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ABSTRACT 
A quality-driven approach to software development and testing 
demands that, ultimately, the requirements of stakeholders be 
validated against the actual behavior of an implementation under 
test (IUT). In Model-Based Testing, much work has been done on 
the generation of functional test cases. But few approaches tackle 
the executability of such test cases. And those that do, offer a 
solution in which tests and test cases are not directly traceable 
back to the actual behavior of an IUT. Furthermore, very few 
approaches tackle non-functional requirements. Consequently, we 
have implemented a validation framework that does support the 
modeling and automated validation of a set of functional and non-
functional requirements against several candidates IUTs. We 
report here on the key characteristics of this prototype and briefly 
discuss lessons learnt from its use in the context of a graduate 
course. 

1. ON MODEL-BASED VALIDATION 
It is widely accepted that Requirements Engineering aims at 
providing a bridge between the stakeholders and the developers of 
a computer-based system, each having their own specific 
viewpoints and concerns [1].  From a practical standpoint, this 
bridge must be an operational one, rooted in the key notion of 
quality [2].  That is, ultimately, the needs of stakeholders must be 
validated [3] against the actual behavior of an implementation 
under test (IUT). The act of validating stakeholders' needs 
consists in determining if an IUT satisfies the (functional and non-
functional) requirements of the stakeholders [2, 3].   

Current approaches to validation fall into two categories: code-
centric and model-centric.  A code-centric approach to validation, 
such as Test-Driven Design (TDD) [4], uses test cases (as 
opposed to more abstract tests [3]1) written at the implementation 
level in order to guide development.  A TDD approach begins by 
creating a test case addressing one or more requirements of the 
system.  The test case is executed against the software system, 
usually resulting in a failure. Code is then added to the 
implementation until the test case succeeds. The process repeats 
until all of the requirements (known somehow by a developer) 
have been satisfied.  Such test cases do not explicitly model the 
needs of stakeholders, and they are implementation-specific. 
Indeed, implementation details pervade code-centric approaches, 
making them difficult for stakeholders to understand and use. 

                                                                    
1 A test case can in fact be viewed as an instantiation of a test for a 

specific IUT [3]. 

In contrast, in a model-centric approach, such as Model-Based 
Testing (MBT) [5], the needs of stakeholders are specified in 
models from which tests are extracted to 'drive' validation.  These 
models (whether in a graphical or text-based format) usually 
capture a partial representation of the IUT's behavior, ‘partial’ 
especially because the model abstracts away some of the 
implementation details.  Tests derived from such a model are 
functional tests at the same level of abstraction as the model.  
Such tests are grouped together to form an abstract test suite.  
Such a test suite cannot be directly executed against an IUT 
because the tests are not at the same level of detail as the code. 
The question then is: how are requirements validated against the 
behavior of an actual IUT? We identify three approaches: 

The first approach consists in augmenting abstract requirement 
models with implementation-specific details capable of generating 
tests (and possibly test cases). For example, Briand and Labiche 
[6] advocate the use of UML activity diagrams for system-level 
functional requirements modeling and validation. Their method 
requires the use of the Object Constraint Language (OCL) [7] to 
capture implementation-specific constraints. In particular, OCL 
requires making explicit references to variables within an IUT. 
Thus, requirements models involving OCL are tightly coupled to 
specific implementation details. This is highly problematic: any 
change to the implementation must 'percolate up' to the 
requirements model, a maintenance nightmare. Furthermore:  

- The presence of implementation details considerably reduces 
the understandability of such models by stakeholders (and appears 
to contradict the very nature of model-driven testing). 

- The possibility of having a requirements model abstract 
enough to be applicable to several IUTs is lost. 

- OCL does not address non-functional requirements. 

- The generation of tests and test cases from OCL requires the 
use of stand-alone tools (such as [8,9]). 

Finally, OCL does not address interactions between components. 
Thus, for that crucial part of their method, Briand and Labiche 
start from activity diagrams in order to obtain (through multiple 
transformations) abstract test sequences, which are disconnected 
from the actual implementation. How such test sequences are to 
become executable and how their validation (which involves 
monitoring actual sequences of procedure calls during the 
execution of an IUT) is not addressed. This leads us directly to the 
second approach to such problems. 

In order to bridge the gap between the abstract tests and an actual 
implementation, the widespread solution consists in using ‘glue 



code’. That is, tests obtained from the models are subsequently 
coded or, more precisely, have some of their corresponding test 
cases coded (typically manually).  In other words, glue code 
requires a programmer to make abstract tests become operational 
(i.e., usable for validation) via programming.  The resulting code 
(which includes not only executable test cases but also test drivers 
and oracles [3]) must generally be handcrafted and may end up 
not corresponding to the abstract tests.  Moreover, this glue code 
is implementation-specific: both its reusability across IUTs and its 
maintainability are highly problematic. Ultimately, the creation of 
glue code is a non-automated endeavor that is time-consuming 
and just as error-prone as development of the original IUT.  

In light of the pitfalls of the previous approaches, researchers at 
Microsoft have developed, over the last several years, what we 
consider to be the state-of-the-art tool for model-based testing, 
namely Spec Explorer [10, 11]: "Spec Explorer 2010 is a tool that 
extends Visual Studio for modeling software behavior, analyzing 
that behavior by graphical visualization, model checking; and 
generating standalone test code from models. Behavior is modeled 
in two ways: by writing rule machines in C# (with dynamic data-
defined state spaces) and by defining scenarios as action patterns 
in a regular-expression style." [12].  

Like many other MBT methods, Spec Explorer generates test 
cases from a graph corresponding to a state machine defined in 
terms of global data spaces. More specifically, the modeling of 
requirements consists in defining an infinite transition system TP 
through a Spec# program P (where Spec# is in fact a superset of 
C#). Exploration (which attempts to avoid state explosion through 
the use of complex heuristics and of action scenarios) reduces TP 
to a finite test graph G. Test cases are subsequently generated 
from traversing G (using coverage techniques [3] and/or user 
defined sequences of actions). In a given state, the testing 
component of Spec Explorer determines which actions are 
enabled and thus which states of G are reachable. Spec Explorer 
then uses the current test case to select one of these reachable 
states and executes the corresponding controllable action (i.e, an 
action that defines one or more method invocations to be observed 
in P). Spec Explorer does provide the test harness that allows for 
such actions to be executed in P and for the resulting method 
invocations in P to be observed (in order to determine the 
resulting state in G). The key point is that, in this approach, it is P 
that is tested. But P is not an actual IUT; it is a model in Spec# of 
an actual IUT.   

Thus, the question remains: how can requirements be modeled 
and validated against the behavior of an actual IUT? It is this 
question that we address in this paper. Our objective here is to 
introduce our proposed solution, which we have implemented in a 
tool called the Validation Framework (VF). Due to space 
restrictions, we purposely do not go into the details of the 
realization of our VF2: through the overview of our VF our 
specific contribution in this paper consists in suggesting that, 
indeed, it is possible to have an implementation-independent 
requirements model be 'semi-automatically' (as explained later) 
validated against an actual IUT.  

                                                                    
2 The tool, its code and documentation, as well as the extensive test suites 

and case studies used for its validation are all accessible from [13]. The 
VF consists of over 250,000 lines of mostly C# code and requires the 
use of Visual Studio 8, as well as of Microsoft's Phoenix tool [14] (as 
briefly discussed later in this paper and explained at length in [15]). 

First, in subsection 2.1, we argue for a requirements model that is 
testable and independent of implementation details (because it 
may have to be validated against several IUTs).  Then, in 
subsection 2.2, we summarize the modus operandi of the 
validation framework we are proposing. In section 3, through the 
walkthrough of a very simple example, we overview the 
semantics this VF offers to express a Testable Requirements 
Model (TRM). As explained in 2.2, in order for this TRM to be 
validated against an IUT, a set of bindings must be created. This 
process is explained in section 4. We conclude with some remarks 
stemming from our tool being used by the students of a graduate 
course in object-oriented software engineering at Carleton 
University. 

2. THE VALIDATION FRAMEWORK 
2.1 One model, several IUTs 
The solution we propose proceeds from the integration of two 
well-known ideas: a) expressing requirements in terms of 
responsibilities [16, 17] and scenarios [17, 18, 19, 20, 21] and b) 
organizing such responsibilities and scenarios into contracts [22, 
23, 24] that can be bound to components of an actual system. In 
essence, it is this integration that we discuss in the rest of this 
paper.  

Semantically, our work proceeds from noticing that in his 
explanation of the limited adoption of Spec Explorer within 
Microsoft, Grieskamp [11] proposes several possible reasons.  In 
particular, he remarks that developers and testers alike 
significantly prefer the intuitive nature of scenarios to the 
semantics underlying more formal (not only logic-based and set 
theoretic, but also state-based) approaches. Indeed, the use of 
scenarios (e.g., UML's use cases) as a method for requirements 
capture is commonly accepted. Consequently, our work seeks to 
capture functional requirements specified in the form of 
scenarios3. Most importantly, this decision allows us to reuse the 
existing seminal work on generating tests from scenarios (e.g., [3, 
18]), especially the algorithms of [6] and [24]. However, the 
generation of tests and the instantiation of such tests into 
executable test cases constitute two complex tasks that lie beyond 
the scope of the current paper. Consequently, those two topics are 
discussed at length elsewhere [25].  

Another premise of our proposal is the adoption of a genuine 
model-based outlook: the requirements model that is to be 
validated must be implementation independent. More specifically, 
we require that our Testable Requirements Model (TRM) be 
decoupled from any particular implementation so that a single 
TRM may be validated against several candidate implementations.  
By candidate, we mean an IUT that is to be validated ‘against’ the 
requirements defined by the TRM. Thus, our work supports 
applying a single TRM to several candidate implementations (one 
at a time) without requiring any modification to this TRM.  The 
'results' (which will be discussed later) generated by validating the 
TRM against each candidate IUT can be used for the behavioral 
comparison of different IUTs.  As an example of such use of our 
VF, consider several vendors applying for certification against a 
standard. The standard would be represented by a single TRM that 
would be validated against each of the candidate implementations. 

                                                                    
3 Please note that our semantics are not limited to functional requirements, 

as will be illustrated in 2.2.2 and Section 3. 



Please note that the process and issues pertaining to the 
development of candidate IUTs lie outside the scope of our work: 
we merely postulate the eventual availability of one or more IUTs 
to validate against a TRM. Furthermore, we remark that our 
approach to validation does not assume that the implementation 
source code is available. This is highly desirable in several 
situations such as offshore outsourcing [26].  

2.2 Using the Validation Framework  
2.2.1 Inputs to the Validation Framework 
Our VF operates on three input elements.  The first element is the 
Testable Requirements Model (TRM) expressed using ACL 
(Another Contract Language) [15], a high-level general-purpose 
requirements language we have created.  We use here the word 
‘contract’ because a TRM is formed of a set of contracts, as will 
be illustrated in section 3. ACL is closely tied to requirements by 
defining constructs for the representation of goals and beliefs [27], 
scenarios [17, 18, 19], and design-by-contract concepts such as 
pre and post-conditions [22].  Additional domain-specific 
constructs can also be added to the ACL, via modules known as 
plug-ins (which will be discussed in 2.2.2). 

The second input element is the candidate IUT against which the 
TRM will be executed. Recall that the framework accepts IUTs in 
binary form.  Using Microsoft's Phoenix Research Development 
Kit [14], the framework is able to open .NET managed executable 
and Active Server Page (ASP) .NET web applications.   
Bindings represent the third and final input element required by 
the VF.  Before a TRM can be executed the types, responsibilities, 
and observability requirements (see section 3) specified in a TRM 
must be bound to concrete implementation artifacts located within 
the IUT.  Phoenix is used to open the binary IUT for the purposes 
of obtaining a structural representation.  Our binding tool, which 
is part of the VF, uses this structural representation to map 
elements from the TRM to types and procedures defined within 
the candidate IUT.  (As will be discussed in section 4, our binding 
tool is in fact able to automatically infer most of the bindings 
required between a TRM and an IUT.) Bindings constitute the key 
facet of our approach:  
 - Like the well-known mediator pattern [28], bindings decouple a 
TRM from any IUT. Only the binding tool 'knows' to which 
components of an IUT each element of a TRM maps. 
- Because each IUT has its set of bindings to a TRM, several 
candidate IUTs can indeed be validated against a same TRM. 
In other words, bindings constitute the bridge between a TRM and 
an actual IUT, a bridge that is generally absent from other MBT 
methods. 

2.2.2 Plugins 
ACL provides the user of our VF with built-in static checks, 
dynamic checks, and metric evaluators (see below and section 3). 
In addition, plug-ins allow for the inclusion of user-specified 
static checks, dynamic checks, and metric evaluators into a TRM.  
In other words, the language we use to capture requirements has 
'open' semantics inasmuch as new constructs can be defined by a 
user, provided this user can specify how to test such constructs in 
an IUT. Let us elaborate.   

The creation of plug-ins is targeted toward developers of ‘checks’ 
for our VF, rather than the author of a TRM.  More precisely, we 

have created specialized plug-in software development kits 
(SDKs) to aid in the creation of static checks, dynamic checks, 
and metric evaluators: 

A static check performs a check on the IUT that can be 
accomplished without execution.  Examples of static checks 
include checks involving inheritance (e.g., type A must be a 
descendant of type B), checks on types (e.g., type A must contain 
a variable of type B) and even the correct use of structural design 
patterns [28].  A static check can be viewed as an operation:  each 
check has a return type and may accept a fixed number of 
parameters.  All static checks are guaranteed to be side-effect free. 

A dynamic check is used to perform a check on the IUT during 
execution.  That is, a dynamic check can only be evaluated while 
the IUT is being executed.  Examples of dynamic checks include: 
testing the value of a variable at a given point, ensuring a given 
state exists within an object, and validating data sent between two 
different objects.  As with static checks, a dynamic check can be 
viewed as an operation with a return type and parameter set.  The 
execution of a dynamic check is also guaranteed to be side-effect 
free. 
Metric evaluators are used to analyze and report on the metrics 
gathered while the candidate IUT was executing. Metric gathering 
is performed by the validation framework.  Once metric gathering 
is complete and the IUT has concluded execution, the metric 
evaluators are invoked.  Examples of a metric evaluator include: 
performance, space, and network use analysis.  Metric evaluators 
are side-effect free. 

Through the use of plug-ins, researchers in static testing, dynamic 
testing, and metric evaluation can contribute to our VF without 
having to create an ad hoc approach to the integration of their 
work within the VF.  Instead, using the appropriate SDK, they can 
create plug-ins corresponding to their work.  Over time this 
approach should lead to a rich set of plug-ins, which, de facto, 
will improve the applicability of ACL to different domains. 

2.2.3 Validation Process 
Once the TRM has been specified and bound to a candidate IUT, 
the TRM is compiled.  Upon a successful compilation, all 
elements of the TRM have been bound to IUT artifacts and any 
required plug-ins have been located and initialized. The result of 
such a compilation is a single file that contains all information 
required to execute the TRM against a candidate IUT.   

Execution of a Testable Requirements Model begins with a 
structural analysis of the candidate IUT, and with execution of 
any static checks.  Following execution of the static checks, the 
IUT is executed by the VF.  The VF is able to track and record the 
execution paths generated by the IUT, as well as execute any 
dynamic checks, and gather metrics indicated by the TRM.  The 
execution paths are used to determine if each scenario execution 
matches the grammar of responsibilities (see section 3) 
corresponding to it within the TRM.  Next, metric evaluators are 
used to analyze and interpret any metric data that was gathered 
during execution of the IUT.  All of the results generated from 
execution of the TRM against the candidate IUT are written to a 
Contract Evaluation Report (CER).  

The generation of the CER completes the process of executing a 
TRM against a candidate IUT. The CER indicates where the 
candidate IUT matches the TRM, and where any deviations from 
the TRM were observed.  Several quality control and analysis 
methods could then be used to analyze the generated CER and 



apply their findings to the software development process, or 
calculate information important to management and other 
stakeholders.  Such methods currently lie beyond the scope of our 
work. 

3. A SIMPLE EXAMPLE 
As in Use Case Maps [17, 18], in ACL scenarios are 
conceptualized as grammars of responsibilities.  Each 
responsibility represents a simple action or task, such as the 
saving of a file, or the firing of an event.  Intuitively, a 
responsibility is either bound to a procedure within an IUT, or the 
responsibility is to be decomposed into a sub-grammar of 
responsibilities.  In addition to responsibilities and scenarios, ACL 
offers a set of Design-by-Contract  [22] elements. The latter are 
typically used to express constraints on the state of the IUT before 
and after the execution of a scenario or responsibility: 
Preconditions specify constraints on the state of the IUT before 
the responsibility or scenario can be executed.  Post-conditions 
specify constraints on the IUT's state following a successful 
responsibility or scenario execution. ACL also provides the means 
to express invariants (as illustrated below). 

When a pre- or post-condition fails, the execution proceeds but 
that failure is logged in the Contract Evaluation Report (CER). 
Also, when a scenario is executed by an IUT, the specified 
grammar of responsibilities must hold.  That is, the 
responsibilities that compose the scenario must be executed in 
such an order that satisfies the grammar.  If the scenario cannot be 
executed, or responsibilities/events that are not defined by the 
scenario are executed, then the IUT does not match the TRM. 
This mismatch is also reported in the CER. 

The following annotated example summarizes several of the 
semantics currently supported by our contract language and VF. 
(Note however that inter-scenario relationships [19] are missing 
here but are offered by ACL.) The // and /* */ delimit comments 
aimed at explaining the key points of the example, which uses a 
simple generic container (of elements of type tItem). We have 
included usage of inheritance in order to demonstrate how our 
work supports the compositionality of contracts through this 
mechanism. Contract elements without comments are assumed to 
be self-explanatory.  
Import Core; 
Namespace My.Examples 
{  

/*An abstract contract is NOT bound to a type of the IUT. Also, T 
will be bound upon ContainerBased being refined.   
A contract may define variables, which will be kept by the VF.*/ 
abstract Contract ContainerBase<Type T> 
{  
  Scalar Integer size;  //number of elements in container 
 

/*An observability is a query-method that is used to provide state 
information about the IUT. That is, they are read-only methods 
that acquire and return a value stored by the IUT.         */ 
  Observability Boolean   IsFull(); 
  Observability Boolean   IsEmpty(); 
  Observability T ItemAt(Integer index); 

  Observability Integer   Size(); 
//an abstract observability MUST be refined in a derived contract 
abstract Observability Boolean  HasItem(T aItem);  
 

/* the body of the "new" responsibility is executed immediately 
following the creation of a new contract instance.  */ 
 Responsibility new() 
{ size = 0;   Post(IsEmpty() == true)  } 

/* the body of the "finalize" responsibility is executed 
immediately before the destruction of the current contract  
instance.    */ 
Responsibility finalize() 
{ Pre(IsEmpty() == true);  } 
 

/* Invariants provide a way to specify a set of checks that are to be 
executed before and after the execution of all bound 
responsibilities. Invariants precede pre-conditions, and follow 
post-conditions. */ 
Invariant SizeCheck 
{ Check(context.size >= 0); 
   Check(context.size == Size())  } 
 
/* This responsibility defines pre- and post- conditions for any 
addition. It is not to be bound but rather to be extended by actual  
responsibilities. 
The keyword ‘Execute’ indicates where execution occurs. */ 
Responsibility GenericAddition(T aItem) 
{ Pre(aItem not= null);    Pre(IsFull() == false);  Execute(); 
   size = size + 1; 
  Post(HasItem(aItem));   } 
 

/*This responsibility extends GenericAddition. It therefore reuses 
the pre- and post-conditions of GenericAddition.  
It does not add any other checks to those of GenericAddition. 
But Add can (and will) be refined in the contract that extends the 
current abstract one. */ 
Responsibility Add(T aItem) extends GenericAddition(aItem) 
{ Execute(); } 
  

/* Insert also extends GenericAddition and thus reuses its pre- and 
post-conditions.  

But it also adds pre- and post-conditions of its own due to the fact 
that its interface involves the use of an index.   */ 
Responsibility Insert(Integer index, T aItem)  
  extends GenericAddition(aItem) 
{ Pre(index >= 0);  Execute(); 
   Post(ItemAt(index) == aItem);  } 
   



/* Responsibility Remove returns the element removed. 
The keyword ‘value’ denotes this return value.  */ 
Responsibility T Remove() 
{ Pre(IsEmpty() == false); Execute(); 
   size = size - 1; 
   Post(value not= null); 
   Post(HasItem(value) == false);  } 
Responsibility RemoveElement(T aItem) 
{ Pre(IsEmpty() == false); Pre(HasItem(aItem) == true); 
  Execute(); 
  size = size - 1; 
  Post(HasItem(aItem) == false);  } 
   

/* The following scenario merely consists of a trigger statement 
and a terminate statement. There is no grammar of responsibilities 
between these two statements (in contrast to most scenarios.) 

This scenario captures the fact that the addition of an element x 
must eventually be followed by removal of x.    

Here Add or Insert trigger the scenario, and Remove or 
RemoveElement terminate it. 

Notice the use of the ‘dontcare’ keyword for the first parameter of 
Insert.  */ 
Scenario AddAndRemove 
{ once Scalar T x; 
   Trigger(Add(x) | Insert(dontcare, x)), 
   Terminate((x == Remove()) | (RemoveElement(x)));  } 
}     
}  //end of contract ContainerBase 
 

/* A TRM must include a main contract. It typically includes 
several other contracts. 
The main contract of a TRM must be bound to a type of the IUT. 
Here Container inherits from ContainerBase. 
Single and multiple inheritance are supported for composing 
contracts together.   

Also, note that T in ContainerBase is explicitly  bound here to the 
type tItem (using syntax similar to templates in C++) */ 
MainContract Container extends ContainerBase<tItem> 
{ List Integer container_times; 
// amount of time that each item spends in the container. 
   Scalar Timer item_timer; 
/* Timer is a built-in type of our VF 
A single timer can be used to time multiple items concurrently. */ 
   Scalar Integer number_of_items; 

/* used to store the total number of items that are stored by the 
container during execution  */ 
 
 

// The abstract responsibility of ContainerBase is now refined. 
refine Observability Boolean HasItem(tItem item) 
{ tItem x;  Boolean result = false; 
   loop(0 to Size()) 

{ x = ItemAt(counter); 
    result = result || x == item;  } 
   value = result; //value is the keyword for return value } 

/* A parameter can be set explicitly, or  using the binding tool of 
section 4, or set at run-time. Here, it controls whether the static 
check below is to be performed or not. */  
Parameters  
{ Scalar Boolean CheckMembers; } 
 

/* What follows is a static check that uses the built-in check 
HasMemberOfType to verify if the container holds instances of 
type tItem. This check is performed only if parameter 
CheckMembers is true. A belief is merely a message logged in the 
report (CER) produced by the VF. */ 
Structure 
{ choice(Parameters.CheckMembers) == true 

     { Belief CheckMember("There should be a member in our 
container to hold elements of type tItem") 

{ HasMemberOfType(tItem); }    }    } 
 

/* We refine new: Pre- and post-conditions of the parent contract 
are checked before these ones. */ 
refine Responsibility new() 
{  number_of_items = 0; 
    container_times.Init();  } 
 
/* The ‘fire’ keyword is used to create an instance of an event that 
can, in turn, trigger or be observed in scenarios.   */   
refine Responsibility finalize() 
{  fire(ContainerDone);   } 
 

/* Next, Add, Insert, Remove and RemoveElement from 
ContainerBase are further refined to use timers.  
More specifically, the scenario AddAndRemove (in the parent 
contract) creates an instance of itself for each element that is 
added to the container. This allows us to start a timer in Add or 
Insert upon insertion of an element and to stop that timer when 
that element is removed. In turn, this allows us to store the time 
spent by an element in the container.   */  
  
refine Responsibility Add(tItem item)  
{ Pre(HasItem(item) == false);  Execute(); 
   item_timer.Start(item); //built-in way to start a timer 
  number_of_items = number_of_items + 1; } 
   



refine Responsibility Insert(Integer index, tItem item) 
{ Pre(HasItem(item) == false);  Execute(); 
   item_timer.Start(item); 
  number_of_items = number_of_items + 1;   } 
 
refine Responsibility tItem Remove() 
{ Execute(); 
  item_timer.Stop(value);  
  container_times.Add(item_timer.Value(value));   } 
 
refine Responsibility RemoveElement(tItem item) 
{ Execute(); 
   item_timer.Stop(item); 
  container_times.Add(item_timer.Value(item));  } 
  

/* This responsibility is to be used in the scenario 
ContainerLifetime below. RemoveScn abstracts away which of 
the two Remove responsibilities is used.  
Notice again the use of keyword ‘dontcare’.    */  
Responsibility RemoveScn() 
{ Remove() | RemoveElement(dontcare);  } 
  

/* A stub responsibility is a place holder for one or more 
responsibilities. Here, we have only one choice, the default one, 
which is responsibility Add. Parameters and other mechanisms 
could be used to select between different kinds of addition, as 
illustrated elsewhere [15]. */ 
stub Responsibility AddElement(tItem item) 
{ Pre(item not= null); 
  [Default] Add(item);  } 
  
/* This scenario illustrates a Trigger being followed by a grammar 
of responsibilities and then a Terminate statement. In this case, the 
Terminate MUST be preceded by an ‘observe’ statement 
specifying the event that enables this termination.  
 
In the following scenario, a new scenario instance is created each 
time a new container is constructed (via the new responsibility). 
The responsibility new acts as the trigger. 
The ‘,’ denotes the ‘follow’ operator.  
 

An atomic block defines a grammar of responsibilities so that no 
other responsibilities of this contract instance are allowed to 
execute except the ones specified within the grammar.  

The scenario must observe the event ContainerDone before 
concluding by proceeding with the execution of  finalize (which 
fires the event ContainerDone before its checks. This semantic 
'contortion' is due to the way scenario instances are monitored. */ 
 

Scenario ContainerLifetime 
{ Trigger(new()), 
  atomic 
    { (Add(dontcare) | Insert(dontcare, dontcare))*, 

(RemoveScn())*; },    
  observe(ContainerDone), 
  Terminate(finalize());  }  
  
/* a list of integers representing the amount of time that each 
element spent in our container. */ 
Metric List Integer ContainerTimes() 
{ context.container_times;} 
 
// total number of items that were stored in the container. 
Metric Scalar Integer NumberOfItems() 
{ context.number_of_items;  } 
 
//This section of contract is to build the evaluation report.  
Reports 
// {0} is where the reported result goes in the output string 

{ Report( "The average time in the container is {0} milliseconds", 
 AvgMetric(ContainerTimes())); //built-in AvgMetric 
 

/* A report all statement performs the exact same way as the 
report statement, except that it generates a single result for all 
contract instances.   */ 

   ReportAll("The average time in all containers is {0} 
milliseconds",  AvgMetric(ContainerTimes())); 

  Report("The number of items added to the container is {0}", 
 NumberOfItems()); 

  ReportAll("The number of items added to all containers is {0}", 
 NumberOfItems());   } 
 
/* The type tItem used for the elements of the container cannot be 
type bound to the container nor any of its descendants. So, here, 
we do not allow lists of lists. */ 
Exports 
{ Type tItem conforms Item 

{ not context;  not derived context; }  }
   
} } 
 
To conclude, we remark that this single TRM has been applied to 
several simple data structures (e.g., different kinds of arrays and 
linked lists) implemented in C# and C++/CLI, with and without 
coding errors (in order to verify responsibility and scenario 
failure). 
  



4. TRACEBILITY THROUGH BINDINGS 
The crucial point to grasp with respect to the semantics supported 
by ACL and overviewed in the previous section is that they do 
support automated validation. That is, once a TRM is linked to an 
IUT, all checks are automatically instrumented in the IUT whose 
execution is also controlled by the VF (e.g., in order to monitor 
scenario instance creation and execution). Thus, our whole 

approach to validation hinges on the ability to link a TRM to an 
IUT. To do so involves the creation of bindings. More precisely, 
our framework is able to capture (and even partially infer) a set of 
mappings, called bindings, between elements of the 
implementation-independent TRM and procedures and types of 
the IUT.  It is the creation of such bindings that eliminates the 
need for the development of glue code. Let us elaborate. 

 

 
 

Figure 1. The Binding Tool 
In our VF, a set of bindings is represented by an XML file that 
contains tags linking contract elements to their IUT counterparts.  
Each IUT that is to be executed against a TRM must have a 
corresponding binding file. However, rather than having to 
directly edit the XML binding code, we have integrated a binding 
tool into the VF.  The binding tool provides a graphical way to 
view and specify the binding information. Figure 1 provides a 
snapshot of the main window of our binding tool (opened on the 
contract given in section 3). 

On the left, the binding tree displays each contract element that 
must be bound to an IUT counterpart. These elements include: 
contracts, parameters, observability methods, responsibilities, and 
exported types. (As previously mentioned scenarios are grammars 
of responsibilities and, as such, have no corresponding elements 
in an IUT.) The contents of the binding tree are generated by the 
ACL compiler as it compiles a TRM.  

The binding status of the elements of contracts to be bound is 
summarized in the color of each item in the binding tree: green for 
those successfully bound, red otherwise. If a bound contract 
element is selected in the binding tree, then information about its 
corresponding IUT structural element will be displayed under the 
selection.   

On the right, in Figure 1, information about the overall binding 
status of a TRM (i.e., a set of contracts) is given. Here, two 

bindings are missing and thus the VF cannot validate the IUT 
against the TRM. Users of our VF can bind contract elements to 
procedures and types of the IUT manually, or use the Automated 
Binding Engine (ABE) we provide. Let us elaborate. 

Since bindings provide a mapping from the TRM to a candidate 
IUT, details regarding the structure of the IUT are required.  
Obviously, these details are implementation-specific, and as such 
different binding algorithms may be required for different 
programming languages.   

ABE supports an open approach to the automation of binding 
creation: different algorithms for finding bindings are separately 
implemented in different binding modules. Each binding module 
is implemented as a DLL (i.e., Dynamic Link Library) and is 
placed in a specific location relative to folder in which our VF 
resides. Each such DLL must implement a specific interface we 
have defined, in order to be used as a binding module. Put simply, 
this interface allows the creator of a binding module to gain 
access to the internal structure of an IUT without having to get 
familiar with the (highly technical) internal representation of this 
structure.   

Our VF uses only one binding module at a time.  However, 
multiple modules can be used successively for the same 
TRM/IUT pair.  That is, one module could be selected to infer as 



many bindings as possible, then a second module could be 
selected to infer any bindings not recognized by the first module.   

We have implemented two such binding modules as part of the 
current release of our VF.  The first binding module takes into 
account the names of types and procedures in order to find 
matches, whereas the second module uses only structural 
information such as return type and parameter type/ordering to 
infer a binding. Each of our two implemented binding modules 
have correctly bound approximately 95% of the required bindings 
found in the five case studies we have developed so far (approx. 
200 bindings). Missing bindings were specified manually. That is, 
from the binding tree of Figure 1, it is always possible to select a 
TRM element to bind and then manually select the IUT entity it 
corresponds to (even overriding bindings obtained through 
binding modules). Thus, we view our overall approach to 
validation as being 'semi-automatic'. 

The ABE uses a binding module (which, in essence, defines what 
constitutes a successful match) as follows: First, each contract 
within the TRM is bound to a type within the IUT.  The ABE 
examines all types defined within the IUT.  The types are 
compared by name and structure to determine the correct binding.  
Structural comparison entails looking for procedures within the 
type to determine if the observability methods and responsibilities 
defined within the contract could also be bound. Once all of the 
contracts have been bound, the ABE binds observability methods.  
As each such method represents an observation requirement 
imposed on the IUT, the corresponding IUT procedure must be 
side-effect free.  That is, invocation of the IUT procedure bound 
to the observability method must not alter the state of the IUT.  To 
enforce this, the ABE ensures any candidate IUT procedure is 
indeed side-effect free (a non-trivial technical detail explained 
elsewhere [15]).  Once a set of candidate query-methods is 
selected, procedure name, return type, and parameters (number, 
types, and order) are all examined to select a corresponding IUT 
procedure for binding. Following the binding of observability 
methods, the ABE binds responsibilities.  Each responsibility is 
bound to one or more IUT procedures.  The ABE begins by 
looking for a single procedure that can be bound to the 
responsibility.  The procedure name, return type, and parameters 
(number, types, and order) for each IUT procedure are examined 
to find a corresponding match.  If an individual IUT procedure 
cannot be located, the ABE begins to analyze groups of procedure 
that could be used in combination to create the required 
responsibility binding.  Once all contracts, observability methods, 
and responsibilities are bound, the ABE will bind any remaining 
exported symbols using the same methodology for binding 
contracts to IUT types. 

If at any point the selected binding module is unable to determine 
a binding for an element within the TRM, the module will skip the 
binding and move on.  Once this automatic binding process ends, 
further bindings can be specified manually, or another binding 
module may be applied to the TRM. 

Finally, each time the binding data is updated, the ABE will run to 
see if the updated binding data allows for additional bindings to 
be inferred.  That is, if a binding is completed manually, it is 
possible that the ABE will infer several additional bindings at the 
same time.  Also, because the ABE runs each time the binding 
data is updated, it is possible that if a binding is removed, the 
binding will be reestablished instantly because the ABE found a 
match.  But once a binding has been established, either manually 
or via the ABE, future executions of the ABE will not change the 

binding.  That is, the ABE only operates on bindings that have yet 
to be specified (unless the user asks for complete regeneration). 

In summary, bindings not only eliminate a frequent and 
problematic traceability gap between a requirements model and an 
actual implementation to validate; they also enable the semantics 
of this model to be operational. That is, through bindings, all the 
static and dynamic checks, metric evaluators, and scenarios of an 
implementation-independent requirements model captured in our 
VF can be automatically instrumented in an actual IUT (as 
opposed to a model of an actual IUT) and automatically validated. 
Such validation results in the production of a report, which 
displayed by the VF (e.g., see Figure 2 below). 

5. DISCUSSION and CONCLUSION 
The Validation Framework (VF) we propose allows for the 
validation of an implementation-independent Testable 
Requirements Model (TRM) against one or candidate actual 
Implementations Under Test (IUTs) without the need for glue 
code to bridge from requirements to IUT.  Nor is it necessary to 
augment this requirement model with implementation-specific 
information (such as OCL constraints)4. From our viewpoint, the 
approach we propose is truly model-based: the requirements 
model is independent of any implementation but imposes 
(structural and/or behavioral) constraints (via pre- and post-
conditions, invariants and grammars of responsibilities) on all 
candidate implementations that could be validated against this 
model. 

As previously mentioned, we carried out significant initial testing 
on the VF. First, a comprehensive suite was used for the ACL 
compiler. Then, five extensive case studies were developed to 
verify the handling of static and dynamic checks, as well as 
scenario monitoring and metrics evaluation.  All this work 
ultimately demonstrated the feasibility of the approach we are 
proposing. But we needed to have the VF evaluated 
independently. To do so, we asked the students of a graduate 
course one of the authors was teaching this term to learn ACL and 
the VF in order to assess their usefulness. Each student had to 
choose a domain, model the requirements of this domain via ACL, 
and finally bind their TRM to different implementations in order 
to obtain several evaluation reports. Given that the VF only 
handles C++/CLI, all students elected to work in C#. The domains 
they selected ranged from simple data types (e.g., developing a 
hierarchy of contracts for a binary search tree and some its well-
known specializations such as AVL trees) to simple games (e.g., 
BlackJack) to a subset of an actual military system! The resulting 
assessments from the students were surprisingly convergent:  

- The semantics of ACL were seen has generally necessary and 
sufficient across the different selected domains. Time-constraints 
did not make it possible however to explore the use of plug-ins. 

- The instrumentation of an actual IUT by the VF takes place at a 
low level where highly technical details (such as the ordering of 
instantiations) can complicate drastically reliable scenario 
monitoring. Bugs were discovered and fixed, but they showed that 
the VF is tightly coupled to the inner workings of .NET and that 
maintenance of the VF requires great technical expertise in this 
domain. This is especially the case for the creation and use of the 

                                                                    
4 As previously mentioned, it is quite problematic to include 

implementation-specific details in a requirements model.  



test harness capable of monitoring complex scenarios (which most 
MBT approaches simply do not tackle). 

-  While automatic binding generally works, subsequent user-
specified modifications to generated bindings were arduous at 
times. Users appreciated the fact that the VF does allow binding a 
responsibility to a procedure of a totally different name. But the 
management of bindings over several iterations of TRM 
refinement was deemed rather 'primitive'. More work is required 
on both binding generation and binding management. 
- Integration within Visual Studio was greatly appreciated but it 
was noted by some that some features of the latter (such as 
Intellisense) were not available in VF. Such additions are feasible 
and will be included in a subsequent release of our tool. 

- There was some 'trial and error', unless bindings were specified 
entirely manually. Furthermore, some users complained of having 
to 'retrofit' the implementation at hand with code to handle the 
observability requirements spelled out in a TRM. In fact, this is 
expected and likely unavoidable: because the TRM is decoupled 
from any implementation, it must define a 'validation interface' 
(especially via observability methods) that IUTs will have to 
support. Such a strategy is also at the root of several design 
patterns [28] (which 'impose' an interface on a set of classes by 
defining an abstract parent class for all of them).  
- All users complained that if their contracts compiled but did not 
run correctly, a) no debugging was available and b) the generated 

reports were not useful in locating mistakes, but merely in 
reporting their presence. However, the fact is that the VF is a 
program that stops and monitors the execution of another program 
(the IUT). As such, it would be extremely difficult to support 
debugging the execution of the VF (which, itself, can be 
conceptualized as a debugger).  
- Some users felt they had to modify their IUTs in order for the 
latter to "bind correctly" to their TRM. Clearly this is wrong: it is 
the TRM that has to be abstract enough to accommodate one or 
more IUTs. But this misconception emphasizes the reality of 
using our current VF: the validation of an IUT largely depends on 
the ability to bind that IUT to a TRM. But this is easier said than 
done. For example, the TRM does not offer 'pointer semantics', 
which eliminates any hope of binding to non-managed C++. In 
turn, this limits the applicability of the VF (for example, to the 
validation of C++ data type libraries such as STL and BOOST, 
and other non-managed sources).   
In the end, we must conclude that, while the proposed approach 
and its corresponding tool do offer a novel solution for the semi-
automated validation of a requirements model, in practice our 
work turns out to be very specific to the .NET platform and to 
managed (i.e., garbage-collected) languages such as C#.  
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