
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 1

Chapter 12 (revised by JAS)

  Pattern-Based Design

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 2

Design Patterns

  Each pattern describes a problem that occurs over and over again in
our environment and then describes the core of the solution to that
problem in such a way that you can use the solution a million times
over without ever doing it the same way twice.

•  Christopher Alexander, 1977

  “a three-part rule which expresses a relation between a certain
context, a problem, and a solution.”

  Good book on Patterns:

  Head First Design Patterns (Freeman, Freeman et al.)

  http://www.amazon.com/First-Design-Patterns-Elisabeth-
Freeman/dp/0596007124/ref=sr_1_1?
ie=UTF8&s=books&qid=1256671704&sr=8-1

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 3

Effective Patterns

  Coplien [Cop05] characterizes an effective design pattern
in the following way:
  It solves a problem: Patterns capture solutions, not just abstract

principles or strategies.

  It is a proven concept: Patterns capture solutions with a track
record, not theories or speculation.

  The solution isn't obvious: Many problem-solving techniques
(such as software design paradigms or methods) try to derive
solutions from first principles. The best patterns generate a
solution to a problem indirectly--a necessary approach for the
most difficult problems of design.

  It describes a relationship: Patterns don't just describe modules,
but describe deeper system structures and mechanisms.

  The pattern has a significant human component (minimize human
intervention). All software serves human comfort or quality of
life; the best patterns explicitly appeal to aesthetics and utility.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 4

Kinds of Patterns

  Architectural patterns describe broad-based design problems
that are solved using a structural approach.

  Data patterns describe recurring data-oriented problems and
the data modeling solutions that can be used to solve them.

  Component patterns (also referred to as design patterns) address
problems associated with the development of subsystems and
components, the manner in which they communicate with one
another, and their placement within a larger architecture

  Interface design patterns describe common user interface
problems and their solution with a system of forces that
includes the specific characteristics of end-users.

  WebApp patterns address a problem set that is encountered
when building WebApps and often incorporates many of the
other patterns categories just mentioned.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 5

Kinds of Patterns

  Creational patterns focus on the “creation, composition, and
representation of objects, e.g.,
  Abstract factory pattern: centralize decision of what factory to instantiate

  Factory method pattern: centralize creation of an object of a specific type
choosing one of several implementations

  Structural patterns focus on problems and solutions associated with
how classes and objects are organized and integrated to build a larger
structure, e.g.,
  Adapter pattern: 'adapts' one interface for a class into one that a client expects

  Aggregate pattern: a version of the Composite pattern with methods for
aggregation of children

  Behavioral patterns address problems associated with the assignment
of responsibility between objects and the manner in which
communication is effected between objects, e.g.,
  Chain of responsibility pattern: Command objects are handled or passed on to

other objects by logic-containing processing objects

  Command pattern: Command objects encapsulate an action and its parameters

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 6

Frameworks

  Patterns themselves may not be sufficient to develop a
complete design.
  In some cases it may be necessary to provide an

implementation-specific skeletal infrastructure, called a
framework, for design work.

  That is, you can select a “reusable mini-architecture that
provides the generic structure and behavior for a family of
software abstractions, along with a context … which specifies
their collaboration and use within a given domain.” [Amb98]

  A framework is not an architectural pattern, but rather a
skeleton with a collection of “plug points” (also called
hooks and slots) that enable it to be adapted to a specific
problem domain.
  The plug points enable you to integrate problem specific

classes or functionality within the skeleton.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 7

Describing a Pattern

  Pattern name—describes the essence of the pattern in a short but expressive
name

  Problem—describes the problem that the pattern addresses
  Motivation—provides an example of the problem
  Context—describes the environment in which the problem resides including

application domain
  Forces—lists the system of forces that affect the manner in which the problem

must be solved; includes a discussion of limitation and constraints that must be
considered

  Solution—provides a detailed description of the solution proposed for the
problem

  Intent—describes the pattern and what it does
  Collaborations—describes how other patterns contribute to the solution

  Consequences—describes the potential trade-offs that must be considered when
the pattern is implemented and the consequences of using the pattern

  Implementation—identifies special issues that should be considered when
implementing the pattern

  Known uses—provides examples of actual uses of the design pattern in real
applications

  Related patterns—cross-references related design patterns

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 8

Pattern Languages

  A pattern language encompasses a collection of patterns
  each described using a standardized template (Section

12.1.3) and

  interrelated to show how these patterns collaborate to
solve problems across an application domain.

  a pattern language is analogous to a hypertext
instruction manual for problem solving in a specific
application domain.
  The problem domain under consideration is first described

hierarchically, beginning with broad design problems
associated with the domain and then refining each of the
broad problems into lower levels of abstraction.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 9

Design Tasks

  Examine the requirements model and develop a problem
hierarchy.

  Determine if a reliable pattern language has been
developed for the problem domain.

  Beginning with a broad problem, determine whether one
or more architectural patterns are available for it.

  Using the collaborations provided for the architectural
pattern, examine subsystem or component level
problems and search for appropriate patterns to address
them.

  Repeat steps 2 through 5 until all broad problems have
been addressed.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 10

Common Design Mistakes

  Not enough time has been spent to understand the
underlying problem, its context and forces, and as a
consequence, you select a pattern that looks right, but is
inappropriate for the solution required.

  Once the wrong pattern is selected, you refuse to see
your error and force fit the pattern.

  In other cases, the problem has forces that are not
considered by the pattern you’ve chosen, resulting in a
poor or erroneous fit.

  Sometimes a pattern is applied too literally and the
required adaptations for your problem space are not
implemented.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 11

Design Granularity

  Architectural patterns. This level of abstraction will typically
relate to patterns that define the overall structure of the
WebApp, indicate the relationships among different
components or increments, and define the rules for specifying
relationships among the elements (pages, packages,
components, subsystems) of the architecture.

  Design patterns. These address a specific element of the
design such as an aggregation of components to solve some
design problem, relationships among elements on a page, or
the mechanisms for effecting component to component
communication. An example might be the Broadsheet pattern
for the layout of a WebApp homepage.

  Component patterns. This level of abstraction relates to
individual small-scale elements of a WebApp. Examples
include individual interaction elements (e.g. radio buttons, text
books), navigation items (e.g. how might you format links?) or
functional elements (e.g. specific algorithms).

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 12

Architectural Patterns

  Example: every house (and every architectural style for
houses) employs a Kitchen pattern.

  The Kitchen pattern and patterns it collaborates with
address problems associated with the storage and
preparation of food, the tools required to accomplish
these tasks, and rules for placement of these tools
relative to workflow in the room.

  In addition, the pattern might address problems
associated with counter tops, lighting, wall switches, a
central island, flooring, and so on.

  Obviously, there is more than a single design for a
kitchen, often dictated by the context and system of
forces. But every design can be conceived within the
context of the ‘solution’ suggested by the Kitchen
pattern.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 13

User Interface (UI) Patterns

  Whole UI. Provide design guidance for top-level structure and navigation throughout the
entire interface.

  Page layout. Address the general organization of pages (for Websites) or distinct screen
displays (for interactive applications)

  Forms and input. Consider a variety of design techniques for completing form-level input.

  Tables. Provide design guidance for creating and manipulating tabular data of all kinds.

  Direct data manipulation. Address data editing, modification, and transformation.

  Navigation. Assist the user in navigating through hierarchical menus, Web pages, and
interactive display screens.

  Searching. Enable content-specific searches through information maintained within a Web site
or contained by persistent data stores that are accessible via an interactive application.

  Page elements. Implement specific elements of a Web page or display screen.

  E-commerce. Specific to Web sites, these patterns implement recurring elements of e-
commerce applications.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 14

WebApp Patterns

  Information architecture patterns relate to the overall structure of the
information space, and the ways in which users will interact with the
information.

  Navigation patterns define navigation link structures, such as
hierarchies, rings, tours, and so on.

  Interaction patterns contribute to the design of the user interface. Patterns
in this category address how the interface informs the user of the
consequences of a specific action; how a user expands content based on usage
context and user desires; how to best describe the destination that is implied
by a link; how to inform the user about the status of an on-going interaction,
and interface related issues.

  Presentation patterns assist in the presentation of content as it is presented
to the user via the interface. Patterns in this category address how to organize
user interface control functions for better usability; how to show the
relationship between an interface action and the content objects it affects, and
how to establish effective content hierarchies.

  Functional patterns define the workflows, behaviors, processing,
communications, and other algorithmic elements within a WebApp.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 15

Pattern Repositories

  http://hillside.net/patterns/

  http://c2.com/ppr/index.html

  http://www.hcipatterns.org/patterns

  http://www.time-tripper.com/uipatterns/

  http://developer.yahoo.com/ypatterns/

  http://webpatterns.org/

Gang of Four: Design Patterns

  Erich Gamma, John Vlissides, Richard Helm, Ralph Johnson,

“Design Patterns”

  Seminal work in exploiting ʻalready-inventedʼ computing solutions

  Example patterns include: Singleton, Factory, Iterator, Composite,
Template, and Adapter patterns

  See PDF in the slides directory:

•  http://mathcs.emory.edu/~cs584000/slides/designpatternscard.pdf

  Head First Design Patterns by Freeman & Freeman

  Concretizes the concepts with both practical and amusing
examples

  Quizzes and solutions for each pattern type

  Example Java code

  Highly readable

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 16

