
Copyright © Conformiq Inc. 2010. All Rights Reserved.

A Conformiq Technology Brief

Testing Bluetooth® Protocol Stacks
with Computer-Generated Tests

Bluetooth is an ubiquitous, open wireless technology standard for exchanging data over
short distances. A standard originally created by Ericsson and now managed by the Bluetooth
Special Interest Group, Bluetooth has become an indispensable part of the global digital com-
munications fabric. Implementations of Bluetooth are hardware-based and subject to stringent
quality requirements. Because of their nature, recalling or updating malfunctioning Bluetooth
chips is cumbersome and costly. Furthermore, a low-quality Bluetooth implementation can be
costly to brand value; Internet forums are filled with complaints about malfunctioning Bluetooth
devices that do not interoperate with each others—searching for “bluetooth connection problem”
results in more than 300,000 hits on Google. These factors underline the importance of proper
and thorough functional testing of Bluetooth implementations, and in particular the importance
of designing test cases that cover both common as well as corner case situations. In this Conformiq
Technology Brief we use Bluetooth as an example of a domain where the test design problem can
be successfully solved with Conformiq Automated Test Design™, a methodology that improves
test design productivity and quality by automating parts of the test design process.

The two crucial parts of any functional testing process
are test design and test execution. Test design is about
deciding what to test and how, selecting input data,
and defining test oracles (verification conditions). Test
execution is about actually running the tests (manually
or, more preferably, in an automated fashion) and
logging the results. Recently, companies have put a lot of
focus on improving and automating test execution, but
actually it is test design that drives product quality and
time to market. Test design is usually manual (that is,
tests are designed by humans); this is so commonplace

that often test managers and quality assurance directors
do not even actively perceive it as process that could be
automated.

To illustrate the practical process of moving to
automated test design—computer-generated functional
tests—we consider in this brief the problem of designing
tests for some core features of a Bluetooth protocol stack
implementation.

2

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

Scope

In the basic scenario, one Bluetooth-enabled device wants
to connect with another one. The device initiating the
connection is called the client; the device that is waiting
for a connection attempt is known as the server. In order
for the client to be able to connect to the server, it needs
to be able to search for servers and to enquire them for
attributes. We consider these two features in this brief
(service search and service attribute request) and a third feature
which combines these two (service search for attribute).

The Bluetooth protocol stack as a whole contains many
other functions. We chose these three features as the scope
of this brief, but the same approach could be extended
to other aspects of the Bluetooth specifications as well
as to other protocols, other reactive control systems,
and to any other business- or mission-critical software
components, system functions or systems.

Creating a Computer-Readable

Specification

In order for us to be able to use a computer to generate
tests for a Bluetooth stack implementation, we first need
to put the stack's relevant specifications into a format that
a computer can understand. In the Conformiq approach
we call these computer-readable specifications models
as they model the actual system (this is where the term

model-based testing comes from).

The models that Conformiq Designer™, our test
generation tool, can understand consist of state chart
diagrams as well as code in a Java-based programming
language (for an example from our model, see the last
page). Engineers use these diagrams and code to describe
the correct, intended operation of the system under test,
on a chosen level of abstraction.

For the Bluetooth features considered here, the model
we have created consists of two state charts and some
program code. The state charts describe the high-level
control flow and the program code describes the details
about data in the fields of Bluetooth protocol packets.

One of the two state charts is shown below. This state
chart describes three possible control flows for the protocol
stack. The central state WaitAppRequest denotes those
states of the protocol stack where the stack is waiting for
the application (e.g., the user interface of a mobile phone)
to initiate a connection attempt. An initiated connection
attempt is represented by a ServiceSearch message that
comes from the application via an interface named appIn
in the model; the ServiceSearch message is processed on
the arrow going downwards from the WaitAppRequest
state. This means that when the application requests
a service search, the protocol stack moves to the
ServiceSearch state (bottom state in the diagram). In this

One of the two state charts in our Bluetooth model

3

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

state, the stack is collecting service search responses from
the Bluetooth server. Eventually the server indicates “no
more” responses, which then triggers transition from the
ServiceSearch state back to the WaitAppRequest state
(arrow pointing upwards).

In general, in our model the Bluetooth implementation
resides between an application (which wants to use
Bluetooth) and the server. What the model describes
is that the application can request different types of
actions from the Bluetooth implementation, which then
communicates with the external Bluetooth server. The
key here is that the Bluetooth implementation is modeled
as having two external interfaces (to the application and
to the server), and our approach generates test cases that
drive both those interfaces simultaneously, removing
need to do manual stubbing or to use simulators to close
the circuit—and all this without having to specify or
know how the application or the server actually behaves,
as their necessary behaviors (which correspond to test
inputs to the bluetooth implementation) are generated
automatically.

Using Conformiq Designer

Conformiq Designer is our Automated Test Design™
tool. It can read in models for test generation from a
variety of tools, and it provides a graphical, interactive
workflow for automatic test generation. The screenshot
below illustrates some of the key features and views:

1.	 Test set view—our tool generates test cases auto-
matically based on a model describing the correct
operation (system model driven test generation) and
manages the generated test sets.

2.	 Coverage editor—the user has complete control
on setting or blocking test goals related to both
human-defined requirements as well as out-of-
the-box testing heuristics such as boundary value
analysis or transition coverage.

3.	 Graphical test case display—generated test cases
can be viewed graphically as message sequence
charts (MSCs) which illustrate the flow of a test

1

2

3

4

5
6

Conformiq Designer IDE for automatic test case generation

4

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

case especially well in the case of multi-component
and multi-interface testing scenarios.

4.	 Graphical model view—regardless of the tool from
which the model has been imported, Conformiq
Designer can display the graphical structure of
the model and highlight those parts of the model
which are covered by any individual test case or test
step.

5.	 Detailed step view—an alternative view that illus-
trates how a single test case relates to the behavior
of the model.

6.	 Test data view—Conformiq Designer generates
all test data automatically, both inputs as well as
expected outputs. The test data view allows the user
to review the generated test data in a hierarchical
tree display.

All these views let the user to
examine the results of automatic
test generation; the test generation
process itself is fully automatic and
triggered by the push of a button.

Test Generation by

Symbolic Exploration

Conformiq Designer is based on a highly specialized
variant of the general idea of test generation by symbolic
state-space exploration. This is the state-of-the-art method
for automatic test generation from models that describe
the behavior of the system under test.

It can be mentioned that many other automatic test
generation methods exist, for example generating
pairwisely combined test data using combinatorial
methods (Taguchi designs; covering arrays) or generating
opaque test sequences by the Chinese Postman algorithm.
These have, however, a narrow scope of applicability
and cannot be used to automatically solve test design
problems on the level of complexity of general software
components or systems—such as a Bluetooth stack.

Results of Test Case Generation

In addition to generating the actual tests, Conformiq
Designer generates also auxiliary documentation such as
traceability data (to trace the generated test cases back to
human-defined requirements) and test case dependency
data. The generated dependency data be used to
optimize test case execution when some of the test cases
fail: if a test case fails, the test cases that depend on it can
be skipped in execution.

The actual test cases can be output in various formats
and the formats can be completely user-defined. One
popular option is to output the test cases both in an
executable format (such as Perl, Python or TTCN-3
scripts) and at the same time in a human-readable format,
such as HTML (web) pages. On the next page there is a
screenshot showing one of the generated test cases for
Bluetooth as a HTML document displayed within a web
browser, complete with a graphical message sequence
chart view as well as hierarchical test data (shown on the
right) and requirements traceability markup (the purple
annotation in the lower part of the screen).

One benefit of being able to export HTML and other
human radable formats from the tool is that this makes
it possible to review the test cases even by team members
who do not use Conformiq Designer by themselves.

So if we look at the test case on the next page, it is easy to
understand its structure even if one is not familiar with
Bluetooth. There are four communication points on the
external interface of the system under test: application
input (data from application) and application output
(data to application); and Bluetooth protocol input
(data from server) and Bluetooth protocol output (data
to server). These correspond to the vertical lines appIn,
appOut, clientBTIn and clientBTOut, respectively.

The test case starts by a request from the application
to the Bluetooth implementation to search for a service
and some related attributes; this is shown as an arrow
from appIn to SDP-client, i.e. an input to the system
under test. It is natural that the test case starts by an
input to trigger the Bluetooth implementation to begin
a transaction.

5

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

What next happens in the test case is that the SDP client
is assumed to send out a ServiceSearchAttributeRequest
message to the Bluetooth server. This is shown as an
arrow from SDP-client to clientBTOut. During test
execution this is an expected output to be verified.
The third message comes then to the system under test
from clientBTIn, i.e. it is a simulated response from the
external Bluetooth server. Note that in order to execute
the test cases, not actual Bluetooth server implementation

is needed, as the response that is required to drive the
client forwards is synthesized by Conformiq Designer.
(Test data for the last three messages is not shown to fit
the diagram on one page.)

The purple “Requirement” annotation highlights
that at this point the crux of this computer-generated
test case is reached: the purpose of the test case is
to verify that the actual Bluetooth implementation

One of the generated test cases rendered into HTML and displayed within a browser for human review

6

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

responds correctly to multi-part responses. The
ServiceSearchAttributeResponse message contains
data that indicates to the client that the transaction
continues and the client needs to enquire the server
again. Therefore the last two messages in the test case
notify the application level that the transaction was not
complete; and then present a new inquiry to the server.
Then the test case ends as at this point the goal of the test

case (to verify the client’s correct handling of a multi-part
transaction) has been fulfilled.

The tool generates also traceability (see above) and test
case dependency data (see below) and this data is also
exported and can be processed outside the tool. For
example, the requirements traceability data can be fed
back to tool such as IBM RequisitePro or HP Quality

Generated traceability matrix

Generated test case dependency matrix

7

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

Center, and the test case dependency data can provided
to the test management and test execution tools.

Test Execution

In order to execute the generated test cases, a test harness
(connection to the actual system under test) is needed.
Its nature depends on whether the system under test is
an actual chip, simulated platform, or a software-only
component of a Bluetooth implementation. The harness
needs to be also accessible through a programming or
scripting language. For example, if the implementation is
a C++ software library, the test cases would be exported
from Conformiq Designer in C++ and linked against
the library. Or, if the implementation is an actual chip
on a test platform, the test platform’s drivers would be
accessed through the platform’s scripting language, to
drive both the application interface as well as the air/
radio interface.

Benefits of Computer-Generated

Functional Tests

Letting computers to take care of the details of functional
test design brings in multiple technical benefits:

•	 This algorithmic approach eliminates randomly
incorrect tests.

•	 There are fewer missing tests, because the algo-
rithm does not accidentally miss corner cases.

•	 There are fewer redundant tests because the
resulting test sets are optimized by a computer and
checked for importance.

•	 Test maintenance is easier because half of the job
is automated.

•	 Test execution systems can be simplified, because
they are no longer targeted towards human-written
tests, but computer-written tests.

•	 Testing equipment costs decrease because the
optimized test sets run faster on leaner test execu-
tion systems.

•	 Personnel cost can be optimized because the
approach delivers a significant productivity
improvement.

•	 Test design time shrinks because the algorithms do
the design faster than humans.

•	 Traceability improves as it is now automatically
maintained by a computer.

•	 Test documentation is always consistent and up-to-
date as it is generated at the same time as the actual
tests.

These technical benefits translate into business benefits
that can impact a corporation’s bottom line:

•	 30–80% reduction in functional testing costs
without sacrificing quality, as measured in our
customer contexts

•	 Increased test coverage leads to fewer shipped
defects which reduces the tax of escaped and
customer-foudn defects on R&D and customer
service

•	 Decreased time to market as the testing process can
turn around faster

•	 Reduced risks of litigation, standards and process
non-compliance, and loss of key knowledge when
personnel changes

About Conformiq

Established first in 1998, Conformiq is a leading provider
solutions for automated test design and advanced
model-based testing, dedicated to improving test design
processes within software-intensive product companies
operating in business-, mission- and life-critical industry
segments.

Conformiq Designer™ is the company’s fourth-
generation test design tool, built upon a decade of
advanced basic and applied research as well as testing
and test design experience.

8

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

Privately held, independent and known for extraordinarily
responsive customer service, Conformiq is the partner of
choice for companies who are ready to step ahead of the
curve.

For more information about Conformiq and the
company’s offering, please visit www.conformiq.com.

Copyright © Conformiq Inc. and its subsidiaries 2010. All Rights
Reserved. All information in this publication is provided for
informational purposes only and is subject to change without notice.
Conformiq, Conformiq Designer, Conformiq Modeler, Open Model
Licensing and Automated Test Design are trademarks of Conformiq
Inc. Other trademarks and registered trademarks belong to their
respective owners.

9

Testing Bluetooth® Protocol Stacks with Computer-Generated Tests

 public void sdpServiceSearchResponse(SDP_ServiceSearchResponse msg)
 {
 try
 {
 msg.requireMe(servSearch.maxRecordCount);
 checkPDUBase(msg, 0x03);
 if (msg.paramLen >= 0 && msg.paramLen < 5)
 {
 requirement “SDP-client/SDP_ServiceSearchResponse/” +
 “Must not allow too small PDU parameter length”;
 msg.requireEmpty();
 protoErrorParamLen();
 }
 if (msg.paramLen != (4 + 4 * msg.currentRecordCount +
 msg.contState.byteSize()))
 {
 requirement “SDP-client/SDP_ServiceSearchResponse/” +
 “Must reject PDUs with non-matching parameter length”;
 protoErrorParamLen();
 }
 if (msg.currentRecordCount > msg.totalRecordCount)
 {
 requirement “SDP-client/SDP_ServiceSearchResponse/” +
 “Must reject PDUs with invalid record counts”;
 protoError(“Current rec count cannot exceed total rec count”);
 }
 if (msg.currentRecordCount * 4 != msg.recordHandleList.length)
 {
 requirement “SDP-client/SDP_ServiceSearchResponse/” +
 “Must reject PDUs with non-conforming PDU-content”;
 protoError(“Record count doesn’t match the size of record “ +
 “handle array”);
 }

 if (msg.recordHandleList.length != 0)
 {
 rspBuffer = concatByteArray(rspBuffer, msg.recordHandleList);
 }

 // OK, now we have the full buffer so far, check cont state
 // and continue if needed.
 if (msg.contState.infoLen == 0)
 {
 // Done with this transaction, return results!
 requirement “SDP-client/SDP_ServiceSearchResponse/” +
 “ServiceSearch results returned OK”;
 ServiceResults results;
 results.recordHandles = rspBuffer;
 appOut.send(results);
 transactionDone();
 }
 else
 {
 // Not done, must continue!
 requirement “SDP-client/SDP_ServiceSearchResponse/” +
 “Continuation state was defined, must continue”;
 TransactionContinued cont;
 appOut.send(cont);
 servSearch.tid = getNewTid();
 servSearch.contState = msg.contState;
 btOut.send(servSearch);
 }
 }
 catch (ProtocolException ex)
 {
 notifyProtocolError(ex.status, ex.msg);
 }
 }

