read/write
	tradeLeft()

tradeRight()

	Backtext
	UI.WidgetText
	Read/write
	OnProcessInput()

	acceptText
	UI.WidgetText
	Read/write
	OnProcessInput()

accept()

shownextTrade()

	resourceGraphic
	UI.WidgetGraphic
	Read/write
	shownextTrade()

	leftArrow
	UI.WidgetGraphic
	Read/write
	OnProcessInput()

	rightArrow
	UI.WidgetGraphic
	Read/write
	OnProcessInput()

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	prepareResources
	void
	--
	--
	Adds all the required textures to the texture bundle

	OnProcessInput
	void
	input
	Input
	Handles what action to take based on where the user clicks on the screen

	cancel
	void
	--
	--
	Resets the position of the card that had been moved

	tradeLeft
	void
	--
	--
	Using the player to the user’s left, subtracts one resource from what is required (trades for the resource) and shows the updated cost of the card

	tradeRight
	void
	--
	--
	Using the player to the user’s right, subtracts one resource from what is required (trades for the resource) and shows the updated cost of the card

	accept
	void
	--
	--
	Sends the message across the network to play the card, and plays the card

	showNextTrade
	void
	--
	--
	Checks to see if there still needs to be trades made. If there is then it shows the available trades to the user

GameOverScreen
	Name
	ID
	Description
	Inheritance

	GameOverScreen
	OS-27
	Displays the game over screen to the players once the game is completed
	UI.Screen

Data Member Dictionary
	Variable Name
	Type
	Status
	Procedures

	BG
	UI.WidgetGraphic
	Read/write
	--

	header
	UI.WidgetText
	Read/write
	--

	creditsText
	UI.WidgetText
	Read/write
	--

	backText
	UI.WidgetText
	Read/write
	--

Procedure Dictionary
	Procedure Name
	Return Type
	Parameter Name
	Parameter Type
	Responsibilities

	prepareResources
	void
	--
	--
	Adds the necessary textures to the texture bundle

	OnProcessInput
	void
	input
	Input
	Handles the interaction of pressing backspace to return to the main menu

7

Interaction Diagrams
Contained below are UML 2.0 Interaction Diagrams as Message Sequence Charts. Each correspond to the previous bound use case maps.
MSC-01
 Corresponds to UC-01.

MSC-02
 Corresponds to UC-02.

MSC-03
 Corresponds to UC-03.

MSC-04
 Corresponds to UC-04.

ONLINE

GR-QR-01

GR-QR-02

GR-QR-03

GR-QR-04

GR-QR-05

GR-GE-01

GR-GS-01

GR-CO-01

GR-GE-02

GR-GE-03

GR-GE-04

GR-GS-02

GR-GS-03

GR-CO-02

GR-CO-03

GR-CO-04

GR-CO-05

GR-CO-07

GR-CO-06

GR-GO-10

GR-GO-09

GR-GO-08

GR-GO-07

GR-GO-06

GR-GO-05

GR-GO-04

GR-GO-03

GR-GO-02

GR-GO-01

GR-GO-11

GR-EG-01

GR-EG-09

GR-EG-03

GR-EG-08

GR-EG-07

GR-EG-06

GR-EG-05

GR-EG-04

GR-EG-02

GR-EG-10

GR-EG-11

GR-DW-01

GR-DW-02

GR-DW-03

GR-DW-04

GR-DW-05

GR-DW-06

GR-DW-07

GR-DW-09

GR-DW-10

GR-DW-11

GR-DW-12

GR-DW-13

GR-DW-14

GR-DW-15

GR-DW-16

GR-CL-01

GR-CL-02

GR-CL-03

GR-CL-01

GR-CL-04

GR-CL-05

GR-CL-06

GR-CL-07

GR-CL-08

GR-DS-01

GR-DS-02

GR-DS-03

GR-DS-04

GR-DS-05

GR-QR-06

GR-CO-06

X

X

X

X

X

X

X

X

UC-03

UC-04

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

TE-01A

TE-01B

RE-01

RESP-01

RE-01

RESP-

RESP-02

RESP-03

RESP-04

RESP-05

RESP-06

RESP-07

RESP-08

RESP-09

RESP-10

RESP-14

RESP-15

RESP-11

RESP-12

RESP-13

RESP-14

RESP-15

RESP-16

TE-02

RE-02

RESP-17

RESP-18

RESP-19

RESP-20

RESP-21

RESP-22

RESP-23

RESP-24

RESP-25

RESP-26

X

RESP-27

X

X

X

RESP-28

TE-03

RE-03

RESP-29

RESP-31

RESP-32

X

X

RESP-30

X

X

RE-04

TE-04

RESP-38

RESP-37

RESP-28

X

X

RESP-33

RESP-34

X

X

X

RESP-35

RESP-36

UC-02

UC-03

UC-04

TE-01A

X

X

X

X

X

X

X

X

UC-02

X

X

X

X

X

X

X

TE-01B

RE-01

RESP-01

RESP-02

RESP-03

RESP-04

RESP-05

RESP-06

RESP-07

RESP-08

RESP-09

RESP-10

RESP-11

RESP-12

RESP-13

RESP-14

RESP-15

LobbyScreen

JoinGameScreen

NetworkManager

Deck

SevenWonders

HUD

RE-02

X

X

X

X

X

X

X

X

X

X

X

RESP-16

TE-02

RESP-17

RESP-18

RESP-19

RESP-20

RESP-21

RESP-22

RESP-23

RESP-24

RESP-25

RESP-26

X

RESP-27

SevenWonders

HUD

NetManager

SevenWonders

TE-03

X

RESP-28

X

RESP-29

X

RESP-30

RESP-31

X

X

RESP-32

RE-03

LobbyScreen

X

X

RE-04

TE-04

RESP-38

RESP-37

RESP-28

X

X

RESP-33

RESP-34

X

X

X

RESP-35

RESP-36

JoinGameScreen

SevenWonders

NetManager

LobbyScreen

