
Modeling and Validating Requirements
using Executable Contracts and Scenarios

Dave Arnold, Jean-Pierre Corriveau and Wei Shi
School of Computer Science, Carleton University

Colonel By Drive
Ottawa, CANADA
1-613-520-2600

{darnold, jeanpier, swei4}@scs.carleton.ca

ABSTRACT
A quality-driven approach to software development and testing
demands that, ultimately, the requirements of stakeholders be
validated against the actual behavior of an implementation under
test (IUT). In Model-Based Testing, much work has been done on
the generation of functional test cases. But few approaches tackle
the executability of such test cases. And those that do, offer a
solution in which tests and test cases are not directly traceable
back to the actual behavior of an IUT. Furthermore, very few
approaches tackle non-functional requirements. Consequently, we
have implemented a validation framework that does support the
modeling and automated validation of a set of functional and non-
functional requirements against several candidates IUTs. We
report here on the key characteristics of this prototype and briefly
discuss lessons learnt from its use in the context of a graduate
course.

1. ON MODEL-BASED VALIDATION
It is widely accepted that Requirements Engineering aims at
providing a bridge between the stakeholders and the developers of
a computer-based system, each having their own specific
viewpoints and concerns [1]. From a practical standpoint, this
bridge must be an operational one, rooted in the key notion of
quality [2]. That is, ultimately, the needs of stakeholders must be
validated [3] against the actual behavior of an implementation
under test (IUT). The act of validating stakeholders' needs
consists in determining if an IUT satisfies the (functional and non-
functional) requirements of the stakeholders [2, 3].

Current approaches to validation fall into two categories: code-
centric and model-centric. A code-centric approach to validation,
such as Test-Driven Design (TDD) [4], uses test cases (as
opposed to more abstract tests [3]1) written at the implementation
level in order to guide development. A TDD approach begins by
creating a test case addressing one or more requirements of the
system. The test case is executed against the software system,
usually resulting in a failure. Code is then added to the
implementation until the test case succeeds. The process repeats
until all of the requirements (known somehow by a developer)
have been satisfied. Such test cases do not explicitly model the
needs of stakeholders, and they are implementation-specific.
Indeed, implementation details pervade code-centric approaches,
making them difficult for stakeholders to understand and use.

1 A test case can in fact be viewed as an instantiation of a test for a

specific IUT [3].

In contrast, in a model-centric approach, such as Model-Based
Testing (MBT) [5], the needs of stakeholders are specified in
models from which tests are extracted to 'drive' validation. These
models (whether in a graphical or text-based format) usually
capture a partial representation of the IUT's behavior, ‘partial’
especially because the model abstracts away some of the
implementation details. Tests derived from such a model are
functional tests at the same level of abstraction as the model.
Such tests are grouped together to form an abstract test suite.
Such a test suite cannot be directly executed against an IUT
because the tests are not at the same level of detail as the code.
The question then is: how are requirements validated against the
behavior of an actual IUT? We identify three approaches:

The first approach consists in augmenting abstract requirement
models with implementation-specific details capable of generating
tests (and possibly test cases). For example, Briand and Labiche
[6] advocate the use of UML activity diagrams for system-level
functional requirements modeling and validation. Their method
requires the use of the Object Constraint Language (OCL) [7] to
capture implementation-specific constraints. In particular, OCL
requires making explicit references to variables within an IUT.
Thus, requirements models involving OCL are tightly coupled to
specific implementation details. This is highly problematic: any
change to the implementation must 'percolate up' to the
requirements model, a maintenance nightmare. Furthermore:

- The presence of implementation details considerably reduces
the understandability of such models by stakeholders (and appears
to contradict the very nature of model-driven testing).

- The possibility of having a requirements model abstract
enough to be applicable to several IUTs is lost.

- OCL does not address non-functional requirements.

- The generation of tests and test cases from OCL requires the
use of stand-alone tools (such as [8,9]).

Finally, OCL does not address interactions between components.
Thus, for that crucial part of their method, Briand and Labiche
start from activity diagrams in order to obtain (through multiple
transformations) abstract test sequences, which are disconnected
from the actual implementation. How such test sequences are to
become executable and how their validation (which involves
monitoring actual sequences of procedure calls during the
execution of an IUT) is not addressed. This leads us directly to the
second approach to such problems.

In order to bridge the gap between the abstract tests and an actual
implementation, the widespread solution consists in using ‘glue

code’. That is, tests obtained from the models are subsequently
coded or, more precisely, have some of their corresponding test
cases coded (typically manually). In other words, glue code
requires a programmer to make abstract tests become operational
(i.e., usable for validation) via programming. The resulting code
(which includes not only executable test cases but also test drivers
and oracles [3]) must generally be handcrafted and may end up
not corresponding to the abstract tests. Moreover, this glue code
is implementation-specific: both its reusability across IUTs and its
maintainability are highly problematic. Ultimately, the creation of
glue code is a non-automated endeavor that is time-consuming
and just as error-prone as development of the original IUT.

In light of the pitfalls of the previous approaches, researchers at
Microsoft have developed, over the last several years, what we
consider to be the state-of-the-art tool for model-based testing,
namely Spec Explorer [10, 11]: "Spec Explorer 2010 is a tool that
extends Visual Studio for modeling software behavior, analyzing
that behavior by graphical visualization, model checking; and
generating standalone test code from models. Behavior is modeled
in two ways: by writing rule machines in C# (with dynamic data-
defined state spaces) and by defining scenarios as action patterns
in a regular-expression style." [12].

Like many other MBT methods, Spec Explorer generates test
cases from a graph corresponding to a state machine defined in
terms of global data spaces. More specifically, the modeling of
requirements consists in defining an infinite transition system TP
through a Spec# program P (where Spec# is in fact a superset of
C#). Exploration (which attempts to avoid state explosion through
the use of complex heuristics and of action scenarios) reduces TP
to a finite test graph G. Test cases are subsequently generated
from traversing G (using coverage techniques [3] and/or user
defined sequences of actions). In a given state, the testing
component of Spec Explorer determines which actions are
enabled and thus which states of G are reachable. Spec Explorer
then uses the current test case to select one of these reachable
states and executes the corresponding controllable action (i.e, an
action that defines one or more method invocations to be observed
in P). Spec Explorer does provide the test harness that allows for
such actions to be executed in P and for the resulting method
invocations in P to be observed (in order to determine the
resulting state in G). The key point is that, in this approach, it is P
that is tested. But P is not an actual IUT; it is a model in Spec# of
an actual IUT.

Thus, the question remains: how can requirements be modeled
and validated against the behavior of an actual IUT? It is this
question that we address in this paper. Our objective here is to
introduce our proposed solution, which we have implemented in a
tool called the Validation Framework (VF). Due to space
restrictions, we purposely do not go into the details of the
realization of our VF2: through the overview of our VF our
specific contribution in this paper consists in suggesting that,
indeed, it is possible to have an implementation-independent
requirements model be 'semi-automatically' (as explained later)
validated against an actual IUT.

2 The tool, its code and documentation, as well as the extensive test suites

and case studies used for its validation are all accessible from [13]. The
VF consists of over 250,000 lines of mostly C# code and requires the
use of Visual Studio 8, as well as of Microsoft's Phoenix tool [14] (as
briefly discussed later in this paper and explained at length in [15]).

First, in subsection 2.1, we argue for a requirements model that is
testable and independent of implementation details (because it
may have to be validated against several IUTs). Then, in
subsection 2.2, we summarize the modus operandi of the
validation framework we are proposing. In section 3, through the
walkthrough of a very simple example, we overview the
semantics this VF offers to express a Testable Requirements
Model (TRM). As explained in 2.2, in order for this TRM to be
validated against an IUT, a set of bindings must be created. This
process is explained in section 4. We conclude with some remarks
stemming from our tool being used by the students of a graduate
course in object-oriented software engineering at Carleton
University.

2. THE VALIDATION FRAMEWORK
2.1 One model, several IUTs
The solution we propose proceeds from the integration of two
well-known ideas: a) expressing requirements in terms of
responsibilities [16, 17] and scenarios [17, 18, 19, 20, 21] and b)
organizing such responsibilities and scenarios into contracts [22,
23, 24] that can be bound to components of an actual system. In
essence, it is this integration that we discuss in the rest of this
paper.

Semantically, our work proceeds from noticing that in his
explanation of the limited adoption of Spec Explorer within
Microsoft, Grieskamp [11] proposes several possible reasons. In
particular, he remarks that developers and testers alike
significantly prefer the intuitive nature of scenarios to the
semantics underlying more formal (not only logic-based and set
theoretic, but also state-based) approaches. Indeed, the use of
scenarios (e.g., UML's use cases) as a method for requirements
capture is commonly accepted. Consequently, our work seeks to
capture functional requirements specified in the form of
scenarios3. Most importantly, this decision allows us to reuse the
existing seminal work on generating tests from scenarios (e.g., [3,
18]), especially the algorithms of [6] and [24]. However, the
generation of tests and the instantiation of such tests into
executable test cases constitute two complex tasks that lie beyond
the scope of the current paper. Consequently, those two topics are
discussed at length elsewhere [25].

Another premise of our proposal is the adoption of a genuine
model-based outlook: the requirements model that is to be
validated must be implementation independent. More specifically,
we require that our Testable Requirements Model (TRM) be
decoupled from any particular implementation so that a single
TRM may be validated against several candidate implementations.
By candidate, we mean an IUT that is to be validated ‘against’ the
requirements defined by the TRM. Thus, our work supports
applying a single TRM to several candidate implementations (one
at a time) without requiring any modification to this TRM. The
'results' (which will be discussed later) generated by validating the
TRM against each candidate IUT can be used for the behavioral
comparison of different IUTs. As an example of such use of our
VF, consider several vendors applying for certification against a
standard. The standard would be represented by a single TRM that
would be validated against each of the candidate implementations.

3 Please note that our semantics are not limited to functional requirements,

as will be illustrated in 2.2.2 and Section 3.

Please note that the process and issues pertaining to the
development of candidate IUTs lie outside the scope of our work:
we merely postulate the eventual availability of one or more IUTs
to validate against a TRM. Furthermore, we remark that our
approach to validation does not assume that the implementation
source code is available. This is highly desirable in several
situations such as offshore outsourcing [26].

2.2 Using the Validation Framework
2.2.1 Inputs to the Validation Framework
Our VF operates on three input elements. The first element is the
Testable Requirements Model (TRM) expressed using ACL
(Another Contract Language) [15], a high-level general-purpose
requirements language we have created. We use here the word
‘contract’ because a TRM is formed of a set of contracts, as will
be illustrated in section 3. ACL is closely tied to requirements by
defining constructs for the representation of goals and beliefs [27],
scenarios [17, 18, 19], and design-by-contract concepts such as
pre and post-conditions [22]. Additional domain-specific
constructs can also be added to the ACL, via modules known as
plug-ins (which will be discussed in 2.2.2).

The second input element is the candidate IUT against which the
TRM will be executed. Recall that the framework accepts IUTs in
binary form. Using Microsoft's Phoenix Research Development
Kit [14], the framework is able to open .NET managed executable
and Active Server Page (ASP) .NET web applications.
Bindings represent the third and final input element required by
the VF. Before a TRM can be executed the types, responsibilities,
and observability requirements (see section 3) specified in a TRM
must be bound to concrete implementation artifacts located within
the IUT. Phoenix is used to open the binary IUT for the purposes
of obtaining a structural representation. Our binding tool, which
is part of the VF, uses this structural representation to map
elements from the TRM to types and procedures defined within
the candidate IUT. (As will be discussed in section 4, our binding
tool is in fact able to automatically infer most of the bindings
required between a TRM and an IUT.) Bindings constitute the key
facet of our approach:
 - Like the well-known mediator pattern [28], bindings decouple a
TRM from any IUT. Only the binding tool 'knows' to which
components of an IUT each element of a TRM maps.
- Because each IUT has its set of bindings to a TRM, several
candidate IUTs can indeed be validated against a same TRM.
In other words, bindings constitute the bridge between a TRM and
an actual IUT, a bridge that is generally absent from other MBT
methods.

2.2.2 Plugins
ACL provides the user of our VF with built-in static checks,
dynamic checks, and metric evaluators (see below and section 3).
In addition, plug-ins allow for the inclusion of user-specified
static checks, dynamic checks, and metric evaluators into a TRM.
In other words, the language we use to capture requirements has
'open' semantics inasmuch as new constructs can be defined by a
user, provided this user can specify how to test such constructs in
an IUT. Let us elaborate.

The creation of plug-ins is targeted toward developers of ‘checks’
for our VF, rather than the author of a TRM. More precisely, we

have created specialized plug-in software development kits
(SDKs) to aid in the creation of static checks, dynamic checks,
and metric evaluators:

A static check performs a check on the IUT that can be
accomplished without execution. Examples of static checks
include checks involving inheritance (e.g., type A must be a
descendant of type B), checks on types (e.g., type A must contain
a variable of type B) and even the correct use of structural design
patterns [28]. A static check can be viewed as an operation: each
check has a return type and may accept a fixed number of
parameters. All static checks are guaranteed to be side-effect free.

A dynamic check is used to perform a check on the IUT during
execution. That is, a dynamic check can only be evaluated while
the IUT is being executed. Examples of dynamic checks include:
testing the value of a variable at a given point, ensuring a given
state exists within an object, and validating data sent between two
different objects. As with static checks, a dynamic check can be
viewed as an operation with a return type and parameter set. The
execution of a dynamic check is also guaranteed to be side-effect
free.
Metric evaluators are used to analyze and report on the metrics
gathered while the candidate IUT was executing. Metric gathering
is performed by the validation framework. Once metric gathering
is complete and the IUT has concluded execution, the metric
evaluators are invoked. Examples of a metric evaluator include:
performance, space, and network use analysis. Metric evaluators
are side-effect free.

Through the use of plug-ins, researchers in static testing, dynamic
testing, and metric evaluation can contribute to our VF without
having to create an ad hoc approach to the integration of their
work within the VF. Instead, using the appropriate SDK, they can
create plug-ins corresponding to their work. Over time this
approach should lead to a rich set of plug-ins, which, de facto,
will improve the applicability of ACL to different domains.

2.2.3 Validation Process
Once the TRM has been specified and bound to a candidate IUT,
the TRM is compiled. Upon a successful compilation, all
elements of the TRM have been bound to IUT artifacts and any
required plug-ins have been located and initialized. The result of
such a compilation is a single file that contains all information
required to execute the TRM against a candidate IUT.

Execution of a Testable Requirements Model begins with a
structural analysis of the candidate IUT, and with execution of
any static checks. Following execution of the static checks, the
IUT is executed by the VF. The VF is able to track and record the
execution paths generated by the IUT, as well as execute any
dynamic checks, and gather metrics indicated by the TRM. The
execution paths are used to determine if each scenario execution
matches the grammar of responsibilities (see section 3)
corresponding to it within the TRM. Next, metric evaluators are
used to analyze and interpret any metric data that was gathered
during execution of the IUT. All of the results generated from
execution of the TRM against the candidate IUT are written to a
Contract Evaluation Report (CER).

The generation of the CER completes the process of executing a
TRM against a candidate IUT. The CER indicates where the
candidate IUT matches the TRM, and where any deviations from
the TRM were observed. Several quality control and analysis
methods could then be used to analyze the generated CER and

apply their findings to the software development process, or
calculate information important to management and other
stakeholders. Such methods currently lie beyond the scope of our
work.

3. A SIMPLE EXAMPLE
As in Use Case Maps [17, 18], in ACL scenarios are
conceptualized as grammars of responsibilities. Each
responsibility represents a simple action or task, such as the
saving of a file, or the firing of an event. Intuitively, a
responsibility is either bound to a procedure within an IUT, or the
responsibility is to be decomposed into a sub-grammar of
responsibilities. In addition to responsibilities and scenarios, ACL
offers a set of Design-by-Contract [22] elements. The latter are
typically used to express constraints on the state of the IUT before
and after the execution of a scenario or responsibility:
Preconditions specify constraints on the state of the IUT before
the responsibility or scenario can be executed. Post-conditions
specify constraints on the IUT's state following a successful
responsibility or scenario execution. ACL also provides the means
to express invariants (as illustrated below).

When a pre- or post-condition fails, the execution proceeds but
that failure is logged in the Contract Evaluation Report (CER).
Also, when a scenario is executed by an IUT, the specified
grammar of responsibilities must hold. That is, the
responsibilities that compose the scenario must be executed in
such an order that satisfies the grammar. If the scenario cannot be
executed, or responsibilities/events that are not defined by the
scenario are executed, then the IUT does not match the TRM.
This mismatch is also reported in the CER.

The following annotated example summarizes several of the
semantics currently supported by our contract language and VF.
(Note however that inter-scenario relationships [19] are missing
here but are offered by ACL.) The // and /* */ delimit comments
aimed at explaining the key points of the example, which uses a
simple generic container (of elements of type tItem). We have
included usage of inheritance in order to demonstrate how our
work supports the compositionality of contracts through this
mechanism. Contract elements without comments are assumed to
be self-explanatory.
Import Core;
Namespace My.Examples
{

/*An abstract contract is NOT bound to a type of the IUT. Also, T
will be bound upon ContainerBased being refined.
A contract may define variables, which will be kept by the VF.*/
abstract Contract ContainerBase<Type T>
{
 Scalar Integer size; //number of elements in container

/*An observability is a query-method that is used to provide state
information about the IUT. That is, they are read-only methods
that acquire and return a value stored by the IUT. */
 Observability Boolean IsFull();
 Observability Boolean IsEmpty();
 Observability T ItemAt(Integer index);

 Observability Integer Size();
//an abstract observability MUST be refined in a derived contract
abstract Observability Boolean HasItem(T aItem);

/* the body of the "new" responsibility is executed immediately
following the creation of a new contract instance. */
 Responsibility new()
{ size = 0; Post(IsEmpty() == true) }

/* the body of the "finalize" responsibility is executed
immediately before the destruction of the current contract
instance. */
Responsibility finalize()
{ Pre(IsEmpty() == true); }

/* Invariants provide a way to specify a set of checks that are to be
executed before and after the execution of all bound
responsibilities. Invariants precede pre-conditions, and follow
post-conditions. */
Invariant SizeCheck
{ Check(context.size >= 0);
 Check(context.size == Size()) }

/* This responsibility defines pre- and post- conditions for any
addition. It is not to be bound but rather to be extended by actual
responsibilities.
The keyword ‘Execute’ indicates where execution occurs. */
Responsibility GenericAddition(T aItem)
{ Pre(aItem not= null); Pre(IsFull() == false); Execute();
 size = size + 1;
 Post(HasItem(aItem)); }

/*This responsibility extends GenericAddition. It therefore reuses
the pre- and post-conditions of GenericAddition.
It does not add any other checks to those of GenericAddition.
But Add can (and will) be refined in the contract that extends the
current abstract one. */
Responsibility Add(T aItem) extends GenericAddition(aItem)
{ Execute(); }

/* Insert also extends GenericAddition and thus reuses its pre- and
post-conditions.

But it also adds pre- and post-conditions of its own due to the fact
that its interface involves the use of an index. */
Responsibility Insert(Integer index, T aItem)
 extends GenericAddition(aItem)
{ Pre(index >= 0); Execute();
 Post(ItemAt(index) == aItem); }

/* Responsibility Remove returns the element removed.
The keyword ‘value’ denotes this return value. */
Responsibility T Remove()
{ Pre(IsEmpty() == false); Execute();
 size = size - 1;
 Post(value not= null);
 Post(HasItem(value) == false); }
Responsibility RemoveElement(T aItem)
{ Pre(IsEmpty() == false); Pre(HasItem(aItem) == true);
 Execute();
 size = size - 1;
 Post(HasItem(aItem) == false); }

/* The following scenario merely consists of a trigger statement
and a terminate statement. There is no grammar of responsibilities
between these two statements (in contrast to most scenarios.)

This scenario captures the fact that the addition of an element x
must eventually be followed by removal of x.

Here Add or Insert trigger the scenario, and Remove or
RemoveElement terminate it.

Notice the use of the ‘dontcare’ keyword for the first parameter of
Insert. */
Scenario AddAndRemove
{ once Scalar T x;
 Trigger(Add(x) | Insert(dontcare, x)),
 Terminate((x == Remove()) | (RemoveElement(x))); }
}
} //end of contract ContainerBase

/* A TRM must include a main contract. It typically includes
several other contracts.
The main contract of a TRM must be bound to a type of the IUT.
Here Container inherits from ContainerBase.
Single and multiple inheritance are supported for composing
contracts together.

Also, note that T in ContainerBase is explicitly bound here to the
type tItem (using syntax similar to templates in C++) */
MainContract Container extends ContainerBase<tItem>
{ List Integer container_times;
// amount of time that each item spends in the container.
 Scalar Timer item_timer;
/* Timer is a built-in type of our VF
A single timer can be used to time multiple items concurrently. */
 Scalar Integer number_of_items;

/* used to store the total number of items that are stored by the
container during execution */

// The abstract responsibility of ContainerBase is now refined.
refine Observability Boolean HasItem(tItem item)
{ tItem x; Boolean result = false;
 loop(0 to Size())

{ x = ItemAt(counter);
 result = result || x == item; }
 value = result; //value is the keyword for return value }

/* A parameter can be set explicitly, or using the binding tool of
section 4, or set at run-time. Here, it controls whether the static
check below is to be performed or not. */
Parameters
{ Scalar Boolean CheckMembers; }

/* What follows is a static check that uses the built-in check
HasMemberOfType to verify if the container holds instances of
type tItem. This check is performed only if parameter
CheckMembers is true. A belief is merely a message logged in the
report (CER) produced by the VF. */
Structure
{ choice(Parameters.CheckMembers) == true

 { Belief CheckMember("There should be a member in our
container to hold elements of type tItem")

{ HasMemberOfType(tItem); } } }

/* We refine new: Pre- and post-conditions of the parent contract
are checked before these ones. */
refine Responsibility new()
{ number_of_items = 0;
 container_times.Init(); }

/* The ‘fire’ keyword is used to create an instance of an event that
can, in turn, trigger or be observed in scenarios. */
refine Responsibility finalize()
{ fire(ContainerDone); }

/* Next, Add, Insert, Remove and RemoveElement from
ContainerBase are further refined to use timers.
More specifically, the scenario AddAndRemove (in the parent
contract) creates an instance of itself for each element that is
added to the container. This allows us to start a timer in Add or
Insert upon insertion of an element and to stop that timer when
that element is removed. In turn, this allows us to store the time
spent by an element in the container. */

refine Responsibility Add(tItem item)
{ Pre(HasItem(item) == false); Execute();
 item_timer.Start(item); //built-in way to start a timer
 number_of_items = number_of_items + 1; }

refine Responsibility Insert(Integer index, tItem item)
{ Pre(HasItem(item) == false); Execute();
 item_timer.Start(item);
 number_of_items = number_of_items + 1; }

refine Responsibility tItem Remove()
{ Execute();
 item_timer.Stop(value);
 container_times.Add(item_timer.Value(value)); }

refine Responsibility RemoveElement(tItem item)
{ Execute();
 item_timer.Stop(item);
 container_times.Add(item_timer.Value(item)); }

/* This responsibility is to be used in the scenario
ContainerLifetime below. RemoveScn abstracts away which of
the two Remove responsibilities is used.
Notice again the use of keyword ‘dontcare’. */
Responsibility RemoveScn()
{ Remove() | RemoveElement(dontcare); }

/* A stub responsibility is a place holder for one or more
responsibilities. Here, we have only one choice, the default one,
which is responsibility Add. Parameters and other mechanisms
could be used to select between different kinds of addition, as
illustrated elsewhere [15]. */
stub Responsibility AddElement(tItem item)
{ Pre(item not= null);
 [Default] Add(item); }

/* This scenario illustrates a Trigger being followed by a grammar
of responsibilities and then a Terminate statement. In this case, the
Terminate MUST be preceded by an ‘observe’ statement
specifying the event that enables this termination.

In the following scenario, a new scenario instance is created each
time a new container is constructed (via the new responsibility).
The responsibility new acts as the trigger.
The ‘,’ denotes the ‘follow’ operator.

An atomic block defines a grammar of responsibilities so that no
other responsibilities of this contract instance are allowed to
execute except the ones specified within the grammar.

The scenario must observe the event ContainerDone before
concluding by proceeding with the execution of finalize (which
fires the event ContainerDone before its checks. This semantic
'contortion' is due to the way scenario instances are monitored. */

Scenario ContainerLifetime
{ Trigger(new()),
 atomic
 { (Add(dontcare) | Insert(dontcare, dontcare))*,

(RemoveScn())*; },
 observe(ContainerDone),
 Terminate(finalize()); }

/* a list of integers representing the amount of time that each
element spent in our container. */
Metric List Integer ContainerTimes()
{ context.container_times;}

// total number of items that were stored in the container.
Metric Scalar Integer NumberOfItems()
{ context.number_of_items; }

//This section of contract is to build the evaluation report.
Reports
// {0} is where the reported result goes in the output string

{ Report("The average time in the container is {0} milliseconds",
 AvgMetric(ContainerTimes())); //built-in AvgMetric

/* A report all statement performs the exact same way as the
report statement, except that it generates a single result for all
contract instances. */

 ReportAll("The average time in all containers is {0}
milliseconds", AvgMetric(ContainerTimes()));

 Report("The number of items added to the container is {0}",
 NumberOfItems());

 ReportAll("The number of items added to all containers is {0}",
 NumberOfItems()); }

/* The type tItem used for the elements of the container cannot be
type bound to the container nor any of its descendants. So, here,
we do not allow lists of lists. */
Exports
{ Type tItem conforms Item

{ not context; not derived context; } }

} }

To conclude, we remark that this single TRM has been applied to
several simple data structures (e.g., different kinds of arrays and
linked lists) implemented in C# and C++/CLI, with and without
coding errors (in order to verify responsibility and scenario
failure).

4. TRACEBILITY THROUGH BINDINGS
The crucial point to grasp with respect to the semantics supported
by ACL and overviewed in the previous section is that they do
support automated validation. That is, once a TRM is linked to an
IUT, all checks are automatically instrumented in the IUT whose
execution is also controlled by the VF (e.g., in order to monitor
scenario instance creation and execution). Thus, our whole

approach to validation hinges on the ability to link a TRM to an
IUT. To do so involves the creation of bindings. More precisely,
our framework is able to capture (and even partially infer) a set of
mappings, called bindings, between elements of the
implementation-independent TRM and procedures and types of
the IUT. It is the creation of such bindings that eliminates the
need for the development of glue code. Let us elaborate.

Figure 1. The Binding Tool
In our VF, a set of bindings is represented by an XML file that
contains tags linking contract elements to their IUT counterparts.
Each IUT that is to be executed against a TRM must have a
corresponding binding file. However, rather than having to
directly edit the XML binding code, we have integrated a binding
tool into the VF. The binding tool provides a graphical way to
view and specify the binding information. Figure 1 provides a
snapshot of the main window of our binding tool (opened on the
contract given in section 3).

On the left, the binding tree displays each contract element that
must be bound to an IUT counterpart. These elements include:
contracts, parameters, observability methods, responsibilities, and
exported types. (As previously mentioned scenarios are grammars
of responsibilities and, as such, have no corresponding elements
in an IUT.) The contents of the binding tree are generated by the
ACL compiler as it compiles a TRM.

The binding status of the elements of contracts to be bound is
summarized in the color of each item in the binding tree: green for
those successfully bound, red otherwise. If a bound contract
element is selected in the binding tree, then information about its
corresponding IUT structural element will be displayed under the
selection.

On the right, in Figure 1, information about the overall binding
status of a TRM (i.e., a set of contracts) is given. Here, two

bindings are missing and thus the VF cannot validate the IUT
against the TRM. Users of our VF can bind contract elements to
procedures and types of the IUT manually, or use the Automated
Binding Engine (ABE) we provide. Let us elaborate.

Since bindings provide a mapping from the TRM to a candidate
IUT, details regarding the structure of the IUT are required.
Obviously, these details are implementation-specific, and as such
different binding algorithms may be required for different
programming languages.

ABE supports an open approach to the automation of binding
creation: different algorithms for finding bindings are separately
implemented in different binding modules. Each binding module
is implemented as a DLL (i.e., Dynamic Link Library) and is
placed in a specific location relative to folder in which our VF
resides. Each such DLL must implement a specific interface we
have defined, in order to be used as a binding module. Put simply,
this interface allows the creator of a binding module to gain
access to the internal structure of an IUT without having to get
familiar with the (highly technical) internal representation of this
structure.

Our VF uses only one binding module at a time. However,
multiple modules can be used successively for the same
TRM/IUT pair. That is, one module could be selected to infer as

many bindings as possible, then a second module could be
selected to infer any bindings not recognized by the first module.

We have implemented two such binding modules as part of the
current release of our VF. The first binding module takes into
account the names of types and procedures in order to find
matches, whereas the second module uses only structural
information such as return type and parameter type/ordering to
infer a binding. Each of our two implemented binding modules
have correctly bound approximately 95% of the required bindings
found in the five case studies we have developed so far (approx.
200 bindings). Missing bindings were specified manually. That is,
from the binding tree of Figure 1, it is always possible to select a
TRM element to bind and then manually select the IUT entity it
corresponds to (even overriding bindings obtained through
binding modules). Thus, we view our overall approach to
validation as being 'semi-automatic'.

The ABE uses a binding module (which, in essence, defines what
constitutes a successful match) as follows: First, each contract
within the TRM is bound to a type within the IUT. The ABE
examines all types defined within the IUT. The types are
compared by name and structure to determine the correct binding.
Structural comparison entails looking for procedures within the
type to determine if the observability methods and responsibilities
defined within the contract could also be bound. Once all of the
contracts have been bound, the ABE binds observability methods.
As each such method represents an observation requirement
imposed on the IUT, the corresponding IUT procedure must be
side-effect free. That is, invocation of the IUT procedure bound
to the observability method must not alter the state of the IUT. To
enforce this, the ABE ensures any candidate IUT procedure is
indeed side-effect free (a non-trivial technical detail explained
elsewhere [15]). Once a set of candidate query-methods is
selected, procedure name, return type, and parameters (number,
types, and order) are all examined to select a corresponding IUT
procedure for binding. Following the binding of observability
methods, the ABE binds responsibilities. Each responsibility is
bound to one or more IUT procedures. The ABE begins by
looking for a single procedure that can be bound to the
responsibility. The procedure name, return type, and parameters
(number, types, and order) for each IUT procedure are examined
to find a corresponding match. If an individual IUT procedure
cannot be located, the ABE begins to analyze groups of procedure
that could be used in combination to create the required
responsibility binding. Once all contracts, observability methods,
and responsibilities are bound, the ABE will bind any remaining
exported symbols using the same methodology for binding
contracts to IUT types.

If at any point the selected binding module is unable to determine
a binding for an element within the TRM, the module will skip the
binding and move on. Once this automatic binding process ends,
further bindings can be specified manually, or another binding
module may be applied to the TRM.

Finally, each time the binding data is updated, the ABE will run to
see if the updated binding data allows for additional bindings to
be inferred. That is, if a binding is completed manually, it is
possible that the ABE will infer several additional bindings at the
same time. Also, because the ABE runs each time the binding
data is updated, it is possible that if a binding is removed, the
binding will be reestablished instantly because the ABE found a
match. But once a binding has been established, either manually
or via the ABE, future executions of the ABE will not change the

binding. That is, the ABE only operates on bindings that have yet
to be specified (unless the user asks for complete regeneration).

In summary, bindings not only eliminate a frequent and
problematic traceability gap between a requirements model and an
actual implementation to validate; they also enable the semantics
of this model to be operational. That is, through bindings, all the
static and dynamic checks, metric evaluators, and scenarios of an
implementation-independent requirements model captured in our
VF can be automatically instrumented in an actual IUT (as
opposed to a model of an actual IUT) and automatically validated.
Such validation results in the production of a report, which
displayed by the VF (e.g., see Figure 2 below).

5. DISCUSSION and CONCLUSION
The Validation Framework (VF) we propose allows for the
validation of an implementation-independent Testable
Requirements Model (TRM) against one or candidate actual
Implementations Under Test (IUTs) without the need for glue
code to bridge from requirements to IUT. Nor is it necessary to
augment this requirement model with implementation-specific
information (such as OCL constraints)4. From our viewpoint, the
approach we propose is truly model-based: the requirements
model is independent of any implementation but imposes
(structural and/or behavioral) constraints (via pre- and post-
conditions, invariants and grammars of responsibilities) on all
candidate implementations that could be validated against this
model.

As previously mentioned, we carried out significant initial testing
on the VF. First, a comprehensive suite was used for the ACL
compiler. Then, five extensive case studies were developed to
verify the handling of static and dynamic checks, as well as
scenario monitoring and metrics evaluation. All this work
ultimately demonstrated the feasibility of the approach we are
proposing. But we needed to have the VF evaluated
independently. To do so, we asked the students of a graduate
course one of the authors was teaching this term to learn ACL and
the VF in order to assess their usefulness. Each student had to
choose a domain, model the requirements of this domain via ACL,
and finally bind their TRM to different implementations in order
to obtain several evaluation reports. Given that the VF only
handles C++/CLI, all students elected to work in C#. The domains
they selected ranged from simple data types (e.g., developing a
hierarchy of contracts for a binary search tree and some its well-
known specializations such as AVL trees) to simple games (e.g.,
BlackJack) to a subset of an actual military system! The resulting
assessments from the students were surprisingly convergent:

- The semantics of ACL were seen has generally necessary and
sufficient across the different selected domains. Time-constraints
did not make it possible however to explore the use of plug-ins.

- The instrumentation of an actual IUT by the VF takes place at a
low level where highly technical details (such as the ordering of
instantiations) can complicate drastically reliable scenario
monitoring. Bugs were discovered and fixed, but they showed that
the VF is tightly coupled to the inner workings of .NET and that
maintenance of the VF requires great technical expertise in this
domain. This is especially the case for the creation and use of the

4 As previously mentioned, it is quite problematic to include

implementation-specific details in a requirements model.

test harness capable of monitoring complex scenarios (which most
MBT approaches simply do not tackle).

- While automatic binding generally works, subsequent user-
specified modifications to generated bindings were arduous at
times. Users appreciated the fact that the VF does allow binding a
responsibility to a procedure of a totally different name. But the
management of bindings over several iterations of TRM
refinement was deemed rather 'primitive'. More work is required
on both binding generation and binding management.
- Integration within Visual Studio was greatly appreciated but it
was noted by some that some features of the latter (such as
Intellisense) were not available in VF. Such additions are feasible
and will be included in a subsequent release of our tool.

- There was some 'trial and error', unless bindings were specified
entirely manually. Furthermore, some users complained of having
to 'retrofit' the implementation at hand with code to handle the
observability requirements spelled out in a TRM. In fact, this is
expected and likely unavoidable: because the TRM is decoupled
from any implementation, it must define a 'validation interface'
(especially via observability methods) that IUTs will have to
support. Such a strategy is also at the root of several design
patterns [28] (which 'impose' an interface on a set of classes by
defining an abstract parent class for all of them).
- All users complained that if their contracts compiled but did not
run correctly, a) no debugging was available and b) the generated

reports were not useful in locating mistakes, but merely in
reporting their presence. However, the fact is that the VF is a
program that stops and monitors the execution of another program
(the IUT). As such, it would be extremely difficult to support
debugging the execution of the VF (which, itself, can be
conceptualized as a debugger).
- Some users felt they had to modify their IUTs in order for the
latter to "bind correctly" to their TRM. Clearly this is wrong: it is
the TRM that has to be abstract enough to accommodate one or
more IUTs. But this misconception emphasizes the reality of
using our current VF: the validation of an IUT largely depends on
the ability to bind that IUT to a TRM. But this is easier said than
done. For example, the TRM does not offer 'pointer semantics',
which eliminates any hope of binding to non-managed C++. In
turn, this limits the applicability of the VF (for example, to the
validation of C++ data type libraries such as STL and BOOST,
and other non-managed sources).
In the end, we must conclude that, while the proposed approach
and its corresponding tool do offer a novel solution for the semi-
automated validation of a requirements model, in practice our
work turns out to be very specific to the .NET platform and to
managed (i.e., garbage-collected) languages such as C#.

6. ACKNOWLEDGMENTS
Support from the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged.

Figure 2. An Example Evaluation Report

7. REFERENCES

[1] Nuseibeh, B.A, Easterbrook, S.M.: Requirements
Engineering: A Roadmap. In Proceedings of the International
Conference on Software Engineering (ICSE-2000), 4-11
June 2000, Limerick, Ireland, ACM Press.

[2] Meyer, B.: The Unspoken Revolution in Software
Engineering. In IEEE Computer, vol. 39, no. 1, pp. 121-123.

[3] Binder, R.: Testing Object-Oriented Systems, Addison-
Wesley Professional, Reading, MA, 2000.

[4] Beck, K.: Test-Driven Development: By Example. Addison-
Wesley, November 2002.

[5] Bertolino, A.: Software Testing Research: Achievements,
Challenges and Dreams. In proceedings of the Future of
Software Engineering, FOSE'07, IEEE Computer Society
Press, Minneapolis, MN, pp. 85-103, May 2007.

[6] Briand, L., Labiche, Y.: A UML-Based Approach to System
Testing. In Journal of Software and Systems Modeling, vol.
1, no. 1, pp. 10-42, Springer, January 2002.

[7] The Object Management Group (OMG): The Object
Constraint Language (OCL) Specification. Version 2.0,
OMG Document #06-05-01, May 2006.

[8] Dresden University of Technology: The Dresden OCL
Toolkit. DOI= http://dresden-ocl.sourceforge.net/index.php

[9] Klasse Objecten: The Octopus Tools, DOI=
http://www.klasse.nl/octopus/index.html

[10] C. Campbell, W., Grieskamp, L., Nachmanson, W., Schulte,
N., Tillmann, and M.Veanes. Model-Based Testing of
Object-Oriented Reactive Systems with Spec Explorer.
Microsoft Research Technical Report #MSR-TR-2005-59,
May 2005.

[11] Grieskamp, W.: Multi-Paradigmatic Model-Based Testing,
Technical Report #MSR-TR-2006-111, Microsoft Research,
August 2006.

[12] Microsoft Spec Explorer 2010,
http://msdn.microsoft.com/en-us/devlabs/ee692301.aspx,
accessed December 2009.

[13] The Validation Framework, http://vf.davearnold.ca accessed
December 2009.

[14] Microsoft Research: Microsoft Phoenix Research
Development Kit https://connect.microsoft.com/Phoenix
accessed December 2009

[15] Arnold, D.: An Open Framework for the Specification and
Execution of a Testable Requirements Model, Doctoral

dissertation, School of Computer Science, Carleton
University, April 2009.

[16] Wirfs-Brock, R. and McKean, A., Object Design: Roles,
Responsibilities and Collaborations, Addison-Wesley, 2002.

[17] Buhr, R.J.A., Casselman, R.: Use Case Maps for Object
Oriented Systems. Prentice Hall, November 1995.

[18] Amyot, D., Weiss, M., and Logrippo, L.: Generation of test
purposes from Use Case Maps. In Journal of Computer
Networks, vol. 49, no. 5, pp. 643-660, Elsevier, 2005.

[19] Ryser, J., Glinz, M.: SCENT: A Method Employing
Scenarios to Systematically Derive Test Cases for System
Test. Technical Report. University of Zurich, 2003. DOI=
http://www.ifi.uzh.ch/rerg/research/scent/

[20] Weidenkaupt, K., Pohl, K., Jarke, M., and Haumer, P.:
Scenario Usage in System Development: A Report on
Current Practice. In proceedings of the 3rd International
Conference on Requirements Engineering: Putting
Requirements Engineering to Practice (ICRE'98), pp. 222-
241, April 1998.

[21] Jacobson, I.: Object-Oriented Software Engineering. ACM
Press, New York, 1992.

[22] Meyer, B.: Design by Contract. In IEEE Computer, vol. 25,
no. 10, pp. 40-51, IEEE Press, New York, October 1992.

[23] Helm, R., Holland, I., Gangopadhyay, D.: Contracts:
Specifying Behavioral Compositions in Object-Oriented
Systems. In proceedings of the Object-Oriented
Programming Systems, Languages and Applications
Conference (OOPSLA'90), pp. 169-180, October 1990.

[24] Nebut C., Fleury F., Le Traon Y., and Jézéquel J. M.:
Automatic Test Generation: A Use Case Driven Approach.
IEEE Transactions on Software Engineering, Vol. 32, 2006.

[25] Corriveau, J.-P. and Shi, W., A Scenario-Driven Approach to
Model-Based Testing, submitted to the Third International
Conference on Software Testing, Verification and
Validation, Paris, April 2010.

[26] Corriveau, J.P.: Testable Requirements for Offshore
Outsourcing. In proceedings of SEAFOOD'07, Zurich,
February 2007.

[27] International Telecommunications Union (ITU): User
Requirements Notation (URN). ITU-TS Recommendation
Z.151, 2008.

[28] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

