
4

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-72006, 2007 Gerard Meszaros

Avoiding Slow Tests – Slow Test Code 
• Avoid Waits

– Use Humble Object to avoid Asynchronous Test by 
testing logic directly

• Test Less Code
– Reduce Test Overlap

• Set Up Less Fixture
– Use a Minimal Fixture

• Set Up Fixture Less Often
– Reuse a Shared Fixture

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-82006, 2007 Gerard Meszaros

Shared Test Fixture• What it is:
– Improves test run times by reducing setup overhead. 
– A “standard” test environment applicable to all tests is 

built and the tests reuse the same fixture instance. 

Pattern

JPC
Sticky Note
So this is not an example per se but the slides of Meszaros on patterns for some behavior smells

JPC
Sticky Note
p.695 in the book: pertains to threads and thus to COMP 4104. It's nice to learn about threads… but they are notoriously difficult to test and Meszaros mentions they often simply DO NOT get tested!!

JPC
Sticky Note
how do you understand the word 'fixture'?



5

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-92006, 2007 Gerard Meszaros

Shared Test Fixture
• Variations:

– Fixture is shared between some/all the tests in a single 
test run

– Fixture may be shared across many TestRunners
(Global Text Fixture)

• Examples:
– Standard Database contents
– Standard Set of Directories and Files
– Standard set of objects

Bad Smell Alert:
•Erratic Tests

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-102006, 2007 Gerard Meszaros

Setting Up the Shared Test Fixture

• Prebuilt Fixture
– Fixture is built ahead of time and reused by many test runs

• Lazy Setup
– First reference causes it to be initialized
– How do you know when to clean up?

• SuiteFixture Setup
– Use Static variables to hold the fixture
– Initialize one before first test; destroy after last]

• Setup Decorator
– Define a Test Decorator that implements Test
– Wrap the test suite with an instance of the decorator

To share the same fixture instance between tests:

Use only when don’t need 
to clean up the fixture

Tests that depend 
on the decorator 

cannot be run 
without it.

Only supported by 
NUnit, VbUnit, 

JUnit 4.0

Unrepeatable Tests

JPC
Sticky Note
test...

JPC
Sticky Note
pretty obvious...

JPC
Sticky Note
more on these in the next slides...



6

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-112006, 2007 Gerard Meszaros

Lazy Setup
• What it is:

– We use Lazy Initialization to construct the Shared 
Fixture before the first Test Method that needs it.

Pattern

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-122006, 2007 Gerard Meszaros

Lazy Setup
• How it works:

– Hold reference to fixture in a static or global variable
– Use Lazy Initialization of static variable to set up fixture.
– Can be done either in the Setup method (Implicit Setup):

If (not fixture_initialized) {
initialize_fixture;
fixture_initialized = true;

}
– Or, in a finder method (Delegated Setup):

Acct findXxAccount() {
If (not fixture_initialized) {

initialize_fixture;
fixture_initialized = true;

}
return xxxAccount;



7

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-132006, 2007 Gerard Meszaros

SuiteFixtureSetup
• What it is:

– Test Framework support for sharing test fixtures.

Pattern

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-142006, 2007 Gerard Meszaros

SuiteFixtureSetup
• How it works:

– All Test Methods in the Testcase Class share the same test fixture. 
– Like a TestSetupDecorator but only for a single Testcase Class.
– TestFixtureSetUp method is called once before first Test Method
– SuiteFixtureTearDown Method is called once after last Test Method 

• NUnit Specifics:
– Indicated by [TestFixtureSetUp] and [TestFixtureTearDown]

• JUnit 4.0+ Specifics:
– Indicated by the @beforeClass and @afterClass annotations

JPC
Sticky Note
old slide: does it work the same way in the current version of JUnit?



8

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-152006, 2007 Gerard Meszaros

SetUp Decorator
• What it is:

– We wrap the Test Suite Object with a Behavioral
Decorator that sets up and tears down the fixture

Pattern

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-162006, 2007 Gerard Meszaros

SetUp Decorator
• How it works:

– Define a Test Decorator that implements the run() 
method on Test
» Initializes the fixture 
» Calls basicRun() to run the test
» Tears down the fixture

– Wrap the test suite with an instance of the decorator
– Decorator class TestSetup (in junit.extensions) does 

exactly this
» provides a setUp() and tearDown() method to override

JPC
Sticky Note
answers our concerns about the implicit teardown in the example...



9

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-172006, 2007 Gerard Meszaros

Erratic Tests
• Interacting Tests

– When one test fails, a bunch of other tests fail for no apparent
reason because they depend on other tests’ side effects

• Unrepeatable Tests 
– Tests can’t be run repeatedly without intervention

• Test Run War
– Seemingly random, transient test failures
– Only occurs when several people testing simultaneously

• Resource Optimism
– Tests depend on something in the environment that isn’t avaiable

• Non-Deterministic Tests
– Tests depend on non-deterministic inputs

Behavior Smell

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-182006, 2007 Gerard Meszaros

Erratic Tests – Interacting Tests
If many tests use same 
objects, tests can affect 
each other’s results.

–Test 2 failure may leave 
Object X in state that causes 
Test n to fail.

Test 1 read:5

TestRunner 1

Test n

read:99

Symptoms:
–Tests that work by themselves fail when 

run in a suite.
–Cascading errors caused by a single 

bug failing a single test.
» Bug need not affect other tests directly 

but leaves fixture in wrong state for 
subsequent tests to succeed.

Fail! 
(expects 

99)

Object X
a: 5

Test 2 update(99)

Object X
a: 99

Fail!

Object X
a: 5

Behavior Smell

JPC
Highlight



10

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-192006, 2007 Gerard Meszaros

Erratic Tests – Unrepeatable Tests
If many test runs use same 
objects, test runs can affect 
each other’s results.

– Test 2 update may leave Object X in 
state that causes Test 1 to fail on 
next run.

TestRunner 1

Symptoms:
– First run after opening the TestRunner or re-

initializing Shared Fixture behaves differently
» Succeed, Fail, Fail, Fail
» Fail, Succeed, Succeed, Succeed

– Resetting the fixture may “reset” things to square 
1 (restarting the cycle)

» Closing and reopening the test runner for in-
memory fixture

» Reinitializing the database

Fail! 
(expects 5)

Object X
a: 5

Test 1 read:5

Test n

Test 2 update(99)

Object X
a: 99

Test 1

Behavior Smell

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-202006, 2007 Gerard Meszaros

Erratic Tests – Test Run War

• If many test runners use the same objects 
(from Global Fixture), random results can 
occur.
– Interleaving of tests from parallel runners makes 

determining cause very difficult

Test 1

Test 2

Test n

Object X
update

read Test 1

Test 2

Test n

Object X
update

read

TestRunner 1 TestRunner 2

Fail!

Fail!

Fail!

Behavior Smell

JPC
Highlight

JPC
Highlight



11

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-212006, 2007 Gerard Meszaros

Erratic Tests – Non Deterministic Test

Tests depend on non-deterministic inputs.
Symptoms:
• Tests pass at some times; fail at other times

– Lack of control over time/date when system contains time/date logic 
(addressed by getting control of indirect input via a stub)

– Tests use different values in different runs

Test 1

Test 2

Test n

Now: Pass

Pass

Fail

Test 1

Test 2

Test n

10 minutes later: Pass

Fail!

Pass

Behavior Smell

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-222006, 2007 Gerard Meszaros

Erratic Tests – Resource Optimism

Tests depend on non-ubiquitous external resources.
Symptoms:
• Tests pass in some environments; fail in others

– SUT depends on something in the environment that is not 
always present.

– Addressed by creating it during the fixture setup phase

Test 1

Test 2

Test n

TestRunner 1 Pass

Pass

Pass

Test 1

Test 2

Test n

TestRunner 2 Fail!

Fail!

Pass

Behavior Smell

JPC
Highlight

JPC
Highlight



12

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-232006, 2007 Gerard Meszaros

Avoiding Erratic Tests - Fresh Fixture
• What it is:

– “Brand new” fixture built for each test
– Tests are completely independent 

Pattern

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-242006, 2007 Gerard Meszaros

Fresh Fixture
• Variations:

– Transient Fresh Fixture
» Fixture automatically disappears at end of each test
» e.g. Garbage-collected TearDown

– Persistent Fresh Fixture
» Fixture naturally “hangs around” after test
» Requires extra effort to ensure it is fresh

Pattern

JPC
Sticky Note
the details do not matter: what matters is that fresh fixture is the opposite of shared fixture...



13

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-252006, 2007 Gerard Meszaros

Persistent Fresh Fixture
Two Options:

Pattern

1. Rebuild fixture for each test and tear it down
– When

» At end of this test (just in case)
» At start of next test that uses it (just in time)

– How
» Hand-coded Tear Down
» Automated Tear Down

2. Build different fixture for each test
– Use a Distinct Generated Value for any unique Id’s
– Makes tear down necessary

xUnit Test Patterns and Smells

Aug 16, 2007 TPS-B-262006, 2007 Gerard Meszaros

Reducing Erratic Tests - Shared Fixture
• Avoid Interactions between Test Runners

– Give each developer their own Database Sandbox.
» Avoids Test Run Wars but not Interacting Tests, etc, 

• Don’t Change Shared Fixture
– Immutable Shared Fixture avoids Interacting Tests
– Create Fresh Fixture for objects to be changed

» (See Persistent Fresh Fixture)

– Challenge: What constitutes a “change” to a fixture?
» Change existing objects / rows -> YES!
» Add new objects related to existing objects -> SOMETIMES!

JPC
Highlight

JPC
Highlight

JPC
Highlight


