
11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 1 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

Write More Tests

SATURDAY, 24 SEPTEMBER 2011

Test-Driven Development? Give me a break...

Update: At the bottom of this post, I've linked to two large and quite different
discussions of this post, both of which are worth reading...

Update 2: If the contents of this post make you angry, okay. It was written somewhat
brashly. But, if the title alone makes you angry, and you decide this is an article about
"Why Testing Code Sucks" without having read it, you've missed the point. Or I
explained it badly :-)

Some things programmers say can be massive red flags. When I hear someone start
advocating Test-Driven Development as the One True Programming Methodology,
that's a red flag, and I start to assume you're either a shitty (or inexperienced)
programmer, or some kind of Agile Testing Consultant (which normally implies the
former).

Testing is a tool for helping you, not for using to engage in a "more pious than thou"
dick-swinging my Cucumber is bigger than yours idiocy. Testing is about giving you
the developer useful and quick feedback about if you're on the right path, and if
you've broken something, and for warning people who come after you if they've
broken something. It's not an arcane methodology that somehow has some magical
"making your code better" side-effect...

The whole concept of Test-Driven Development is hocus, and embracing it as your
philosophy, criminal. Instead: Developer-Driven Testing. Give yourself and your
coworkers useful tools for solving problems and supporting yourselves, rather than
disappearing in to some testing hell where you're doing it a certain way because you're
supposed to.

Have I had experience (and much value) out of sometimes writing tests for certain
problem classes before writing any code? Yes. Changes to existing functionality are
often a good candidate. Small and well-defined pieces of work, or little add-ons to
already tested code are another.

But the demand that you should always write your tests first? Give me a break.

This is idiocy during a design or hacking or greenfield phase of development. Allowing
your tests to dictate your code (rather than influence the design of modular code) and
to dictate your design because you wrote over-invasive test is a massive fail.

Writing tests before code works pretty well in some situations. Test Driven
Development, as handed down to us mortals by Agile Testing Experts and other
assorted shills, is hocus.

Labouring under the idea that Tests Must Come First (and everything I've seen, and
everything I do see now suggests that that is the central idea in TDD - you write a test,
then you write the code to pass it) without pivoting to see that testing is a useful
practice in so much as it helps developers is the wrong approach.

Even if you write only some tests first, if you want to do it meaningfully, then you
either need to zoom down in to tiny bits of functionality first in order to be able to
write those tests, or you write a test that requires most of the software to be finished,
or you cheat and fudge it. The former is the right approach in a small number of

Enter your email address:

Subscribe

Delivered by FeedBurner

SUBSCRIBE VIA EMAIL

GET THIS VIA RSS

 Posts

 Comments

@jeremybonney It's going to take me a
while to adjust to your being a
programmer ;-) about 6 hours ago

@jeremybonney It's a nice feeling!
You'll miss it soon enough, though :-)
about 6 hours ago

json.replace(/(\w+):/g, "\"$1\":"); // What,
you couldn't do this for me? 2 days ago

jQuery's JSON parsing and jsdom's
HTML parsing irritatingly fussy/fragile.
Having to run a regexp cleanup phase
for input for both = ew 2 days ago

Follow me on Twitter

REAL TIME...

RECOMMENDED BOOKS

! 2011 (2)

! September (2)

Agile Scrum: Delivering Broken
Software Since 1991...

Test-Driven Development? Give
me a break...

BLOG ARCHIVE

Share Report Abuse Next Blog» Create Blog Sign In

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 2 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

Posted by Peter Sergeant at 02:30

situations - tests around bugs, or small, very well-defined pieces of functionality).

Making tests a central part of the process because they're useful to developers?
Awesome. Dictating a workflow to developers that works in some cases as the One
True Way: ridiculous.

Testing is about helping developers, and recognizing that automated testing is about
benefit to developers, rather than cargo-culting a workflow and decreeing that one
size fits all.

Writing tests first as a tool to be deployed where it works is "Developer Driven
Testing" - focusing on making the developer more productive by choosing the right
tool for the job. Generalizing a bunch of testing rules and saying This Is The One True
Way Even When It Isn't - that's not right.

Discussion and thoughts (posted a few hours later)...

I wrote this a few short hours ago, and it's already generated quite the discussion.

On Hacker News, there's a discussion that I think asks a lot of good questions, and
there's a real set of well-reasoned opinions. I have been responding on there quite a
bit with the username peteretep.

On Reddit, the debate is a little more ... uh ... robust. There are a lot of people
defending writing automated tests. As this blog is largely meant to move forward as
being a testing advocacy and practical advice resource, I've clearly miscommunicated
my thoughts, and not made it clear enough that I think software testing is pretty darn
awesome, but I'm put off by slavish adherence to a particular methodology!

If you've posted a comment on the blog and it's not there yet, sorry. Some are getting
caught in the spam folder. I'm not censoring anyone, and I'm not planning to, so
please be patient!

Anyway, the whole thing serves me right for putting together my first blog post by
copy-pasting from a bunch of HN comments I'd made. The next article is a walk-
through of retro-fitting functional testing to large web-apps that don't already have it,
and in such a way as the whole dev team starts using it.

33 people +1'd this

35 comments:
Jason Hanley said...

Nicely said. Clearly the voice of experience.

Tests are only valuable if they're well thought out, and actually give more benefit
than their cost.

I've seen way too many examples of automated tests that cause more problems
than they solve.

24 September 2011 08:08

Dawid Loubser said...

You seem to live in a world of hacking together toy software. One day when you
become a software ENGINEER who has to build complex, long-lived software as
part of a team of people, following modern engineering practices (model-driven
development, design-by-contract), upon which people's well-being depends, you
will change your tune, I suspect. As son as you have DESIGNED a component (at
any level of granularity) you can derive a good set of test cases for it using
established techniques developed by the testing community over decades. But
you don't design, do you? Your strongly-worded hissy-fit of a blog post suggests
that you are far from being a professional, and I hope you're not writing any
important software (for the good of mankind).

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 3 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

If you ally wanted to attack test-driven development, you could at least have
taken the time to learn what it's all about, and could have tried to construct
halfway-decent logical arguments against the (alleged, according to you)
benefits. Instead, it seems you had a really bad day trying to write some complex
code, and instead of kicking your dog, decided to add this giant fit of
misunderstanding to the world.

Perhaps you should focus on the skills that good software engineers really are
made of. (Hint: it's not programming.)

24 September 2011 08:09

chadastrophic said...

Great article, one of the greatest programmers Ive known is an advocated of
TDD, but is also smart and balances reality with best practices. I really enjoyed
the honesty in your article. Thanks! My colleague who is a strong advocate has
made me consider this paradigm more seriously and its great to be
knowledgeable when and how to apply certain approaches.

24 September 2011 08:09

Micha said...

I think in somepoint your right but
you can write TDD as Feature lists this i think is a good thing and iam using it
often on web Project cause i first think what i wanne do before i do it. Often
Programmers do something write shitty code and then they are to lazzy to fix it...
this is not a good programming style

sry for my bad english

24 September 2011 08:39

Aleksey Korzun said...

Dawid Loubser,

Using TDD does not instantly make you a superior engineer and everybody else a
toy software maker.

You are just backing up authors point by being full of your self just because you
use specific development approach that works for you.

24 September 2011 10:06

Rafa! Rusin said...

I agree with the idea of the article. We don't need TDD Palladins. It's usually a
bad idea to start from a test case when you develop new piece of functionality
and have little idea of how it will look like when it's done. On the other hand, I
prefer one unit test, which is well thought and tests actual functionality, instead
of 10 tests for getters and setters (which I've seen in some code). TDD if goes
mad, is a monster.

24 September 2011 10:13

Lord almighty said...

TDD rocks, its just a matter of how its implemented and using it when it fits.

Small-team projects doing RAD are normally greatly benefited by TDD.

24 September 2011 10:24

foobardude said...

Dawid Loubser: a man of zero substance for an argument.

Dawid - experienced teams often don't write tests because we have to make
money. We hate it, but we need to get a check. TDD is a fun exercise but isn't

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 4 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

really practiced often. Yet when attempted you have a lot of tests that are good to
go.

Don't be such a douche, chill out and just read what everyone else is saying. And
when you attempt a counter point, back it up with real facts and not sound like
the agile consultant the author was ripping on.

24 September 2011 10:32

oliverclozoff said...

> because you wrote over-invasive test is a massive fail.

It's failURE.

24 September 2011 10:32

hacksoncode said...

You know, the biggest thing I've always wondered about "test driven
development" is "what process do you use to develop your tests?".

24 September 2011 10:50

James said...

Aleksey,

Hating TDD with a passion doesn't make you one either, and advocating TDD
doesn't make you a bad one. Tools and methodologies are nothing more than
tools and methodologies. You can have a major preference for one, but if you're a
good developer/engineer, you can adapt to whatever is being used.

Before I jump in here, I'll mention; my group doesn't advocate TDD, but it does
require unit testing in some form. But let's see here:

Peter,

> Allowing your tests to dictate your code (rather than influence the design of
modular code) and to dictate your design because you wrote over-invasive test is
a massive fail.

Yep. Doing TDD also means that you actually have to be good about writing
testable code, and writing -good- tests. You're applying TDD over the top of
other software engineering best practices. If you don't, you're just going to wind
up shooting yourself in the foot. Not using TDD but writing over-invasive tests is
also a massive fail - it has nothing to do with TDD.

Let's say I'm writing a server which reads data from two sources, performs some
complicated data munging, and returns some answer. Simple tests for your
DAOs, write the DAOs. Nothing too invasive so far. Write tests for your data
munging, and implement the munging algorithm. No over invasive tests, so far,
and nothing has dictated my design. Each piece is logically going to do what it's
going to do. Finally, the overall server tests, and the server itself.

If you take the other directional approach, you write your tests for the server,
mocking out the algorithm (meaning you don't have to write the rest yet, so long
as your mocks obey the contracts of the algorithm class), etc.

> Even if you write only some tests first, if you want to do it meaningfully, then
you either need to zoom down in to tiny bits of functionality

That's not really a bad thing. It's sort of the point of unit testing in general - you
don't know that your higher level components are working unless you know the
lower level ones are.

> write a test that requires most of the software to be finished, or you cheat and
fudge it.
If you have software with well defined APIs, "fudging it" is fine. I can drop out
my ExpensiveBullshitAlgorithm with a mock which returns 3 when the inputs
are 1 and 2. Those are the expectations of the system, and we'll prove that

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 5 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

ExpensiveBullshitAlgorithm actually returns 3 for inputs of 1 and 2 when we
write the tests there. This is not "cheating", this is "mocking", and it's only
something you can get away with if you're actually writing solid tests for your
components, and they obey defined APIs.

> Generalizing a bunch of testing rules and saying This Is The One True Way
Even When It Isn't - that's not right.
Consistency is important in large group projects. If half the team is working in
one way, and half the team is working in another, you ARE going to clash. It's
not necessarily the One True Way - nothing is. But in the real world there is quite
often the One Way We Decided On For Consistency and You're a Big Boy/Girl So
You Can Adapt, Right? And once you get used to it, you might even like it.

24 September 2011 11:11

Joe Magly said...

Everything has a balance, the problem I see in some shops is they tend to take
the chosen practice to one extreme or the other without balancing actual need or
value.

Testing helps, writing tests first or last I feel is inconsequential to the ultimate
goal of the tests if you really are doing true unit testing (some shops only think
they are unit testing). Writing do nothing tests that just improve your coverage
ratio are not worth the time. Spending an extra hour on that method with the
complex object as an input parameter to cover more negative cases would be
more valuable.

24 September 2011 12:33

Ben Smith said...

Use the right tool for the job! If you have a large, complex codebase, TDD is the
ONLY sensible way to keep things manageable while you change fundamentals.
TDD makes little sense for a 200 line project knocked off in an afternoon, or
anybody using the waterfall method.

24 September 2011 12:46

Rush said...

We'll build it, get it working, then we'll design it. <<<---- 85% of the projects I've
ever worked on.

24 September 2011 13:31

Cody said...

Great article. I don't care whether you like TDD or not, just don't be one of those
douches who regurgitates all kinds of bullshit about how great some method is.

I, personally, like to test after I'm fairly sure of the design. When I've devised my
overall algorithm and determined the interfaces and implementations, then I'll
write tests as I go so I can safely refactor as I work.

Also, TDD for interfaces like a web page is just plain bullshit. When you do TDD
for integration tests on a web application, you're just wasting your time. Test the
hell out of your unit tests, write functional tests as you understand the problem
more and you become more sure of the solution, and if write interface tests once
you're done and you're concerned with them breaking during deployment.

24 September 2011 13:48

Vic said...

TDD is for http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

Integration tests help, ex: browser to socket server to db during CRUD.
The rest are just a religion.

24 September 2011 14:02

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 6 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

WildThought said...

Every methodology can be taken to an extreme. RUP, Waterfall, and I think TDD
is especially prone to it.

It reminds me of the relational database modeling vs. OOP debates during RUP's
heyday. What do you do first, data model or class model. I would argue it doesn't
matter as long as you get the same result. Their are rules that ORM's have
figured out how to reverse and forward engineer between each other. If those
rules exist, then why can't we model either way first.

Similarly whether we write tests first or code first should be the purview of the
person writing the program. Do I really want to write a test first for every stored
procedure I write. Of course, I do not. I am sick of seeing articles on how to do
TDD in the database layer. I am equally sick of having to create my own mocks to
mimic a layer I can get to in ms.

I think it has its place, but it does promote coding bloat. Now, RUP promotes
documentation bloat. I truly believe, that quality software engineers (aka master
craftsmen) can choose what methodologies to draw from as needed. To say, I
have the way and its the only way is telling me that you are afraid to think
outside your own box.

24 September 2011 15:08

Maht said...

Generalising is fun. We call it "having an opinion".

24 September 2011 15:13

Dave Thompson said...

24 September 2011 16:03

Dave Thompson said...

"writing tests first or last I feel is inconsequential"

The point of TDD is that writing your tests first forces you to use your code
before writing it, which in theory leads to better designed, simpler interfaces.
The tests then serve as the formal specification for your interface, which often
leads to easier and quicker implementation of your interface. Since your code's
specification is now being tested, it is very easy to prove to stakeholders that
your code works as intended, and is often easier to change when stakeholders
change their minds. If you write your implementation first, you may not realize
until later down the road that your interface is awkward or difficult to use, and
by then it takes more time to fix it.

TDD is not always necessary or even the best way to do things. TDD is probably
overkill if you're working on a simple CRUD form with no logic outside of
validation and persistence. TDD's advantages show themselves quickly when
working with a technology or business domain that you're not experienced with,
when you're working with complex systems, and when you're creating public
apis. In these cases, TDD helps get your design correct the 1st try, and saves a lot
of time. In addition TDD has many advantages when working with a large team.
Any time 'wasted' writing tests is more than made up for by elimination of
technical debt and time spent refactoring or fix bugs.

24 September 2011 16:07

Darren said...

Something that should be kept in mind about TDD is that nobody expects you to
do it all the time -- even its most staunch promoters. Full test-first code is an
ideal, as something to be worked for. Whether you will reach 100% is dependent
on a lot of factors, like skill, time, understanding, tools, your framework and
language, coworkers, etc.

But if you don't hit 100%, you don't throw up your hands, curse the method and

This post has been removed by the author.

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 7 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

write an angry blog post about how TDD upsets you.

Instead, you say: "Next time, I'll do better." And you do.

That's the difference between test driven development and your "developer
driven development." TDD is a method of producing tested, working code, it
takes a long time to master (I'm not even there yet), and it's an ideal that its
practitioners work towards. Your DDD is a method that says that whatever
"works" today is fine, whoever you are and whatever you do today, and testing is
nice so long as it's in some form before or after the code is written. Kinda vague...

But since you mock TDD as the "one try way," but I have a question for you: If
you're not able to write simple test cases for all of the code you write, even before
that code, how can you be satisfied with yourself?

24 September 2011 19:23

Dawid Loubser said...

Let's say you make a statement about your component or system, such as "under
circumstances X, given input Y, it will produce Z". One of only two truths apply:
Option A: you make the statement based on the belief that your code (which
other members of your team have perhaps modified) is sound, or based on
experience. Let's call this "faith". Option B: You make the statement because
there is a unit test that proves it ("proof"). In other fields of engineering, things
are not built based on faith.

Unit tests, at every level of granularity, are the only way to prove that your
system works. Anything less fosters a self-important, "code ownership", hacking
culture, and virtually proves that you are coding without having performed any
real design.

Anybody is free to follow this style of work, but in the 21st century, this is
thoroughly amateur, in my opinion, and suited only to toy software. Are you
really willing to bet your job, and the experience of your clients, on faith?

25 September 2011 03:46

Peter Sergeant said...

Dawid,

Your comment is on the money when you point out that testing as a developer is
hugely important. That's really what this blog is/will be about.

I'm not sure what your comment has to do with the methodology of Test-Driven
Development, which is the specific idea that you must write a test for the piece of
code you're working on BEFORE you do anything else.

25 September 2011 03:50

MononcQc said...

I think you make a mistake by thinking that prototyping and testing are mutually
exclusive. Of course it's useless to write tests when you don't know the specs of
your software and what it should do. But then again, why should you write any
production software without knowing this?

Prototyping is a[nother] tool to help find out the specs of programs you end up
writing. Tests are a way to write those specifications, force you to think as the
user of the code rather than its writer. Then this is turned into runnable code to
be used as a guideline. That you have tests is more or less accidental in the
process.

To me, the best argument about writing tests first is that writing tests last is
absolutely boring. Most of the time, it's a half-assed, useless job. Writing tests
first is the only way to make it somewhat fun.

25 September 2011 06:38

Javin Paul said...

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 8 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

I agree with your first statement no matter how good a practice ,process or
technology is its not ultimate solution.Test driven approach has its own
advantage but its not perfect for every scenario. My experience says its flexibility
and hybrid nature which gives you option to use agile, waterfall or test driven
based on needs and suitability of situation , resources and environment.

25 September 2011 07:48

Dawid Loubser said...

Earlier, I presented the argument that we require unit tests at each level of
granularity in our system, to ensure quality and consistency (which is, after all,
what we strive for, right?). Nobody has presented a counter-argument, so let's
assume this for the moment, and discuss Test-Driven Development (upfront unit
tests):

First of all, I don't view TDD as a development methodology in itself, but rather a
"technique" (not unlike, say, design-by-contract) which can be used in many
development process methodologies, together with other techniques.

There are several overwhelmingly compelling reasons to write one's tests first:

- It enforces a deep understanding of the contract ("requirements") of the
component to be written by the developer, which in itself enforces that
requirements analysis / design actually be done. How many teams jump right
ahead and start coding, only to have to refactor later? Put the overheads where it
belongs - requirements analysis.

- It greatly speeds up and simplifies the development process - for the developer
now knows precisely when he is "done" (there is no uncertainty, no unnecessary
work is done, but nothing is left out). Of course, this depends on having "good"
tests (sufficient coverage) - which is a separate and complex topic itself.

- In technology-neutral metalanguages like URDAD or UML, we can express the
"dynamics" of requirements sufficiently, but few programming languages (other
than WS-BPEL Abstract, which is a bit dead in the water) have artifacts that can
express such requirements. Take, for example, a Java interface or WSDL
contract: They express only a small part of the requirements. The test suite
becomes an essential artifact to express the dynamics (interactions) of the
requirements. We should express the requirements *before* implementing
them, surely?

- One's framework is then already in place for test-driven bug fixing. Got a bug?
Prove it with a unit test. Once proven, fix it (which you know, once your test
passes), with the assurance that the other 20 unit tests prove you haven't broken
anything else. Nobody is going to start putting those 20 tests in place when
under pressure to fix a bug. Luckily they can already be there, and your world
does not spiral out of control in a frantic mess of complexity.

Test-driven development introduces a degree of precision, control, and
simplicity to the development team that is profound. Of course it's more work,
and requires much more insight from the developer.

Two things have held true in the decade or so that I have been teaching this to
developers though:

Firstly, absolutely everybody is opposed to the supposed "overheads" of this
process: "But we have deadlines!" "We don't have time!"

Secondly, every last developer that adopts the test-driven development process
(not because they "have to", but in their hearts) rises to a new plateau of
understanding - they speak a different language when it comes the coding, and
approach problem solving differently. All of the sudden, it's obvious why other
engineering disciplines do things this way as a matter of course. And us software
engineers have infinitely better tools than our distant relations in mechanical,
chemical, civil engineering - We can automatically build and break components
at zero cost!

They never go back to this uncontrolled hacking that most people call "software
development".

25 September 2011 12:14

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 9 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

Attila Magyar said...

TDD is not "The One True Programming Methodology", but clearly one of the
best if you are doing OO design.

At my previous workplace we were doing a lot of TDD, and at first I didn't like it
at all. Later I recognized that we completely misused the whole methodology.
The problem was that we didn't allow the test to influence our code, which
resulted both unmaintainable code and tests (lots of hacks in the test because the
code was not unit testable (and not reusable, not flexible). So insisting on unit
testing, but not allowing to change the code because of the test, is two
incompatible mindset, which will result lots of stress in the test.

Later I started to get into in TDD more deeply and I learned how can I "listen to
the test" and alter my design because of it. Overall, it helped me to understand
OO in a better way. (At that time I did not consider myself as an unexperienced
programmer, and I though I already know everything about OO, but it was not
the case).
So, now I consider TDD as a design process which helps me to develop good OO
design.
(I emphasising the OOP intentionally, because I started studying functional
programming recently, and I still not sure whether TDD offers the same benefit
in that world or not).

Regarding TDD, I recommend a book called: Growing object oriented software
guided by tests

25 September 2011 14:41

Mojo said...

This article isn't written "brashly", rather its written with not much merit.

First three paragraphs the author is just trolling.

Fourth paragraph you admit to doing TDD is good sometimes.

Fifth paragraph and you are just taking things too literal. Not all development
should be TDD. API Discovery, testing the waters, is okay to not being TDD.
There is also other things that cannot be TDD like GUI related work. Also this is
not a huge portion of coding so don't hold on the the 20% of development and
edge cases and claim TDD sucks based on those.

Sixth paragraph, you again say TDD is good sometimes, then you troll again.

Seventh paragraph, you don't back this claim up.

Eigtht Paragraph....oh fcuk it, I give up...this is useless.

25 September 2011 22:54

Antwan "@ADubb_DC" Wimberly said...

Great post. For those that are caught up in the hype and want to imply that you
some how are not a good coder or have poor design skills because you don't
strictly follow TDD, you're delusional and you're in severe need of help. Building
software is all about trade offs. There is no ONE AND ONLY way to program that
beats all. It's all about what you think is best for you and or your team. For
example, you can justify all your decisions by starting each sentence off with
"But Martin Fowler said____"....or you can grow some balls and make a
decision for yourself. Stop letting people control your lives as a developer and go
against the grain sometimes!! You guys crack me up. Calling this man out
because he has the balls to admit that sometimes he doesn't think adhering to
the process to the T is worth all that it's portrayed to be. What a buncha
chumps!! Even Jeffrey Palermo says he and his crew at Headspring don't always
write their tests first. They just make sure their tests are committed at the same
time their code is. It's good to do initially, but after a while you just know what
the hell you're doing. I'm not saying don't write tests...they're helpful as hell...no
doubt. But writing them FIRST EACH AND EVERY TIME...naaaaaah!! And that
word "trolling" cracks me up. It's become synonymous with..."this guy has the
balls to provide a counter argument for a widely supported practice". Get real

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 10 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

people!!

26 September 2011 08:35

Dawid Loubser said...

Antwan, the original author does NOT present a counter-argument - that is the
point! If anybody can present an argument (i.e. a conclusion based on logical
premises) that test-driven development *reduces* quality or productivity under
any circumstances, let him come forward.

As it stands, it reads a little like "sometimes I just don't feel like producing good
quality work, because it's too much effort. I think striving for good quality
sucks."

Do you also sometimes say: "Designing things before I build them EACH AND
EVERY TIME... naaaahhhh!!" ? Where does it stop? "Satisfying the customer's
requirements EVERY TIME? Naaahhhh!!. Writing code that compiles EVERY
TIME? Naaahhhh!!"

Good heavens, man, what kind of software do you build? You are the one that
has to "get real".

Did you even read my prvious post? Can you present a counter-argument to any
of my statements?

26 September 2011 13:03

Mauricio Aniche said...

I study, practice and research in academia about TDD for a long time. I can say
that I am a TDD evangelist. I do believe that TDD makes such a difference in my
development environment.

However, you can't "Always" and "Never" in any software engineering context. If
someone still thinks that TDD, or any other practice should be done 100% of the
time, s/he is wrong.

TDD is a tool as many others that we have. You should use whenever you need it.
It is up to the developer to identify moments that he needs to use TDD and
moments that he does not need to use. This is what I expect from an experienced
developer.

27 September 2011 08:08

Dawid Loubser said...

Quote (Mauricio Aniche):
> However, you can't "Always" and "Never" in
> any software engineering context. If someone
> still thinks that TDD, or any other practice
>should be done 100% of the time, s/he is wrong.

Of course you can! One can logically argue that Test-Driven Development will
always produce higher-quality output. Of course, higher-quality means slower,
more expensive, and requires a stronger class of developers.

One should thus not say "one must always follow test-driven development" just
like one should not say "one must always pursue the highest quality".

But if the decision is indeed made to pursue quality - and with very complex
software projects and small teams, this is a good idea - nobody has yet presented
an argument that test-driven development will not always result in higher
quality.

28 September 2011 01:58

P@blo said...

Great article! The article's point is quite clear IMHO, but the way it points out
what we are doing wrong is a bit harsh.

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 11 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

I can't agree more with the purpose of automated testing, that of helping you to
develop good software. It is of no avail following a cook recipe in the wrong
context.

Also, as Hanley, chadastrophic and Magly say you should always strike a balance
between benefits it provides and costs, for example when doing a webapp, it is
not the same as doing software for a pacemaker.

28 September 2011 07:10

reality-analyst said...

Dawid Loubser,

There are plenty of counterarguments possible (and necessary).

First, there are many ways of writing correct code and insuring that already
written code is correct. Only a fraction of those involve unit tests. Claiming that
TDD is the best practice without comparing (or even knowing) about other
practices is pure arrogance.

Second, it is perfectly possible to write horrible code while having 100% unit test
coverage. Your code can be unreadable, hard to navigate and overly complex, for
example. Another common illness of TDD practitioners is the tendency to sweep
bugs under the carpet, moving them to config files and the database. Yes, yes,
your code is perfect and super-configurable, but if your application fails to
reliably work in real life, I don't really care.

Needless to say, these are not theoretical issues. I'm speaking from experience.

Finally, it's absurd to pretend that "real" engineers always deliver or even want
to deliver 100% correct code. If your hardware fails in 1% of all transactions, is it
reasonable to attempt to fix some software issue that affects 0.01% of all
transactions? What's the cost of fixing hardware? What's the costs of fixing
software? What's the cost of failures? That's the kind of reasoning I would expect
from a real engineer.

1 October 2011 10:45

Eternally Lost said...

Frankly, most programmers are scared of writing tests, and unfortunately TDD
many times has been presented as a rigorous discipline or worse, dogma. This
just scares them off even more. While I'm actually an advocate of pragmatic TDD
(or even TFD where it makes sense), the real value in TDD is the rapid feedback
you get. It reduces the mental load on a developer (and in my professional
opinion can produce better designs). For a moment, don't think of the unit test
as a test. Instead, think of it as a "mini prototyping environment" where you can
quickly write a piece of code, immediately execute it, and see the results. If
viewed this way, pragmatic TDD can become a very liberating exercise as you
feel less constrained and more willing to explore.

3 October 2011 08:11

Post a Comment

11-11-22 8:59 AMWrite More Tests: Test-Driven Development? Give me a break...

Page 12 of 12http://www.writemoretests.com/2011/09/test-driven-development-give-me-break.html

Newer Post Home

Subscribe to: Post Comments (Atom)

Comment as: Select profile...

Post Comment Preview

Simple template. Template images by luoman. Powered by Blogger.

