C:\Users\jean-pierre\Desktop\Samples\Visual Studio 2010\Operators\Config.cord

config EssentialActivities

{
switch TestEnabled = false;
action abstract static void Implementation.Eat();
action abstract static void Implementation.Drink();
}
config PartyActivities: EssentialActivities
{
action abstract static void Implementation.Dance();
action abstract static void Implementation.Sing();
action abstract static void Implementation.Leave();
action abstract static void Implementation.KeepPartying();
}
config RegularActivities: EssentialActivities
{
action abstract static void Implementation.Fast();
action abstract static void Implementation.Sleep();
}

config AllActivities: PartyActivities, RegularActivities

{1

/// Union operator (|): builds the union of its operands' traces.

/// Tight sequence operator (;): traces of the second operand are

/1/ appended to traces of the first one.

/// Optional operator (?): traces are valid with or without the optional
/// sub-behavior.

/// The possible traces of machine Party are

/17 (a) Dance then Sing then end or KeepPartying

/// (b) Eat then Drink then end or KeepPartying

/// Notice there are two accepting states before and after KeepPartying.
machine Party() : PartyActivities

{
(
(Dance; Sing)
|
(Eat; Drink)
)s
KeepPartying?
}

/// On a non-party day, one can either Eat then Drink,
/// or Fast. In both cases, the day ends by optionally going to Sleep.
machine NoParty() : RegularActivities

{
(
(Eat; Drink)
|
Fast
)s
Sleep?
}

/// Synchronized Parallel Composition operator (|]).

/// All steps of the composed behaviors must be synchronized;

/// steps that cannot be synchronized are excluded from the result.

/// The offered signature of this behavior is the intersection

/// of the signatures of the subbehaviors.

/// Machines Party and NoParty can synchronize on the Eat then Drink path.
/// But they fail to synchronize from then on, so the behavior ends there.
machine SyncParallel() : AllActivities

{

C:\Users\jean-pierre\Desktop\Samples\Visual Studio 2010\Operators\Config.cord

Party || NoParty
}

/// Interleaved Parallel Composition operator (||]).

/// All steps of the sub-behaviors are produced;

/// The offered signature of this behavior is the union
/// of the signatures of the sub-behaviors.

/// Machine InterleavedParallel can produce all possible
/// interleavings of machines Party and NoParty.

machine InterleavedParallel() : AllActivities

Party ||| NoParty

/// Synchronized-Interleaved Parallel Composition operator (|?]).

/// Actions in the intersection of the sub-behavior signatures must

/// synchronize, while the remaining actions are interleaved.

/// The offered signature is the union of the signatures of the subbehaviors.

/// In SyncInterleavedParallel machine, Eat and Drink are in the intersection of
/// configs PartyActivities and RegularActivites. All other paths are interleaved.
machine SyncInterleavedParallel() : AllActivities

Party |?| NoParty

/// Tight Sequencing operator (;).

/// The (tight) sequencing operation denotes the set of traces obtained by
/// concatenating the traces of the first operand to those of the second one.
/// Notice how the second behavior is appended at all accepting states.
machine TightSequence() : AllActivities

{
¥

Party; NoParty

/// Loose Sequencing operator (->).

/// The loose sequencing operation allows an arbitrary number of
/// actions from the context signature to occur between its first
/// and its second operand.

/// Again, appending occurs in all accepting states.

machine LooseSequence() : AllActivities

{
}

Party -> NoParty

/// Permutation operator (&).

/// Constructs all possible permutations of two behaviors treated
/// as atomic (no interleaving of individual actions is produced).
machine Permutation() : AllActivities

{
}

(Dance;Sleep) & (Eat; Drink)

/// Zero or More Repetitions operator (*).

/// Builds a behavior consisting zero or more occurrences of its operand.
/// Notice the accepting initial state (allowing the empty behavior) and
/// and the looping paths, allowing the behavior to restart.

machine ZeroOrMore() : AllActivities

{
}

Party*

/// One or More Repetitions operator (+).

/// Builds a behavior consisting arbitrary occurrences of its operand.
/// Notice the non-accepting initial state, meaning the empty trace
/// is not included.

machine OneOrMore() : AllActivities

C:\Users\jean-pierre\Desktop\Samples\Visual Studio 2010\Operators\Config.cord

{
}

/// Optional operator (?).
/// Makes a whole behavior optional.
machine Optional() : AllActivities

{
}

Party+

Party? ; NoParty

/// Bounded Repetition operator ({n})
/// Builds a behavior consisting exactly n times of its operand.
machine BoundedRepetitionExact() : AllActivities

{
¥

NoParty{2}

/// Bounded Repetition operator ({n, })
/// Builds a behavior consisting at least n times of its operand.
machine BoundedRepetitionLeast() : AllActivities

{
}

/// Bounded Repetition operator ({n, m})
/// Builds a behavior consisting at least n times and at most m times of its operand.
machine BoundedRepetitionRange() : AllActivities

{
}

/// Any Action Universal Behavior (_).

/// An underscore used as a behavior stands for the invocation of any single
/// atomic action in the context signature.

/// Notice that two underscores are required to represent a call and its return.
machine AnyAction() : PartyActivities

NoParty{2,}

NoParty{2, 3}

/// Any Sequence Universal Behavior (...).

/// An ellipsis represents zero or more repetitions of any actions
/// in the context signature. It is equivalent to _*.

machine RepetitionOfAnyAction() : PartyActivities

{

}

Eat;...

/// Negation operator (!)

/// Builds a behavior consisting actions except its operand.

/// Notice that negation can only be applied on atomic actions (call, return or event)
/// Machine Nagation() indicates the behavior of all actions except (call Dance)
machine Negation() : PartyActivities

{
}

((! call Dance)*)||RepetitionOfAnyAction

/// Another machine to illustrate the usage of Negation

/// Composing a behavior that performs action Dance with machine Negation results in all paths that had
Dance as a step being truncated.

/// Construct accpeting paths is then used in this example to remove the truncated paths.

machine Truncation() : PartyActivities

{
construct accepting paths for
(Negation || (Eat;(Drink; Dance; Sing|Drink; Sing; Dance|Drink; Eat; Sing)))

C:\Users\jean-pierre\Desktop\Samples\Visual Studio 2010\Operators\Config.cord

¥

