

CAN COM 10-04

September 2001: English
UIT - Secteur de la normalisation des télécommunications

ITU - Telecommunication Standardization Sector

UIT - Sector de Normalización de las Telecomunicaciones

Commission d'études
)

Contribution tardive
)

Study Group

) 10

Delayed Contribution
) D.@@
Comisión de Estudio
)

Contribución tardia
)

Geneva, 6 September - 14 September 2001

Texte disponible seulement en)

Text available only in) E

Texto disponible solamente en)

Question:
12/10

Source*:
CANADA

Title:
Draft Specification of the User Requirements Notation (Z.150)

ABSTRACT

At its meeting in November 1999, Study Group 10 approved Question 12: URN: User Requirements Notation to study what new Recommendations and other documents are required in order to define a notation, methods or revised notations for capturing and analyzing user requirements. Subsequently, Question 12 was approved by TSAG at its meeting in Montreal, in September 2000.

The attached document entitled, Draft Recommendation Z.URN: Languages for Telecommunication Applications - User Requirements Notation, to this contribution is the second draft specification of the User Requirements Notation. As suggested in the Ottawa SG 10 meeting (April 2001), this document has been split from the original Z.URN contribution (November 2000). Z.150 presents general requirements and context for URN, Z.151 focuses on URN for Non-Functional Requirements (URN-NFR), Z.152 on URN for Functional Requirements (URN-FR), and Z.153 on a methodological approach (including the relationships between URN-NFR and URN-FR, and between URN and other languages defined in the SG 10 family of languages).
PROPOSAL

It is proposed that the attached document be used as the starting base document for Question 12.

 __

* Contact: - Don Cameron,

Tel:
+1 613 763 4486

 Nortel Networks Corporation

Fax:
+1 613 763 6681

e-mail: dcameron@nortelnetworks.com
[image: image6.png]definitions

Umni-spec

Umn-spec ~

Urn-fr-spec
fesponse-time-requirerents i response-fime-req ~
annotations
precondition-list~ Jidi condition ~ 7]
agent-annotations r-goa st il fr-goal ~
2 2 2 postcondition st ~ i condition ~

TELECOMMUNICATION UNION

TELECOMMUNICATION

COM 10-@@-E

STANDARDIZATION SECTOR

September 2001

Original: English

STUDY PERIOD 2001-2004

STUDY GROUP 10 - CONTRIBUTION @@

SOURCE *:

RAPPORTEUR, QUESTION 12/10

TITLE:

DRAFT RECOMMENDATION Z.150: LANGUAGES FOR TELECOMMUNICATION APPLICATIONS — USER REQUIREMENTS NOTATION

At its meeting in November 1999, Study Group 10 approved Question 12: URN: User Requirements Notation to study what new Recommendations and other documents are required in order to define a notation, methods or revised notations for capturing and analyzing user requirements. Subsequently, Question 12 was approved by TSAG at its meeting in Montreal, in September 2000.

The attached document entitled, Draft Recommendation Z.URN: Languages for Telecommunication Applications - User Requirements Notation, to this contribution is the second draft specification of the User Requirements Notation. As suggested in the Ottawa SG 10 meeting (April 2001), this document has been split from the original Z.URN contribution (November 2000). Z.150 presents general requirements and context for URN, Z.151 focuses on URN for Non-Functional Requirements (URN-NFR), Z.152 on URN for Functional Requirements (URN-FR), and Z.153 on the relationships between URN-NFR and URN-FR, and between URN and other languages defined in SG 10 family of languages.
__

* Contact: - Don Cameron,

Tel:
+1 613 763 4486

 Nortel Networks Corporation

Fax:
+1 613 763 6681

e-mail:
dcameron@nortelnetworks.com

NEW RECOMMENDATION Z.150: LANGUAGES FOR TELECOMMUNICATIONS APPLICATIONS —
 USER REQUIREMENTS NOTATION
Summary
Scope-objective

This Recommendation defines URN (User Requirements Notation) intended for describing user requirements scenarios in a formal way without any reference to implementation mechanisms and with optional dependency on component specification. Such a notation is needed to capture user requirements prior to any design.

Coverage

URN has concepts for the specification of behaviour, structuring, goals, and non-functional requirements. This document focuses on requirements for URN and on providing context for a requirements engineering framework.

Applications

URN is applicable within standard bodies and industry. URN will help describing and communicating requirements, and reasoning about them. The main applications areas include current and emerging telecommunications systems and services, but URN is generally suitable for describing most types of reactive systems. The range of application is from goal modelling and requirement description to high-level design.

Status/Stability

This Recommendation is a draft reference manual.

The main text is accompanied by the following:

· Appendix I

URN Document Type Definition Overview

· Appendix II

Requirements engineering activities
· Appendix III

For further study
· Appendix IV

Guidelines for the maintenance of URN

· Bibliography

Associated work

This work is associated with languages and notations for non-functional requirements (Z.151: Goal-oriented Requirement Language — GRL) and for functional requirements (Z.152: Use Case Maps Notation — UCM), and with relations to other SG 10 languages (Z.153).
Keywords

Evaluation, formal description technique, functional requirements specification, goal, graphical notation, hierarchical decomposition, non-functional requirements specification, requirements engineering activities, scenario definition, specification technique, transformation.

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA) meets every four years to establish the topics for study by the ITU‑T Study Groups, which produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU‑T is covered by the procedure laid down in WTSA Resolution No. 1.

In some areas of information technology, which fall within ITU-T’s purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation the term recognized operating agency (ROA) includes any individual, company, corporation or governmental organization that operates a public correspondence service. The terms Administration, ROA and public correspondence are defined in the Constitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.
TABLE OF CONTENTS

21
Scope

21.1
Motivation

21.2
Document organization

22
References

23
Definitions

23.1
Behaviour

23.2
Component

23.3
Dynamic refinement

23.4
Evaluation

23.5
Executability

23.6
Feature interaction

23.7
Functional Requirement

23.8
Goal

23.9
High-level design

23.10
Non-functional requirement

23.11
Post-conditions

23.12
Preconditions

23.13
Quality attribute

23.14
Requirement

23.15
Requirements Engineering

23.16
Satisfiability

23.17
Satisficability

23.18
Scenario

23.19
Stakeholder

23.20
System

23.21
Specification

23.22
Textual information

23.23
User Requirement

24
Abbreviations and acronyms

25
Conventions

26
Scope of URN

26.1
What is a URN?

26.2
What is a URN-NFR?

26.3
Why Goal-Oriented Requirement Engineering?

26.4
What is a URN-FR?

27
Requirements for URN-NFR

27.1
Expressing tentative, ill-defined and ambiguous requirements

27.2
Clarifying and "satisficing" tentative, ill-defined and ambiguous requirements, and exploration of alternatives

27.3
Support for expressing and evaluating measurable NFRs

27.4
Argumentation support

27.5
Linking high-level business goals to system requirements

27.6
Multiple stakeholders, conflict resolution and negotiation support

27.7
Prioritising requirements

27.8
Requirements creep and churn and other evolutionary forces

27.9
Support for integrated treatment of functional and non-functional requirements

27.10
Support for multiple rounds of commitment

27.11
Life-cycle support

27.12
Forward and backward engineering and traceability support

27.13
Ease of use and precision

27.14
Knowledge-based support (catalogues of reusable requirements and design knowledge)

28
Requirements for URN-FR

28.1
Specifying system trigger and termination conditions

28.2
Specifying system responses

28.3
Specifying lengthy behaviour

28.4
Specify relationships among scenarios

28.5
Component definition

28.6
Specifying the environment

29
Other Requirements for URN

29.1
Relationships between the URN-NFR and URN-FR models

29.2
Requirements traceability

29.3
Requirements test case specification

29.4
Performance analysis of functional requirements

29.5
Legal status of URN models

29.6
Change management

29.7
Intended usage

29.7.1
Communicating requirements

29.7.2
How architectural constraints affect requirements specification

29.7.3
Refining URN-FR models

29.8
Quality attributes

29.8.1
Usability

29.9
Round trip engineering

210
URN language specification

210.1
Structure of URN specifications

210.1.1
XML definition

210.1.2
Graphical notation

210.2
URN-NFR specifications

210.3
URN-FR specifications

211
Compliance statement

211.1
Compliance table format

211.2
URN compliance table

212
Compliance testing

2Appendix I URN Document Type Definition Overview

2I.1
Introduction to XML Document Type Definitions

2I.2
Graphical representation of URN DTD elements

2Appendix II Requirements engineering activities

2Appendix III For Further Study

2III.1
Formal description of URN

2III.2
Validation

2III.3
System data, system states, preconditions, post-conditions

2III.4
Executability

2III.5
Performance evaluation

2III.6
Usability

2III.7
Minor issues

2Appendix IV Guidelines for the maintenance of URN

2IV.1
Maintenance of URN

2IV.2
Rules for maintenance

2IV.3
Change request procedure

2Bibliography

ITU-T Draft Recommendation Z.150

User Requirements Notation (URN)
1 Scope

This Recommendation is intended to provide motivation, scope and requirements for a new User Requirements Notation. The specification of the compliant notations or languages belongs to other Recommendations (Z.151 and Z.152).

The text of this clause is not normative.

1.1 Motivation

A notation is needed that can describe user requirements, goals and scenarios without any reference to specific inter-component communication facilities or system components and their states but at the same time can capture the user requirements prior to design. The focus during the requirements specification stage is on behaviour and on quality attributes. The notation can also be used during the high-level design phase when responsibilities specified in the scenarios are allocated to components. Scenario specification without sub-system component reference would facilitate reusability of scenarios across a wide range of architectures. The ability of the notation to straddle requirements specification and high-level design will facilitate negotiations between stakeholders and implementers.

There is an increasing demand for non-static protocols with policy-driven negotiation using dynamic entities. Agent-based systems are examples of systems that require policy-driven mechanisms. When specifying such protocols, it is not possible to make an early commitment to messages and components at the requirements capture phase.

There is also the need for detection and avoidance of undesirable interactions between features. Older techniques require large investment in terms of messages and components that need to be checked for interactions. Using the notation specified in this Recommendation can provide insights at the requirements level and enable designers to reason about feature interactions early in the design process.

It is also important to deal with non-functional requirements (NFRs) in a more systematic manner during requirements analysis and during design. NFRs are requirements such as stringent performance constraints, systems operational costs, reliability, maintainability, portability, interoperability, robustness, and the like. In today’s software development practice, many NFRs are stated only informally, making them difficult to analyse, specify and enforce during software development, and to be validated by the user once the final system has been built. NFRs, however, do play a crucial role during system development, serving as selection criteria for choosing among alternatives during requirements analysis, for example, determining where the system boundaries should be and what functional requirements to include in the system.

Many of today's approaches to deal with NFRs originate from the technical work related to quality metrics. Such approaches attempt to quantify NFRs and then measure to what extent an existing system or parts of it meet the desired non-functional requirements. Useful metrics exist for NFRs such as performance, reliability, software complexity, and development process maturity. Other approaches, which recognise that many NFRs are often difficult, if not impossible, to quantify, use qualitative oriented methods such as architectural change scenarios or combinations of both qualitative and quantitative methods to evaluate systems. These approaches, however, assume an already existing software system (or parts thereof) that is evaluated for its NFR properties. They do not assist in the specification of NFRs prior to building the system, nor do they provide support during the analysis and design of systems. The notation proposed herein deals with NFRs during the process of requirements analysis and system design; it allows for the expression of conflict between NFRs, of decisions that resolve conflicts and of the rationale for the trade-off decisions.

The URN is defined to have the following capabilities:

a) describe scenarios as first class entities without requiring reference to system sub-components, specific inter-component communication facilities, or sub-component states;

b) capture user requirements when very little design detail is available;

c) facilitate the transition from a requirements specification to a high level design involving the consideration of alternative architectures and the discovery of further requirements that must be vetted by the stakeholders

d) have dynamic refinement capability with the ability to allocate scenario responsibilities to architectural components;

e) be applicable to the design of policy-driven negotiation protocols involving dynamic entities;

f) facilitate detection and avoidance of undesirable interactions between features;

g) provide insights at the requirements level to enable designers to reason about feature interactions and performance trade-offs early in the design process.

h) provide facilities to express, analyse and deal with non-functional requirements;

i) provide facilities to express the relationship between business objectives and goals to system requirements expressed as scenarios and global constraints over the system, its development, deployment, maintenance and evolution and operational processes;

j) provide facilities to capture reusable analysis and design knowledge related to know-how for addressing non-functional requirements.

The current methods that used informal natural language for capturing requirements can leave too much open for interpretation and can contain invalid logic. Manual methods are used to validate these specifications with the result that defects are sometimes not caught until the implementation phase. Studies of software development have clearly shown that the earlier defects are detected, the less costly they are to repair. Standardization of requirements engineering activities aims to make it easier to detect more defects at the requirements definition stage.

These same informal methods have also proven less than satisfactory for negotiating priorities among competing business objectives and in general for managing trade-offs in the domain of non-functional requirements. The end result can be the delivery of a product to market that does not satisfy customers and does not meet business objectives. Standardization of requirements engineering activities aims to make it easier to define a product that balances stakeholder objectives and satisfies customer expectations.

Standardization of a formally defined notation used for capturing user requirements is a move to make the practice of this activity more rigorous and predictable and the results yielded by this activity clearer, more consistent, correct, and complete. These results should lead to reduced development costs, earlier delivery of product to market, and increased customer satisfaction.

1.2 Document organization

This document defines the requirements for URN regarding both functional and non-functional aspects. There are two other documents that depict how URN will handle functional (Z.152) and non-functional (Z.151) requirements and a third on how to integrate both approaches together and with related languages of the ITU-T Study Group 17 (Z.153).

Sections 2 to 5 cover background information on references, definitions, abbreviations/acronyms, and conventions respectively.

Section 6 details the scope of this standard by providing an overview of the requirements engineering activity that uses the URN, both from functional and non-functional perspectives.

Section 7, 8, and 9 provide detailed requirements for URN-NFR, URN-FR, and other areas.

Section 10 contains formal definitions of the top-level elements of URN, in XML.

Section 11 contains a list of the requirements that the URN must fulfill together with statements concerning the current status of the notation with respect to the requirements.

Section 12 is a specification of the tests that an implementation of the URN must satisfy in order to be deemed to be in conformance with this standard.

Four appendices are defined:

· Appendix I contains a graphical overview of the URN Document Type Definition (DTD. Basic information on how to read XML DTDs is also provided.

· Appendix II presents general activities in requirements engineering.

· Appendix III lists several issues for further study

· Appendix IV describes proposed guidelines for the maintenance of URN.

A bibliography can be found at the end of this document.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is published regularly.

· ITU-T Q.1200 General Series (1998), Intelligent Networks Recommendation Structure.

· ITU-T Z.100 (1999), Specification and Description Language.

· ITU-T Z.105 (1999), SDL Combined with ASN.1.

· ITU-T Z.109 (1999), SDL combined with UML.

· ITU-T, Draft Recommendation Z.110, Guidelines on the Use of Description Techniques
· ITU-T Z. 120 (1999), Message Sequence Chart.

· ITU-T Z.140 (2001), The tree and tabular combined notation version 3 - TTCN-3: Core language.

· ITU-T, Draft Recommendation Z.151, URN-NFR: Goal-oriented Requirement Language.
· ITU-T, Draft Recommendation Z.152, URN-FR: Use Case Map Notation.
· ITU-T, Draft Recommendation Z.153, URN: Methodological Approach.
· ITU-T, Draft Recommendation Z.160, Quality Aspects of Protocol-related Recommendations.
· OMG, Meta Object Facility Specification (MOF), version 1.3.

· OMG, XML Metadata Interchange Specification (XMI), version 1.1.

· OMG, Unified Modeling Language Specification (UML), version 1.4.

· W3C, Extensible Markup Language (XML) 1.0 (Second Edition).

3 Definitions

This Recommendation defines the following terms:

3.1 Behaviour

Behaviour is the sequence of actions with stimulus and responses aspects performed by a system that may change its state. [Sup. 1 to Z.100 (97), 2.10]

3.2 Component

A component is a generic and abstract entity that can represent software entities (objects, processes, databases, servers, etc.) as well as non-software entities (e.g. actors or hardware).

3.3 Dynamic refinement

A dynamic refinement is a modelling mechanism that addresses issues related to structure and behaviour evolving at run time.

3.4 Evaluation

Evaluation is the process used to determine the satisfiability or satisficability of a solution with respect to its goal(s).

3.5 Executability

Executability is an attribute of a model that can be interpreted or compiled and run. Executability applies mainly to functional models such as the one defined using URN-FR.

3.6 Feature interaction

A feature interaction is a desirable or undesirable interaction between two or more features, functionalities, services, policies, or scenarios. With respect to scenarios, a feature interaction is the set of conditions under which the execution of one scenario is affected by the execution of another. Undesirable feature interactions are also called conflicts.

3.7 Functional Requirement

A functional requirement is a requirement defining functions of the system under development.

3.8 Goal

A goal is an objective used to denote functional and non-functional requirements.

3.9 High-level design

A high level design is a design document describing system functionalities, the system architecture, and end-to-end scenarios.

3.10 Non-functional requirement

A non-functional requirement is a requirement characterizing a system property such as expected performance, robustness, usability, maintainability, etc. Non-functional requirements capture business goals/objectives and product quality attributes.

3.11 Post-conditions

Post-conditions are the relevant set of values in the system data when a scenario completes and has generated the set of output events.
3.12 Preconditions

Preconditions are the relevant set of values in the system data when an input event occurs.

3.13 Quality attribute

A quality attribute is a non-functional requirement that relates to systems or products rather than to a business objective/goal.

3.14 Requirement

A requirement is an expression of the ideas to be embodied in the system or application under development.

3.15 Requirements Engineering

Requirements engineering is the development and use of cost-effective technology for the elicitation, specification, and analysis of the stakeholder requirements, which are to be met by systems.

3.16 Satisfiability

Satisfiability is the ability to determine whether a goal can be satisfied according to some strict criteria. For example, a performance goal may state that a system must generate a response to a certain event within a specified time, and it is possible to measure the time lapse between the occurrence of the event and the occurrence of the response.

3.17 Satisficability

Satisficability is the ability to determine whether a goal can be satisfied within acceptable limits. For “satisfied within acceptable limits” substitute “satisficed”. For example, a security goal may state that a system cannot be accessed by unauthorized persons. Simple measure may ensure that most people will be unable to access the system. Ever more complex measures may ensure that a wider range of people will be unable to access the system. The law of diminishing returns applies here. It is impossible to guarantee that no unauthorized person can access the system.
3.18 Scenario

A scenario is a partial description of system usage defined as a set of ordered responsibilities a system performs to transform inputs to outputs and preconditions to post-conditions.

3.19 Stakeholder

A stakeholder is an individual or organization interested in the success of a product or system. Stakeholders include customers, users, developers, engineers, managers, manufacturers, testers, and so on.

3.20 System

A system is a generic term describing a combination of components collaborating among themselves and with the external environment. A system can also be a new system or a system extension.

3.21 Specification

A specification is a document that clearly and accurately describes requirements and other characteristics of a product and the procedures to be used to determine that the product satisfies these requirements. A specification is formal when it is written using a formal language. Requirements specifications focus on the problem domain (the “what”), whereas software specifications focus on the description of the design in conformance with the requirements specification (the “how”).

3.22 Textual information

Textual information is information stakeholders believe is important for designers and implementers to know but is not considered when validating the functional requirements model.
3.23 User Requirement

A user requirement is a desired goal or function that stakeholders wish to achieve.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations:

ADT
Abstract Data Type

ANSI
American National Standard Institute

ASN.1
Abstract Syntax Notation One

COTS
Commercial-Off-The-Shelf

DTD
Document Type Definition

ETSI
European Telecommunication Standards Institute

FDT
Formal Description Technique

FR
Functional Requirements

GRL
Goal-oriented Requirement Language

IN
Intelligent Network

IP
Internet Protocol

ISO
International Organisation for Standardization

ITU
International Telecommunications Union

MOF
Meta Object Facility

MSC
Message Sequence Chart

NFR
Non-Functional Requirements

OMG
Object Management Group

SDL
Specification and Description Language

TTCN
Tree and Tabular Combined Notation

UCM
Use Case Map

UML
Unified Modelling Language

URN
User Requirements Notation

URN-FR
User Requirements Notation — Functional Requirements

URN-NFR
User Requirements Notation — Non-Functional Requirements

W3C
World Wide Web Consortium

XMI
XML Metadata Interchange

XML
eXtensible Markup Language

5 Conventions

The URN language is a graphical notation that supports annotations. The language also has a textual representation described in XML (W3C's eXtensible Markup Language) in a URN Document Type Definition (DTD), described in Section 10. XML DTDs describe the syntax of languages in terms of elements and their attributes. Elements define the document structure by describing containment rules, and attributes describe mandatory and optional variables and their data types for further qualifying elements and references to elements.

XML is an appropriate language for describing the integration of the URN-NFR language with the URN-FR language, as well as layout information when necessary. Also, XML supports a simple evolution path towards the integration of URN with UML through technologies such as OMG's Meta-Object Facility (MOF) and XML Metadata Interchange (XMI).

URN DTD elements and attributes will be described inside shaded boxes using the Courier font. XML elements use lowercase characters (element) whereas XML attributes are in lowercase-italic (attribute) and XML keywords are in uppercase-bold (KEYWORD).

XML DTD descriptions will be framed and shaded in grey.

6 Scope of URN

6.1 What is a URN?

The User Requirements Notation (URN) allows software engineers to specify, review for correctness, and even discover requirements for a proposed new system or for extensions to an existing system. The URN is intended for use in requirements descriptions in specifications developed by national and international standards organizations. In ITU, requirements descriptions are often called Stage 1 descriptions (e.g. in I.130 and Q.65). The URN is also intended for use by commercial organizations developing requirements specifications for new products and product extensions; these specifications are not necessarily governed by standards.

The URN is used to construct functional and non-functional requirements models. This standard shall specify a functional requirements URN (URN-FR) and a non-functional requirements URN (URN-NFR) as well as a set of relationships between the URN-FR and the URN-NFR.

The URN is viewed as complementary to notations such as Message Sequence Charts (MSC), the Specification and Description Language (SDL), TTCN-3, and the Unified Modelling Language (UML). Information contained in URN models could possibly be linked to these other languages.

6.2 What is a URN-NFR?

Business objectives and product quality attributes are modelled using the URN-NFR. The software engineers use the URN-NFR model to identify and negotiate trade-offs among competing objectives and quality attributes. An outcome of this exercise is a set of technology and implementation choices that reflect these trade-offs. The outcome of the URN-NFR modelling exercise sets the context for the URN-FR modelling exercise.

Non-functional requirements (NFRs, also called quality requirements) are global requirements on the software system, its development, deployment, maintenance and evolution and operational processes, such as the systems operational costs, performance, reliability, maintainability, portability, robustness, and the like. NFRs may originate from objectives related to the business organisation (sometimes called consumer-oriented quality requirements) but also from requirements on the software system, its development environment and process (sometimes called technically-oriented quality requirements). Errors of omission or commission in laying down and taking properly into account such requirements are generally acknowledged to be among the most expensive and difficult to correct once a software system has been implemented, and have direct impact on the success of the software system. NFRs are difficult to specify and deal with since they often do not have precise definitions, and do not have clear-cut criteria of when they have been satisfied. For example, it is difficult to know how to specify the extensibility requirements of a system, and when a system has met that requirement. In addition NFRs often contradict each other; for example, providing for extensibility (say, through a layered system architecture) may adversely affect the performance of the system.

A URN that addresses NFRs should therefore address such requirements up-front during analysis, and allow such NFRs to be expressed even if they are ill defined and tentative. The URN should then support further refinement and clarification of these ill-defined and tentative NFRs and, if possible, allow their quantification to be expressed. It should allow exposing and modelling conflicts among NFRs during analysis, and provide abilities to evaluate trade-offs among conflicting requirements, and expose and facilitate negotiation between the involved stakeholders. A URN should allow relating NFRs to potential alternative elements within the functional requirements specification such that NFRs can be used as selection criteria among them.

Sometimes the precise meaning and the degree of achievement of NFRs may become clear only during the design stage, or even during implementation of the software system. A URN should therefore also support and guide the process of refining and clarifying NFRs to serve as selection criteria during these later phases of the software lifecycle. This requirement for a URN emphasises the need for linking NFRs to all phases of the software development life cycle, since the degree of achievement of NFRs may be affected by decisions during all phases. A URN should provide support for managing, tracing, validating and evolving NFRs, as well as functional requirements (FRs), during the whole development life cycle.

In order to provide for such a comprehensive life-cycle support for NFRs two requirements for a URN are introduced:

· To explicitly support goal-based modelling and reasoning for both functional and non-functional requirements as a means for relating higher-level business goals and organizational objectives to the functional and non-functional aspects of the intended system.

· Since goals that express NFRs are initially often ill-defined, tentative and ambiguous, the URN should provide support for the process of refining and clarifying such goals to be more precise. This process support should be part of an engineering process for requirements, which acknowledges that establishing requirements is a decision making process with many interrelated activities, and which has relevance during the whole life cycle of a software system.

6.3 Why Goal-Oriented Requirement Engineering?

Broadly speaking, many user requirements are often first stated as desired goals that stakeholders wish to achieve. Providing for an immediate way of expressing such goals, rather than activities and entities that support achieving such goals, allows reasoning about alternative ways to achieve stakeholder goals. Goal-based modelling can therefore be used for the treatment of NFRs as well as the development of functional requirements.

Goals that denote functional requirements enable expressing and reasoning about functional alternatives for which clear criteria exist and allow evaluating whether a system in fact provides for the desired functionality. Goals that denote NFRs enable expressing a softer notion of achievement. It is said that an NFR related goal is satisficed
 when there is sufficient positive and little negative evidence for their achievement, and that they are unsatisficable when there is sufficient negative evidence and little positive support for their satisfiability.

Unlike functional goals where automatic reasoning can (to some extent) establish whether they were fully achieved or not, NFR-related goals may need humans to intervene in cases when only weak or conflicting evidence is provided. This calls for evaluation and decision-making that need to be made interactively by engineers during requirements analysis but also during the design and implementation process. During this analysis process both goals denoting functional and non-functional requirements are stated up-front, and refined to produce goal graphs. During this process the NFR-related goals are used as selection criteria among alternative functional requirements that achieve the functional goals of the stakeholders in general and of the system in particular. During design and implementation goal graphs are further refined and linked to architectural, detailed design and implementation functions and structures. Functional requirements-related goals provide for focal points of alternative design and implementation choices, while NFR-related goals provide for the selection criteria that are considered for each potential functional alternative. Design choice is made by selecting one branch for further refinement.

A URN that provides for goal modelling allows linking the elements of the software system requirement specification to their rationales, which are to be found in the system’s environment. This allows capturing "why" elements of the intended specifications were proposed and reasoning whether the proposed specification is sufficient for achieving the higher-level objectives of the system and the organisation. Using goals also allows guiding the requirement process in exploring and evaluating alternative system specification, exposing conflicting interests among stakeholders, and aiding the management and the evolution of requirements, when objectives change over time. Including support for the process of requirements engineering in the URN, allows reasoning about high-level objectives while they are still informal and in need of clarification, and provides support for refining those objectives towards a more precise specification. During this refinement process, alternatives may be expressed, evaluated, justified or rejected both in terms of NFRs and in terms of pertinent domain knowledge, until the requirement engineer arrives at a satisfactory specification.

6.4 What is a URN-FR?

An URN-FR model is an abstract representation of the behaviour of a proposed system and its environment. The stakeholder can use the URN-FR to specify scenarios, that is, sequences of responsibilities that must be executed to transform input events and preconditions to output events and post-conditions. Scenarios are also called maps because they be thought as roadmaps connecting inputs to outputs. The notation shall also allow the user to specify relationships among scenarios. It is possible to use the notation to specify abstract architectural components and allocate responsibilities to them but it is not necessary to do so. Responsibilities are connected by causality flows. A causality flow is the assertion of a causal connection between responsibilities. That is, the execution of this sequence of responsibilities in some fashion causes or enables the execution of a subsequent responsibility. The intent behind the notation is to leave the specification of detailed interactions between responsibilities to more concrete notations such as Message Sequence Charts. The goal is to allow software engineers to express their domain knowledge in an intelligible way without letting detailed design considerations get in the way.

A URN-FR must facilitate negotiations between software engineers and implementers. The aim is to use the URN-FR model to discover as many policy questions as possible so that stakeholders can rule on these questions prior to implementation. The URN-FR notation can be used for high-level design as well as for functional requirements specification. For the latter purpose a subset of the syntactical elements is used, and the specification is less refined than that of a high-level design, particularly with respect to architectural definition. Developers can begin the high-level design phase by iterating the model constructed by the requirements engineers. If, by doing so, the developers discover requirements, they can discuss the matter with the requirements engineers by referring to the model.

The initial version of the URN-FR is evaluated for clarity, consistency, correctness, and completeness by visual inspection. In other words, there is no formally defined algorithm for validating a URN-FR model. Evolving the URN-FR so that it can be validated is a goal. When this goal is achieved, this standard shall contain a specification of the validation algorithm.

7 Requirements for URN-NFR

This section describes the requirements for a URN that deals with NFRs.

7.1 Expressing tentative, ill-defined and ambiguous requirements

A URN that deals with NFRs must provide the ability to express tentative and ill-defined requirements, that are difficult if not impossible to formalise, and where there do not exist clear criteria for their achievement during requirements analysis, but also during design and implementation. Expressing such kind of requirements is of particular importance during the early phases of requirements elicitation, when the understanding stakeholders have of their objectives is still vague, tentative, ill defined, ambiguous, and in need of clarification.

7.2 Clarifying and "satisficing" tentative, ill-defined and ambiguous requirements, and exploration of alternatives

A URN must provide support for clarifying and "disambiguating" such requirements in a systematic manner, through refinements, during requirements elicitation and analysis. It should provide support for exploring alternative meanings for such requirements. In addition, since no clear-cut criteria exist for when such requirements are achieved, there is a need to provide a more flexible, and fine-grained notion of achievement, such as sufficiently achieved, some contribution towards achievement, some negative evidence against achievement, and insufficiently achieved. Alternative solutions would achieve such requirements with different degrees of satisfaction. Interactive, semi-automatic (i.e. not completely automated) analysis facilities, that "know" when to refer back to the analyst for her subjective opinion during evaluation, are needed to provided support for evaluating how well solutions satisfy such requirements.

7.3 Support for expressing and evaluating measurable NFRs

The URN should support expressing NFRs that do have clear metrics and measurements for their achievement, and incorporate such NFRs in the reasoning and evaluation process. A particular benefit of providing support for both qualitative and quantitative NFRs is the ability to show how one is traded off for the other. Key issues in many systems include performance requirements that need support for their evaluation, together with the ability to document how and why they are traded off for other desired quality requirements of the system.

7.4 Argumentation support

A URN that provides support for iterative refinement of requirements should support the recording of arguments for or against such refinements. Such arguments should then be taken into account when evaluating these solutions for their degree of how well they achieve requirements.
7.5 Linking high-level business goals to system requirements

Since the tentative and ill-defined NFRs are often high-level organisational and system objectives, a URN should support linking such high-level concepts to the more concrete elements of the requirements specification. Such links may then provide an understanding of how intended software systems in fact contribute to the high-level, and to some extent strategic directions, an organisation wishes to take.

7.6 Multiple stakeholders, conflict resolution and negotiation support

Since requirements may originate from multiple stakeholders, a URN should be able to express from where requirements originate, and whether stakeholders’ interests conflict with each other.

7.7 Prioritising requirements

A URN should also support prioritising requirements in general and for stakeholders in particular. This would support the negotiation process, when conflicting requirements arise, but also allows expressing the importance of requirements and how they might change over time, and in what way this may change the focal point of the system development effort.

7.8 Requirements creep and churn and other evolutionary forces

A URN needs to support the ability to detect evolution in requirements between the time they are formulated and the time the product is delivered, in particular when requirements are added or changed (requirement creep). It should also support frequent modification of the same requirements or their priorities (requirement churn). Both have an impact on the requirements specification, and how changes in the requirements specification affect the rest of the development process.

7.9 Support for integrated treatment of functional and non-functional requirements

A URN should enable dealing with both functional and non-functional requirements concurrently. In particular a URN needs to express in what way NFRs may serve as selection criteria when choosing among alternative functional requirements, and for expressing constraints when wishing to achieve functional requirements during design.

7.10 Support for multiple rounds of commitment

Moving from high-level objectives to system requirements may need multiple rounds of decision-making and commitment by stakeholders. Each new round of decision-making is based on previously adopted decisions that structure the decision space by focusing on certain alternatives and excluding others. During the course of requirements elicitation and analysis new requirements may be introduced that impact existing requirements and commitments. A URN should, therefore, provide support for multiple rounds or layers of decision-making, where each layer proceeds from commitment points of previous layers.

7.11 Life-cycle support

Requirements and their management are relevant during all phases of system development. One reason is requirements creep. Another is the need for requirements traceability as discussed below. Yet another reason is the complexity of the development process itself. System development typically does not proceed in the neat fashion suggested by the waterfall model. Several development cycles can be proceeding in parallel. Even within one development cycle feedback loops exist that can trigger re-engineering and a review of commitments to requirements. For all of these reasons, a URN should support requirements management during all phases.

7.12 Forward and backward engineering and traceability support

The URN should allow expressing requirements as ill defined and tentative at the beginning and provide support for refining those requirements to a more precise specification. It should also support using requirements to guide the decision making process during the forward engineering of design and implementation. The design and implementation processes can cause evolution in the understanding of requirements and possibly trigger reformulations of or even commitments to particular requirements. The system developers must be aware of when their activities impact requirements and be ready to go back to stakeholders with issues and must ensure that the requirements specification remains consistent with the design and implementation of the system. By doing so, the developers will ensure that the requirements specification plays its proper role in system compliance testing. To accomplish these objectives requires that URN specifications be “connectable” to other development process artefacts.
7.13 Ease of use and precision

A URN is used by many different stakeholders during the requirements specification and development processes. For some stakeholders ease of use, and comprehensibility is paramount, while for others precision in expressing requirements is of greater importance. A URN should provide support for both types of URN users through supporting degrees of formality in its language and by making clear how a user of a URN can refine from informal expressions of requirements to more formal ones. One focal point should be ease of use for practitioners and comprehensibility for customers and intended users of the system, while another focal point should be the ability to specify requirements more precisely for developers.

7.14 Knowledge-based support (catalogues of reusable requirements and design knowledge)

A URN should a knowledge-based approach to requirements analysis. That is, it should support the reuse of parts of requirements specifications, which are known to express certain objectives, when such or similar objectives recur in other projects. Such a URN would provide facilities to capture, structure and reuse knowledge related to recurring requirements. Knowledge about achieving functional and, in particular, non-functional objectives would be stored in knowledge catalogues together with applicability conditions stating under what circumstances the knowledge can be reused. Such knowledge could potentially accelerate the requirements engineering process for particular projects.

8 Requirements for URN-FR

This section describes the requirements for a URN that deals with FRs.

The Functional Requirements URN (URN-FR) must allow engineers to:

Specify trigger and termination conditions for system responses

· Specify the set of input events at a scenario start point

· Specify the set of output events at a scenario end point

· Specify preconditions at scenario start points

· Specify post-conditions at scenario end points

· Identify input sources, that is, whether the sources are human or machine

· Identify output sources, that is, whether the sources are human or machine

Specify what the system does in response to trigger conditions

· Specify system operations in terms of a causal flow of responsibilities

· Specify alternative courses of action within a scenario

· Specify repetitive action within a scenario

· Specify parallel courses of action within a scenario

· Specify synchronization within a scenario

· Specify synchronization between scenarios

Specify lengthy system responses in a hierarchical way

· Specify a lengthy scenario by way of a nested representation; a root representation refers to child representations that contain more detail, and the referenced representations may also refer out

· Specify preconditions at the entry points to a child representation

· Specify post-conditions at the exit points from a child representation

Specify relationships among scenarios

· Specify individual scenarios

· Group related scenarios

· Specify feature interactions

Specify component architectures, if appropriate

· Specify scenarios without reference to components

· Specify scenarios with reference to components and the allocation of responsibilities to components

· Specify scenarios with reference to Commercial-Off-The-Shelf (COTS) components

· Specify scenarios with reference to conceptual components

In general

· Specify the behaviour of the system’s environment

· Elicit requirements, that is, use the notation to reason about domain knowledge

· Cross-reference operationalizations in the NFR model to responsibilities in the FR model

· Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
8.1 Specifying system trigger and termination conditions

A requirements specification, if it contains nothing else, must contain a mapping of input events and preconditions to output events and post-conditions. Preconditions and post-conditions relate to both environmental states and target system states. The environmental set of preconditions and post-conditions are kept separate from the system set by the fact that one set of scenarios models the environment and one set models the system. The URN-FR is used to model both the environment and the target system. The start points of the system scenarios are connected to the endpoints of scenarios occurring in the environment, and the endpoints of the system scenarios are connected to the start points of scenarios occurring in the environment.

The URN-FR must allow the client to distinguish the many mappings of input events and preconditions to output events and post-conditions for a particular system in whatever degree of detail seems appropriate. It is not sufficient just to be able to identify an event class or condition parameter; it must also be possible to specify ranges of values in each class or parameter. A large number of classes, parameters and value ranges create the possibility of many mappings; data management becomes an issue.

A goal for this standard is to define a data model so that preconditions, input events, post-conditions and output events can be formally defined and managed.

8.2 Specifying system responses

This notation allows users to specify system responses as a causal flow of responsibilities. The execution of a responsibility is said to cause the execution of a subsequent responsibility. Inter-responsibility communication is not specified.

A system response is what the system does to transform the input events and preconditions into output events and post-conditions. Given the many possible mappings between input events and preconditions on the one hand and output events and post-conditions on the other, how to manage the specification of system responses for each of these mappings becomes an issue.

One candidate solution is to group scenarios according to event classes. The event classification is based on common processes and criteria of relatedness. An example of an event class is that of bit patterns on a receive link where a synchronous data protocol is being used. The system response may differ somewhat based on which event in the class is received. To express this difference, notation for condition-based decision-making (branching) must be used. The handling of preconditions also requires branching. Preconditions express system state. For example, the system may be in an operational state relative to a particular event class when it receives the event or it may be out of service. Branching is used to express the different response the system makes depending on its state. Branching is also called OR-forking. A goal for this standard is to define a data model and expression evaluator so that conditions on OR-forks can be formally expressed.

Another name for a scenario specification is a map because in its graphical form it looks like a map.

Events in the same class may be handled in much the same except for slight differences. The map must show where the common processing segments are as well as where the branching segments are. It’s possible that after a branch, the system handling for 2 events may again be the same for a while. The notation must be capable of expressing this situation and does so using an OR-join.

The notation must be able to express parallelism when specifying the handling of an event. For example, the detection of a loss of signal on a receive link causes two parallel actions to be taken. The first action is to send an alarm out on the transmit link to the far end, and the second action is to send an alarm to the human user interface.

The notation must be able to express synchronization when specifying the handling of an event. For example, some bank vaults can only be opened when two people physically out of touch have inserted and turned their keys. The system waits until both events have occurred before proceeding. The notation must be able to express a wait-forever condition as well as a timed wait with action attendant on a timeout.

The notation must be able to specify repetitive action. Collecting digits during a call-set-up is a classic example of a repetitive action that can be expressed as a loop. A goal for this standard is to define a data model and expression evaluator so that conditions on loops can be formally expressed.

8.3 Specifying lengthy behaviour

The notation must allow the user to specify lengthy system responses in a comprehensible way. One way to support comprehensibility is to support abstraction, that is, hide irrelevant detail. In a requirements specification some detail is always irrelevant, for example, how responsibilities communicate with each other. Another way is to support hierarchical decomposition of the scenario specifications.

The notation must support hierarchical decomposition of scenarios. A sub-scenario container replaces a sequence of responsibilities in a higher-level scenario. The replaced sequences (sub-scenarios) are represented in a lower level scenario. A sub-scenario should be similar in nature to a scenario, i.e. with trigger symbols and termination symbols. A container is static if only one sub-scenario is defined and is dynamic if more than one sub-scenario are defined. In the latter case a selection policy (related preconditions) determines which of the alternate sub-scenario executes.

Containers and sub-scenarios can be used to encapsulate behaviour that is found in many places within one scenario or across scenarios. It is a behavioural component.

8.4 Specify relationships among scenarios

One form of relationships is grouping a set of scenarios that deal with a class of events into a single specification.

Another form of relationship is synchronization. Consider the example of a call set-up. The system detects an off-hook, responds with dial tone, sets a timer and waits. This is a single scenario. The system has received an event and produced outputs. Subsequently the system detects a digit, removes dial tone, resets a timer and waits. This also is a single scenario, but it is related to the first because it causes the timer in the first scenario to be reset.

In any case, individual scenarios in a group need to be accessed as separate entities when appropriate. A mechanism to extract scenarios from a group or integrated set of scenarios is required. This might in turn require the presence of a data model to be used in the identification of individual scenarios.

The URN-FR must allow the user to express desirable feature interactions and discover undesirable ones. For example, under certain conditions a particular service may receive priority treatment, causing the interruption and delay of a lower priority service under way.

8.5 Component definition

The URN-FR must allow the user to specify scenarios without reference to components as well as with reference to them. The URN-FR can thus be used in situations where no component architecture has yet been defined and where there is a desire to put no architectural constraints on implementers, and it can also be used where a component architecture has been defined.

Component definition internal to the system is more appropriate to high-level design than to requirements specification because it involves allocation of responsibilities to components. Allocation of responsibilities to components is a high-level design activity, and many criteria are applied to determine a good architecture. Nevertheless, software engineers may feel more comfortable if they can reference entities in the specification. These entities should be considered abstract, functional entities and not instructions to implementers on responsibility allocation unless the entities are COTS components.

Component definition is appropriate when the system environment is specified in terms of existing components, and the functional model encompasses both the existing components and the new system.

In general, the functional model will focus on behaviour, and component definition will be left to the high-level design phase.

8.6 Specifying the environment

The clients must be able to specify the behaviour of the system’s environment. All of the capabilities of the URN-FR that can be used to model the system can be used to model the environment. The environment model then becomes the driver for the system model and vice versa.

Component definition can come into play here. The system is identified as a single component and is connected to existing systems modelled as black box components in the new system’s environment. The value in this level of component definition is that it clarifies what behaviour in the overall scenario specification belongs to the new system and what belongs to the system’s environment.

9 Other Requirements for URN

9.1 Relationships between the URN-NFR and URN-FR models

The URN-NFR modelling exercise sets the context for the URN-FR modelling exercise.

Any operationalizations and associated performance constraints identified in the URN-NFR model must be cross-referenced to the responsibilities that represent them in the URN-FR model and vice versa.

9.2 Requirements traceability

In a software engineering process, traceability is the property that defines how elements contained in different system models relate to each other. This allows linking model elements that are semantically related.

In the specific context of the URN, requirements traceability is of particular importance. Requirements traceability is the property that allows linking system artefacts defined in the different models as well as design decisions to requirements.

In a software development process, the definition of requirement traceability relations is important for many reasons:

· To evaluate requirements coverage. An important question that a developer must be able to answer is: Are all requirements addressed in the current version of the system? In order to answer this question, one must be able to determine precisely the set of requirements that are referenced in the different system models. If requirements traceability relations have been maintained during the whole design process, this question can be easily answered. Moreover, the set of requirements that have not yet been addressed can then be automatically determined.

· To evaluate the impact of requirements modifications. Another important question that a developer must be able to answer is: What are the model elements that are related to a specific requirement? This question must often be answered in the case where modifications are made to requirements. The existence of traceability relationships allows evaluating the impact of modifications on the different models, and making the changes to affected models in a consistent manner. Thus, if a modification is made to a requirement, say R1, designers can evaluate the impact of the modification by analyzing the elements of the different models that are linked to R1.

· To allow requirements testing. In a scenario-driven (or use case-driven) process, requirements are associated with specific scenarios. Therefore, in order to test that the current implementation of a system is correct with respect to a specific requirement, one must first determine the set of scenarios that are related to the requirement. Then, the set of scenarios can be executed, and the result of the execution can be analyzed to see if the requirement is correctly addressed or not. For this purpose, it is important to establish traceability relations between elements of the scenario descriptions in the URN and stakeholder requirements.

· To allow the identification of conflicting requirements. The causes of system errors are various. One important cause of errors is conflicting requirements. This type of error is often difficult to prevent and is only discovered late in the development process. For this reason, when an error is found in the system, it is important to be able to trace it back to the different models, and ultimately to requirements, and see where the error has been introduced. If the error comes from conflicting requirements, then these requirements can be precisely identified.

· To reduce maintenance efforts. An important part of the cost of system maintenance is related to the evaluation (or the non-evaluation) of the impact of modifications. If one can determine precisely the set of model elements that can be impacted by the modification of a specific requirement (or model element), then the cost of modification would be significantly reduced.

· To preserve the rationale for design decisions. Knowing the original reasons for design decisions helps maintainers and enhancers to evaluate whether implementation should be changed in the light of new circumstances. Such re-engineering of implementations may be essential to keeping a product vital and competitive in the marketplace. The URN-NFR notation should provide the ability to present the rationales for a specific choice together with the arguments for it, in a concise and readable form.

In the context of the URN, we need to define both backward traceability relations from the URN, and more specifically URN elements, to their source (documents, stakeholders requirements, problem domain analysis, etc), and forward traceability relations from the URN to the other models used in the process in which the URN is used (or preferably backward traceability relations from the other models to the URN). If traceability exists between the other models and implementation, the existence of these two types of traceability relations would transitively ensure a complete traceability from implementation to the source of requirements.

9.3 Requirements test case specification

URN should support the testing of requirements as well as testing based on requirements. A requirements test case specification describes scenarios found or expected to be found in the URN-FR specification. The URN-FR specification is assumed to include operationalization of relevant non-functional requirements; hence part of the URN-NFR specification (e.g. quantitative performance attributes) is indirectly tested at the same time. The requirements test case specification aims to enable the following types of testing:

· Validation testing, used to capture individual or small-grained client and user scenarios so that the integrated set of requirements can be determined to be valid by the clients and users. This type of testing can be used by stakeholders to establish contract satisfaction.

· Conformance testing, used to verify designs and implementations against the requirements. Such test cases could be created in way that would improve compatibility with the ITU-T testing language, TTCN-3.

· Regression testing, used at the requirements level to ensure a certain degree of compatibility with key system properties during the evolution of requirements.

· Dynamic assessment is used in dynamic systems that need to assess capabilities of components and other systems with which they communicate (for instance, does this unknown component supports this quality of service?). This dynamic assessment may involve testing of the component or other system in question. URN is required to support the means of describing such dynamic assessment tests.

The testing of non-functional requirements in general is also desirable but may not be achievable through the use of scenarios. The URN notation may not be able to support this type of testing.

9.4 Performance analysis of functional requirements

URN should support at least a preliminary analysis of performance properties, such as response delay or throughput capacity, based on workload and environment parameter estimates attached to the URN-FR specification. Performance properties are of critical importance in telecommunications, and current work indicates that the analysis is feasible. The necessary workload parameters include

· Scenario triggering parameters such as period of initiation, distribution of delays between initiations, etc.

· Frequencies of alternative paths.

· Processing demands of scenarios, and of operations within scenarios.

· Demands for system services other than processing, made by scenarios and operations.

The environment parameters should approximately describe the processing capacity, network delays and the services provided by the environment (for instance, a response delay for a remote service).

Performance results will be delays along defined processing paths, or the range of possible throughputs of some scenarios. The intention of the analysis is to estimate the degree of conformance with stated performance requirements, and to identify problem areas and sensitivities. The data and the results are expected to be approximate. The analysis can be performed in various ways:

· Point analysis considers one set of conditions.

· Sensitivity analysis considers a range of conditions, and the variation of performance measures with parameter values. This could include sensitivity of the system to its workload parameters or to the environment.

9.5 Legal status of URN models

A requirements specification constitutes an essential part of a contract between stakeholders, for example, clients and implementers. The URN model must be usable in a legal setting.

9.6 Change management

The URN notation has textual and graphical elements. It must be possible to version control URN models.

9.7 Intended usage

9.7.1 Communicating requirements

A primary purpose of a URN is to facilitate the communicating of requirements among pertinent stakeholders prior and during the system development life cycle in general and during requirements analysis in particular. This includes communicating among stakeholders such as clients, standards bodies, business analysts, intended users of the system, architects, designers, implementers and the like. If we take standards bodies as example, it will show the significance of utilizing URN for these bodies. Industry standards are dynamic in nature, continuously evolving to meet stakeholders’ requirements with ever-shorter intervals for standards development. The current timelines at which a new version of the specification is to be completed to the needed level of precision, quality and completeness cannot be accommodated using existing specification techniques. A key assumption is that future standards work must apply techniques that can be automated or semi-automated. The use of formal documentation techniques using tools will shorten the standards development cycle, introduce a formal test methodology, and assist in rapid validation and verification, harmonization, and evolution of the standards.

In addition, during the early phases of requirements elicitation (and high-level design), a URN should support an exploratory mode of work, in which principal alternatives are considered and where minute details are omitted and left for future elaboration. Such exploratory work is often done in conjunction with non-technical stakeholders in order to explore feasible directions towards system specifications (and design). Having achieved agreement on principal directions the URN should support detailed specifications that may then be undertaken in conjunction with more technical oriented stakeholders, and that allow for validating of requirements in a formal manner.

These considerations give rise to three requirements on a URN:

· The ability to provide for informal (or semi-formal) requirements descriptions that focus on coarse grained behaviours and structures of the intended system. Such a description would facilitate the exploring of alternatives and would omit details not pertinent to such reasoning. This would facilitate the communicating of requirements among non-technical oriented stakeholders.

· The ability to provide for formal requirements descriptions that do focus on detailed behaviours and structures, such as system state and state transition information and how and where these are represented and changed within the system structure. This would facilitate the communicating of requirements among technical oriented stakeholders.

· The ability to support the transition from informal (or semi-formal) descriptions to formal ones, together with the ability to reason about and explore alternative "formalizations" during that transition. This would provide the basis for communicating among both non-technical and technical oriented stakeholders.

This URN proposal acknowledges the abilities of existing requirements notations (such as UML, SDL, MSC) but positions their abilities as belonging to the more formal and detailed requirements description approaches. This URN proposal wishes to address those earlier phases during requirements analysis when a more exploratory, coarse-grained and informal approach is more suitable, that does not overwhelm the stakeholders with irrelevant details and provides support for exploring alternatives.

These early phases of requirements analysis are not well supported by existing requirements analysis notations. This URN then supports the transition from such informal descriptions to formal ones, and will to a certain extent support in the future the specification of more detailed requirements specifications in terms of state and state transition behaviour.

In order to further provide aids for communicating requirements, this URN proposal supports graphical, textual and tools-oriented representation of requirements. The graphical representation allows the modelling of requirements in an iconic and spatial manner, which facilitates an intuitive understanding and emphasizes the informal aspect of the URN. The textual representation provides a language rendering of the graphical notation but provides further expressive capabilities not available in the graphical notation. These additional language facilities could be made accessible either through addition user interface elements, such as pop-up dialogues and context dependent menu items, or could be written and parsed from textual language representation. The textual representation is provided for more technical-oriented stakeholders who might prefer such representations to graphical ones. Finally, a tool-oriented representation provides for the ability to exchange requirement data between different tools in a standardized manner.

9.7.2 How architectural constraints affect requirements specification

9.7.2.1 New system with no architectural constraints

There is no sub-system architecture. The only components identified are the system as a black box and existing systems in the new system’s environment to which the new system is connected. The scenario specifications are purely behavioural. There may be constraints on responsibilities where the URN-NFR model has specified a particular technology option to operationalize a quality attribute. For example, to operationalize the security attribute the URN-NFR specifies that the user has to enter a user identifier and password together with a fingerprint scan that would call for a special device to be used.

9.7.2.2 New system based on COTS components

The stakeholders have identified Commercial-Off-The-Shelf (COTS) components to be used to implement the operationalizations specified in the URN-NFR model. Requirements engineers specify scenarios in terms of these components by drawing the causality flow line through responsibilities in these components. Where the scenario requires a responsibility that is not implemented in one of the COTS components, the requirements engineer draws the causality flow outside the components and places the notation for the responsibility there.

At the requirements level there is no need to specify responsibilities whose purpose is to glue COTS components together.

9.7.2.3 Extension of an existing system

This case is similar to the case of a new system based on COTS components in that both specifications involve the use of existing sub-system components. If the existing system has been modelled using the URN from its inception, and if the URN-FR and URN-NFR models are up-to-date, then the approach used in the new system specification based on COTS components is applicable here. If, however, there is no URN-FR model of the existing system, the developers must first construct one. How to reverse engineer an URN-FR model from an existing system is not within the scope of this standard; it may, however, be an appropriate subject for a related standard.

An option may be to treat the specification of the extension as a new system with no architectural constraints. It will then be up to the developers to map the responsibilities identified in the scenario specifications to capabilities in sub-components in the existing system.

9.7.3 Refining URN-FR models

The URN-FR originated because of a need to specify high-level design in a way that highlights the important semantics but does not let details about implementation mechanisms get in the way of reasoning about what should happen. When starting out a specification, the user is expected to use the notation in an informal manner. The intent is that the notation be abstract and let the user stay at the level of the big picture. An important attribute of the notation is that it allows the user to create artefacts that are meaningful even when the process of thinking about requirements is in its initial phases. Informality is marked by a focus on defining high-level responsibilities, causal relationships between responsibilities, and control flow. The user is allowed to focus on one scenario at a time; this greatly simplifies the thinking process. Although the mapping of input to output events is there, detailed specifications of data transformations internal to the scenario is missing.

The addition of a data model to the notation will mean that further refinement of the URN-FR model can happen. It also means introducing more formality into the specification since a data model is a prerequisite to executability and validatability. The user will have to deal with more detail but it is not detail about implementation mechanisms. Rather it is detail that relates to cases that the proposed system must handle and is therefore germane to a requirements specification. Responsibilities may have attributes that say what data transformations take place but not how they are accomplished. Tool support based on formal semantics will help the user manage the complexity that inevitably arises within specifications for products, protocols, and features that will be integrated into today’s telecommunication networks. The focus is still on scenarios and the direct mapping of inputs to outputs. The user is not being asked to architect components. As well the data definition can be at a much higher level of abstraction than is required for an implementation.

9.8 Quality attributes

This section discusses the quality attributes that are applicable to the URN and any implementation of it.

9.8.1 Usability

One quality attribute that the URN and any implementation of it in a tool should have is usability. Usability is key to user acceptance, and user acceptance validates the standard-making process and motivates its continuance. How to test a URN implementation for usability is an issue for further study.

9.9 Round trip engineering

For the purpose of this standard round trip engineering can be said to take place when either of the following two situations obtain. Users of a tool implementing the URN suggest changes to the tool, and by some form of usability testing these changes are determined to be improvements. Users of the URN suggest changes to the notation, and by some form of usability testing these changes are determined to be improvements.

10 URN language specification

The URN language is composed of two related and complementary parts: the URN-NFR language (detailed in the Z.151 document) and the URN-FR language (detailed in the Z.152 document). The current section provides the basis for integrating these two languages with an XML Document Type Definition (DTD).

The following sections will present the DTD element per element. Note that not all URN elements will have a visual representation; many elements are in fact structural elements that contain other elements, or textual annotations attached to other elements. A graphical overview of the whole DTD can be found in Appendix I. This appendix also contains basic information on how to read XML DTDs.

10.1 Structure of URN specifications

The URN language supports the description of URN specifications composed of a specification of goals and non-functional requirements (urn-nfr-spec) and of a specification of functional requirements (urn-fr-spec). It also supports global definitions and additional annotations.

In the DTD, the element urn-spec is defined as the root element, and it contains an identifier (spec-id), a name (spec-name), and the version of the DTD being used (dtd-version). The component-notation attribute indicates the component notation used in the URN-FR specification. The default notation is Buhr's Use Case Map (UCM) component notation, but eventually other notations may be supported (e.g. UML, UML-RT, SDL structures, or architecture description languages such as ACME and Wright). A URN specification can also make use of a data-language (e.g. ASN.1, Abstract Data Types, etc.). At this moment, a simple data model composed of read-only global variables has been incorporated into the URN-FR. The size of the drawing workspace (width and height) can also be specified in terms of pixels. The urn-spec element, like most elements in this DTD contains a free-text description attribute.

The definitions of components, responsibilities, and non-functional requirements are covered in upcoming sections.

10.1.1 XML definition

<!ELEMENT urn-spec (definitions?, urn-nfr-spec?, urn-fr-spec?,

 annotations?)>

<!ATTLIST urn-spec

 spec-id ID #REQUIRED
 dtd-version NMTOKEN #REQUIRED
 spec-name CDATA #IMPLIED
 component-notation NMTOKEN "Buhr-UCM"

 data-language NMTOKEN "none"

 width NMTOKEN "1320"

 height NMTOKEN "1100"

 description CDATA #IMPLIED >

<!ELEMENT definitions (component-definitions?, responsibility-definitions?,

 nfr-definitions?)>

10.1.2 Graphical notation

No graphical notation is required for these DTD elements.

10.2 URN-NFR specifications

The description of non-functional requirements specifications is covered in the Z.151 document. The NFR language in use is the Goal-oriented Requirement Language (GRL). Three kinds of representations are defined for URN-NFR. A graphical notation is intended to be used by stakeholders who need not have much technical background, and do modelling in an intuitive way. A textual grammar serves the aim of documentation, and also to stakeholders who prefer to read and write requirements using text. The XML definition is mainly used as an interchange-oriented form of URN-NFR model; it is also a means to formalize the language syntax and to integrate URN-NFR models with URN-FR and other frameworks.

10.3 URN-FR specifications

The description of non-functional requirements specifications is covered in the Z.152 document. The FR language in use is the Use Case Map (UCM) notation. Two kinds of representations are defined for URN-FR. The graphical notation is intended to be used by all stakeholders. The XML definition is mainly used for formalisation and as an interchange-oriented form of URN-FR model; it is also a means to integrate URN-FR models with URN-NFR and other frameworks.

11 Compliance statement

The purpose of this section is to state the requirements that the URN must fulfil and to what degree the notation does so.

11.1 Compliance table format

Table 1/Z.150 presents the table format used to list each of the requirements defined for the URN (FR and NFR) notations and to assess whether the current definition of the notations complies, partially complies or does not comply with the requirement. If the notation complies (C), the standard must specify how it complies. If the notation does not comply (N), the standard must specify why it does not comply and what plans exist to bring the notation into compliance. If the notation partially complies (P), the standard must specify in what respects the notation complies and in what respects the notation does not comply and what plans exist to bring the notation into full compliance.

Each requirement possesses a unique identifier and is typed. A requirement is of type FR if it relates exclusively to functional requirements. A requirement is of type NFR if it relates exclusively to non-functional requirements. A requirement is of type B (both NFR and FR) if it relates to a relationship between functional and non-functional requirements. Requirements are also defined as being mandatory (R) or optional (O). A requirement may also depend on the presence of another requirement. Each requirement is cross-referenced to the sections where compliance to the requirement is discussed.

Table 1/Z.150 Compliance table format

ID
Requirement
Type
R/O
Depends On
Conf
Status
 Explanation

99998
Specify data parameters for input events
FR
O

P
Section X, element E. Data types not yet covered.

99999
Specify values for input events
FR
O
99998
N
Not specified

In the example of Table 1/Z.150 , two optional (and artificial) requirements of type FR are provided. The first one is partially fulfilled by the notation. The second one depends on the presence of the first one, and the notation does not comply with it.

11.2 URN compliance table

Table 2/Z.150 lists each of the requirements defined for the URN (FR and NFR) and provides a framework for assessing the compliance of the notations proposed for Z.151 and Z.152.

Table 2/Z.150 URN compliance table

ID
Requirement
Type
R/O
Depends On
Conf
Status
 Explanation

00100
Specify the set of input events at scenario start point
FR
R

00200
Specify the set of output events at scenario end point
FR
R

00300
Specify preconditions at scenario start points
FR
R

00400
Specify post-conditions at scenario end points
FR
R

00500
Identify input sources, that is, whether the sources are human or machine
FR
R

00600
Identify output sources, that is, whether the sources are human or machine
FR
R

00700
Specify system operations in terms of a causal flow of responsibilities
FR
R

00800
Specify alternative courses of action within a scenario
FR
R

00900
Specify repetitive action within a scenario
FR
R

01000
Specify parallel courses of action within a scenario
FR
R

01100
Specify synchronization within a scenario
FR
R

01200
Specify synchronization between scenarios
FR
R

01300
Specify a lengthy scenario by way of a root map and references to child maps; child maps may have children
FR
R

01301
Specify preconditions at the entry points to a child map
FR
R

01302
Specify post-conditions at the exit points from a child map
FR
R

01400
Group related scenarios
FR
R

01450
Specify individual scenarios
FR
R

01500
Specify feature interactions
FR
R

01600
Specify scenarios without reference to components
FR
R

01700
Specify scenarios with reference to components and the allocation of responsibilities to components
FR
R

01800
Specify scenarios with reference to Commercial-Off-The-Shelf (COTS) components
FR
R

01900
Specify scenarios with reference to conceptual components
FR
R

02000
Specify the behaviour of the system’s environment
FR
R

02100
Elicit requirements, that is, use the notation to reason about domain knowledge
FR
R

02200
Cross-reference operationalizations in the NFR model to responsibilities in the FR model
B
R

02300
Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
B
R

90100
Specify ill-defined, tentative quality requirements
NFR
R

90200
Specify satisficing of quality requirements
NFR
R

90300
Specify refinement of quality requirements
NFR
R

90400
Specify alternative refinement of quality requirements
NFR
O

90500
Specify alternative functional requirements
NFR
R

90600
Specify quality requirement priorities
NFR
R

90700
Specify synergies and conflicts among quality requirements
NFR
R

90800
Specify argumentation during modeling
NFR
R

90900
Specify multiple stakeholders’ interests
NFR
R

91000
Specify business objectives
NFR
R

91100
Specify links between high-level objectives and lower-level specifications
NFR
O

91200
Support requirements change traceability
NFR
R

91300
Support requirements priority traceability
NFR
R

91400
Integrate quality and functional requirements
B
R

91500
Specify quantitative quality requirements
NFR
R

91600
Support incremental commitments of requirements
NFR
R

91700
Knowledge base support
NFR
O

91800
Support detection of conflicting and synergistic quality requirements
NFR
O

91900
Ease of use but also precision
NFR
R

12 Compliance testing

TO BE PROVIDED
The purpose of this section is to specify tests that can be applied to an implementation of the URN to determine its compliance with requirements.

Appendix I
URN Document Type Definition Overview

This informative appendix presents a brief introduction to XML Document Type Definitions (DTDs) and it provides a graphical overview of the URN DTD elements.

I.1 Introduction to XML Document Type Definitions

XML DTDs describe the structure of a document. In this contribution, XML DTDs are composed of elements, which describe the markups or tags in the URN language, and of attributes, which represent parameters associated to a specific element.

An element is of the form:

<!ELEMENT element-name (sub-elements or EMPTY)>

An empty element indicates a terminal element that does not contain any sub-element. Sub-elements can be structured in various ways:

· As an ordered sequence: (element1, element2, element3)
· As a choice among elements: (element1 | element2 | element3)
· As an optional element: (element?)
· As multiple instances of an element (0 to N): (element*)
· As multiple instances of an element (1 to N): (element+)
· As a combination of the options cited above:
((element1?, (element2* | element3+))
A list of attributes can be associated to the definition of an element. An attribute is of the form:

<!ATTLIST element-name
 attribute-name1
type
value

 attribute-name2
type
value

 attribute-name3
type
value

 ... >

The type of an attribute is one of the following:

· ID: Unique identifier value.

· IDREF: Reference to a unique identifier value.

· NMTOKEN: Name token (one word).

· CDATA: A string of characters, with spaces allowed.

· (name1 | name2 | name3): Group of names (enumeration).

The value of an attribute is one of the following:

· #REQUIRED: A value must be provided for this attribute.

· #IMPLIED: A value may be provided for this attribute; otherwise an implicit value is given.

· name1: A default item in a group of names.

· default: A default name token or string of character data.

As an example, assume the following DTD:

<!ELEMENT family (father, mother, child*)>

<!ATTLIST family
 family-name
CDATA
#IMPLIED >

<!ELEMENT father (EMPTY)>

<!ATTLIST father
 name

CDATA
#IMPLIED >

<!ELEMENT mother (EMPTY)>

<!ATTLIST mother
 name

CDATA
#IMPLIED >

<!ELEMENT child (EMPTY)>

<!ATTLIST child
 name

CDATA
#IMPLIED

 sex

(male | female) "female" >

The following XML document is valid according to this DTD:

<family family-name="Smith">

<father name="John" />

<mother name="Mary Jane" />

<child name="Anna" />

<child name="Martin" sex="male"></child>

</family>

I.2 Graphical representation of URN DTD elements

The following conventions are used to describe the URN DTD elements in a graphical form.

Figure 1. [image: image1.wmf] Graphical conventions for DTD elements

Due to the large size of the URN DTD, its graphical representation will be split into four parts: definitions, urn-fr-spec, urn-nfr-spec, and annotations.

Figure 2. [image: image2.emf]element

element

element

element

element ~

 element

 element

 element

.

.

.

.

.

.

An element

The root element

A terminal element (EMPTY)

An element already expanded somewhere else

An element with attributes

An optional element [0..1]

Multiple element instances, optional [0..�]

Multiple element instances, mandatory [1..�]

Choice among next sub-elements

Ordered sequence of sub-elements (top to bottom)

Sub-elements of definitions

Figure 3. [image: image3.png]requiar ~

definitions

Umn-spec ~

Urif-spec

U fr-spec

annotations

component-definitions Jih cornponent ~ -
pool~ I
data store-spec I data store-access ~ ||
Service request-spec Jl) service-request ~
Tesponsibilty-definiions JigH responsibiity ~ precondition-ist~ L) condition ~ .
postcondition-ist ~ Jj condition ~
dynamicresp -]
modelype ~
element-definitions Jizh elerent ~ modek name -
extemaktype ~ |
Ti-definitions extemak-name ~]
device-directory |1 device ~]
Jata-store-diraciory datastore—J _
accessmode ~ ||

 Sub-elements of urn-fr-spec

Figure 4. [image: image4.png]T ri-spe Yarspe Jaoatmocel - Jmosel-constructors 8 model-constructor

[actors [actor ~ [ttributes i attributs

(lictentional-elemerts 8 intertional-siement

fetertioralrelaionships | nterfionalrelaionsr

]

faskrer~ 1

[softgoatrer ~ 1]
faskrer~ 1

[softgoatrer ~ 1]
faskrer~ 1

Sub-elements of urn-nfr-spec

Figure 5. [image: image5.png]definitions

U ni-spec

Umn-spec ~

path-spec J] iyperaraph

Toot-rmaps | ucr-model ~

e friggering-eventlist ~ i event~
precondition-list ~ Jih condition —
IR resulling-eventlist ~ i event~ I
postcondition ist ~ [l condition ~ 1]
responsibility-ref ~
fork~ |
[loin~
synchronization ~ |
Toop =]
Stub-eniry-fist | stub-entry
e Stub-exitlist W stub-exit ~
stub ~ j—{[T precondition-fist~
postcondition ist~ I
senvice-requestspec i service-request —
— friggering-eventlist~]
wling-placs precondifion-ist ~
abort
connect]
{fimestamp-point —
goaltag ~ 7]
— precondifion-ist —
EIMphy-segment postcondition st~ I
Fyperedgs-connection ~ Jich hyperedge-ref ~
path-branching-spec ~ it path-branching-characteristic ~]
enforce-bindings ~ Jih path-binding ~

structure-spec I componentref ~

tesponsibiity-ist

hyperedge-rer~ 1

Urfrspec

other-hyperedge-list

Typeredge-ref ~ 1

pllg-in-maps i ucr-model ~
in-connection-list in-connection ~
plug-in-binding ~
Dligbindings out-connection-list Jf out-connection
pllig-in-pool~
path-variable-ist i boolean-variable ~ ||
scenario-listJlgh scenario-group ~ JI scenario-definition ~ i variable-mit ~

annotations

Sub-elements of annotations

Appendix II
Requirements engineering activities

This appendix discusses the major set of activities related to Requirements Engineering and how these relate to a goal-oriented approach.

Requirement analysis, and more broadly speaking, requirements engineering (RE), covers multiple intertwined activities to arrive at requirements specification of the intended system. We can suggest the following major activities involved:

· Domain or early requirements analysis

· Eliciting requirements

· Modelling and analyzing requirements

· Documenting and communicating requirements among stakeholders over the system life-cycle

· Agreeing on and validating requirements

· Specification

· Specification analysis

· Verifying, Managing and Evolving requirements

Each of these activities has distinct concerns and may be helped by a goal-oriented and process-oriented URN.

Domain or early requirements analysis: During this phase the existing environment in which the system should be built is studied, and the relevant stakeholders, who are affected by the intended system are identified. This may include the intended users, the clients who commissioned the system, 3rd parties, and stakeholders within the development organisation, international standard bodies, and the like. At this early stage the stakeholders’ interests and how they might be addressed, or compromised, by various system-and-environment alternatives is explored. Each alternative may explore different boundaries between the software-to-be and its environment.

Providing for goals (and to a certain extent, for a representation of stakeholders) within the URN-NFR allows capturing the high-level objectives of pertinent stakeholders. Linking those goals to elements of the requirements specification, design and implementation, aids in better understanding and managing how changes in these high-level objectives affect the system during development, maintenance and evolution. Capturing and linking goals in such a way, also aids in dealing with understanding how software systems either facilitate or hinder co-operation among organisations that wish to create alliances in order to pursue co-operative objectives.

Eliciting requirements: During this phase alternative models for the target system are further elaborated and explored such that stakeholders’ objectives are met. Particular requirements and assumptions on the various organisational actors who would interact with the intended software system, the system, and to a certain extend pertinent high-level components of the system are established. Often the users of systems are not able to articulate their requirements. Describing the tasks, scenarios or use cases for the current and/or the intended system can help users in making their requirements explicit.

Goals and the ability to refine them towards potential alternative system specifications may provide guidance when eliciting requirements. Knowledge-based approaches that capture know-how about achieving goals may be invoked during the elicitation process, to suggest further goal refinements and certain functional, structural and organisational requirements for achieving goals. The synergy between scenarios and goals is discussed in the literature. Linking goals to scenarios facilitates checking if all goals have been met, thus establishing completeness of the requirements specification. The ability to ask "why" for scenarios may provide opportunities to identify new goals, while "how else" questions may yield alternative scenarios for achieving goals.

Modelling and analysis: This is an activity that is found during all phases of requirements engineering and appears to be a core process in requirements engineering. The existing system needs to be modelled in one way or another, while the hypothetical alternative systems need to be modelled as well. Models serve as the basic common interface for the various requirements engineering activities. Models also provide the basis for documentation and evolution.

The ability to provide goals as an explicit modelling construct together with the ability to refine goals, and link them to various requirements, design and implementation related modelling elements, facilitates making clear how these elements produced in each phase relate to elements of previous phases. In addition, linking elements may provide an anchor point for reasoning about design decisions, justifying or refuting them during the development process. Goals and process support thus provide good groundwork for dealing with requirements evolution and change over the life cycle of the system, i.e., requirements management.

Documenting and communicating requirements: This activity deals with capturing the various decisions made during the RE process, together with their underlying rationale and assumption, and with effectively communicating requirements among stakeholders. Part of the documentation effort that becomes increasingly recognised as crucial is requirement management, which is the ability to not only write requirements but also to do so in a form that is readable and traceable over the life cycle.

Similarly, to the modelling and analysis support, the ability to provide for goals and linking them to requirements, design and implementation, provides traceability links from the source of requirements (i.e. stakeholders’ goals) to the requirements specification, design and implementation. Goals would appear in all phases and would be related through refinements links, from high-level organisational goal until low-level design goals. This would also allow for managing change during the development life cycle. Documenting NFRs within a semi-formal or formal framework also improves the ability to communicate pertinent NFRs among the relevant stakeholders, by clustering them together systematically in hierarchical manners, rather than having them spread out informally within text based documentation.

Achieving agreement on and validation of requirements: Since the source for requirements of a system are the various stakeholders affected and/or involved, disagreement among stakeholders may lead to differences in expectations of what the intended system should provide. This problem is compounded when stakeholder have divergent goals that they wish to have achieved by the system. Explicitly describing the stakeholders’ objectives and how they relate to the system’s requirements specification is a necessary precondition for detecting, negotiating and resolving conflicts among stakeholders. Another aspect of “agreement”, besides dealing with conflicts among stakeholders, is the validation of system requirements. This involves the agreement of stakeholders that the documented requirements are in fact meeting their stated objectives.

Capture of goals with the URN allows early detection of apparent conflicting system requirements and may, as a result, help to initiate negotiations for arriving at compromises and agreement. Conflicts among organisational and system related goals may surface during the detailed requirements specification, but also during the design and implementation phase, when particular choices for achieving certain goals exclude the ability for achieving others. Life-cycle support within the URN would then enable identifying, and dealing with such conflicts. Negotiation techniques may focus on trying to identify the most important goals of stakeholders, and ensure that they are met, such that the best trade-offs among alternative receives agreement from all parties involved. Goals may aid in determining how and how well the objectives of stakeholders were in fact met by the requirements specification.

Specification and specification analysis: These are activities where requirements and assumptions are formulated in precise ways, and checked for deficiencies (such as inadequacies, incompleteness, or inconsistencies) and for feasibility in terms of resources required, development costs etc.

Goals in general and NFRs-related goals in particular may aid here in selecting among alternative specification elements, and in justifying such specification decisions. Analysis of specification may then be placed in context of organisational goals that are (or are not) achieved throughout the detailed specification. Furthermore, prioritising goals may allow choosing particular areas within the system, where precise and formal specification is more desirable that other, often less crucial areas, where a semi-formal or perhaps informal specification is sufficient. Often security or performance NFRs play a role when formal methods are needed to prove such properties for the system.

Evolution: The requirements are modified to accommodate corrections, environmental changes, or new objectives. During evolution, both functional behaviour and architecture elements need to accommodate changes in the requirements specification, which often originate from changed organisational objectives.
As already elaborated earlier, having the ability to describe rationales for the existence of elements within the specification, design and implementation, supports tracing how changes in the objectives of the organisation affect the rest of the development. Similarly, how changes in design and implementation artefacts, may affect organisational objectives and their corresponding stakeholders.

A URN should permit the expression of different degrees of formality to reflect the shift in understanding as the users apply refinements to the model during the course of analysis and specification. For example, during early requirements emphasis may be given to relationship among functional and non-functional elements, and stakeholders and their objectives rather than precise definitions of those elements, while during later stages of requirements, more formality would be necessary for providing more precise requirements descriptions.

Appendix III
For Further Study

The order of topics reflects importance.

III.1 Formal description of URN

The issues discussed under this heading relate to the formalization of the URN. How these issues are resolved will influence how the other issues requiring further study are resolved.

The first issue is how the URN-FR aligns with other SG10 notations such as MSC, SDL, and TTCN as well as with OMG’s UML. The convergence of SDL with UML impacts how this issue is handled. One line of research could be to see if the main concepts behind URN-FR could be worked into the UML meta-model. The URN-DTD could by the same means be specified in a way that would conform to OMG's MOF and XMI standards. The core concepts of the URN notation could be aligned with the UML metamodel, and detailed URN elements could be defined according to standard UML extension mechanisms (e.g. profiles). An evolution path towards UML 2.0 would be appropriate.

The second issue is what type of formal data model should be attached to the URN-FR. Whatever data model is selected should be compatible with (translatable into) already standardized data models. One option may be to allow users to pick their preferred data model (ASN.1, ADT, URN-specific, user-defined, etc.). Another would be to extend the current model based on constant global boolean variables. Extensions could include allowing variables to be changed, to be scoped (to a scenario, a component, an instance, etc.), to be of various data types, etc.

The third issue relates to component types. Users could also define component types. The URN-FR contains a number of component types. Other possible sources for component type definitions are SDL, UML-RT, ADL, IN, or ODP component types.

The fourth issue concerns the formal connections between NFR and FR specifications. The URN-FR and URN-NFR notations specified in this standard grew up separately.

The fifth issue is the need to generalize the XML-based mechanism for describing URN-FR definitions and annotation so that it is extensible to NFR elements. Right now, they are tightly coupled to existing performance/goals annotations. In a context where various NFRs are considered, definitions and annotations would need to support all aspects of these NFRs.

The sixth issue is that a URN-FR specification is now contained in a single file. Mechanism to support modularity, extensibility, and separate layout information is needed so that information can be stored in many files but still be linked together. This will allow reuse of parts of one specification in other specifications. It will also allow logical information to be kept separate from information that may change such as layout information.

The seventh issue concerns the handling of instances of components/roles and of sub-maps.

III.2 Validation

The lack of formal ways to validate requirements specifications has meant that some issues are not discovered and resolved until the formal method of implementation has been applied. It has also meant that the release of requirements specifications has been delayed because informal review methods are used to accomplish validation, and these methods are less satisfactory at handling doubts and disagreements.

A functional requirements model created using a formally defined URN can be analysed using a formally defined algorithm. An issue is what properties should the algorithm be looking for? Since requirements engineers can specify alternative courses of action using the URN-FR, they might want to know if a particular branch is ever taken and under what conditions. Determining branch coverage is conceivable assuming that execution semantics have been defined for the notation.

III.3 System data, system states, preconditions, post-conditions

The URN-FR allows requirements engineers to express variations in system responses as a group of scenarios. For example, a call set-up attempt terminates differently depending on whether the destination terminal is already involved in a call or not. The requirements engineer can use the URN-FR to express the alternate courses of action dependent on the destination terminal state using the OR-fork. The OR-fork can be annotated to express the dependency on the destination terminal state. Conceptually the URN-FR model for a call set-up attempt has embedded in it at least two scenarios.

The precondition for success is that the destination terminal is on-hook when the input event (the originator goes off-hook) is received and remains that way until ringing is applied to it as a result of this call attempt. The post-condition is ringing applied to the destination terminal and to the origination terminal.

The precondition for failure is that the destination terminal goes off-hook sometime prior to when this call attempt tests for the destination terminal state. The post-condition is that a busy signal is applied to the origination terminal.

The annotation mechanism in the URN-FR is incapable of handling complex mappings of preconditions to post-conditions associated with input events. A mechanism that is adequate to do so would assist in the generation of system test cases from the URN-FR model. See the section entitled “Requirements test case specification” for more discussion.

For further study is determining the desirability of allowing users to define variables for preconditions and post-conditions along with the ranges of values these variables can hold and allowing users to reference these variables in expressions attached to syntactical units containing conditions such as OR-forks and loops.

Such capability implemented in a tool would allow users to define a set of preconditions and then walk the URN-FR model for the input event to determine if the model successfully generates the post-conditions. If execution semantics were defined for the URN-FR, and if a tool implementing the URN-FR were available, a trace could be generated and used to verify the generation of the post-conditions.

Allowing for the declaration of variables and ranges of values for those variables entails allowing for assignments of values to variables. Values in a set of environmental variables could then be assigned to a set of system variables to form the preconditions for the execution of a scenario. The “execution” of responsibilities could result in system variables being assigned values, and these system variables could be referenced in loop and OR-fork conditions.

III.4 Executability

Executability means that a textual form of the URN-FR model can be compiled and run or that it can be interpreted. The graphical notations for event triggering and termination represent inputs/outputs. The causality flow line represents sequential execution. The notation for branching and loops represent control constructs. The notation for synchronization represents operating system process constructs. What are missing are a formal data model, an expression evaluator, and assignment. If, in order to achieve executability, a responsibility requires some logic, it may be sufficient to replace the responsibility with a stub whose plug-in specifies the required logic and thus avoid defining a programming language for responsibilities. It would seem appropriate to attach assignment statements to responsibilities for transformations of internal system variables, to trigger points for the reception of environmental values, to termination points for the generation of output values, and to input and output ports on stubs.

Execution semantics would have to be defined for the following operations in order of complexity:

· sequence of assignments

· expression evaluation

· concurrency within one scenario (AND-forks)

· synchronization within one scenario (AND-joins)

· multiple, concurrent executions of the same scenario

· concurrent execution of different scenarios

· synchronization between different scenarios (waiting places)

III.5 Performance evaluation

Preliminary performance analysis can in principle be performed by building from the URN model either an analytic performance model or a simulation performance model. Both approaches depend on the existence of execution semantics for URN-FR models. The URN model generally will require amplification in a variety of ways to make a performance analysis possible. For example, some environment elements such as processors and networks must be included in the URN model, and some environment services such as file services must be defined.

The feasibility of doing performance analysis on the kind of preliminary specification defined by an URN-FR model has been demonstrated. However, further research is needed into the creation of different kinds of performance models from the particular data provided by URN-FR models. Some questions are:

· how to include environment services with complex behaviour

· probable interpretations of abstract URN-FR model elements

· efficient simulation

· automatic construction of suitable extended queuing models for analytic modelling

Other kinds of models may, in future, be constructed for other non-functional attributes such as reliability.

III.6 Usability

It is not enough that a toolmaker implement the URN as specified in the formal definition of the notation. There must be clear evidence that the usability of the implementation has been tested by trials conducted within the user community. How to do this is a matter for further study; see the bibliography for a list of references that should help this study.

A requirement for a usability test is a set of use cases for the notations. A use case specification would consist of a set of instructions on how to create a particular URN-FR model and a particular URN-NFR model together with a specification of what the completed models look like and contain.

Another requirement for a usability test is a set of criteria for success so that the implementation can be declared to be usable.

Here is one high-level definition of a process for doing usability testing. Steps 1, 2, 3 and 6 take place within the context of creating this standard. The implementer does step 4. Step 5 is done by an independent agency.

III.7 Minor issues

III.7.1 Matching stubs with plug-ins

A plug-in may have more/fewer inputs/outputs than what is there on the stub and still satisfy the behavioural requirements of the scenario containing the stub. Consider the example of a stub with one input and one output and a plug-in with one input and two outputs. The second output of the plug-in may be to the environment. Or the plug-in has two inputs and one output. The two inputs are joined by an OR-fork, and the scenario preconditions guarantee that the second input does not occur. An assumption here is that the plug-ins satisfy the input to output transformation relations for the stub.

Another interesting example is a stub with two inputs and one output. A plug-in that joins the two inputs with an OR-fork to create a single output matches but then so does a plug-in that joins the two inputs with an AND-join to create a single output. The semantics, however, are very different. At the present time there is no way to specify the stub so that only one of these two plug-ins is allowed to match.

It would appear that some extension is required to stub semantics. A validation mechanism should help to determine whether a plug-in belongs in a particular stub.

III.7.2 Deeply nested maps

Deeply nested maps are the price paid for comprehensibility at any one map level and being able to specify large, complex systems. Given that maps generally contain more than one scenario specification, the user has to be able to navigate through the layers of nested maps in order to trace a particular scenario. A possible solution here is tool supported map navigation with animation driven by execution of the scenario.

III.7.3 Report generation

A goal of this standard is to define URN-FR so that it can be implemented in a tool. URN-FR, however, does not have graphical notations for all its elements. Some annotations, attributes or parameters may not be described visually. This standard must define a report format that presents together both graphical and non-graphical elements.

III.7.4 Graphical layout specification

At issue is whether graphical layout information is written to the output file generated by a tool that implements the notation.

Appendix IV
Guidelines for the maintenance of URN

IV.1 Maintenance of URN

This section describes the terminology and rules for maintenance of Z.URN (including Z.150, Z.151, Z.152, Z.153) agreed at the Study Group 10 meeting in November 2000, and the associated "change request procedure".

Terminology:

a) An error is an internal inconsistency within Z.URN.

b) A textual correction is a change to text or diagrams of Z.URN that corrects clerical or typographical errors.

c) An open item is a concern identified but not resolved. An open item may be identified either by a Change Request, or by agreement of the Study Group or Working Party.

d) A deficiency is an issue identified where the semantics of URN are not (clearly) defined by Z.URN.

e) A clarification is a change to the text or diagrams of Z.URN, which clarifies previous text or diagrams that could be ambiguously understood without the clarification. The clarification should attempt to make Z.URN correspond to the semantics of URN as understood by the Study Group or Working Party.

f) A modification is a change to the text or diagrams of Z.URN that changes the semantics of URN.

g) A deprecated feature is a feature of URN that is to be removed from URN in the next revision of Z.URN.

h) An extension is a new feature, which must not change the semantics of features defined in Z.URN.

IV.2 Rules for maintenance

In the following text references to Z.URN shall be considered to include Annexes, Appendices, and Supplements, as well as any Addendum, or Amendment or Corrigendum or Implementers Guide.

a) When an error or deficiency is detected in Z.URN, it must be corrected or clarified. The correction of an error should imply as small a change as possible. Error corrections and clarifications will be put into the Master list of Changes for Z.URN and come into effect immediately.

b) Except for error corrections and resolution of open items from the previous study period, modifications and extensions should only be considered as the result of a request for change that is supported by a substantial user community. A request for change should be followed by investigation by the Study Group or Working Party in collaboration with representatives of the user group, so that the need and benefit are clearly established and it is certain that an existing feature of URN is unsuitable.

c) Modifications and extensions not resulting from error correction shall be widely publicised and the views of users and toolmakers canvassed before the change is adopted. Unless there are special circumstances requiring such changes to be implemented as soon as possible, such changes will not be recommended until Z.URN.

d) Until a revised Z.URN is published a Master list of Changes to Z.URN will be maintained covering Z.URN and all annexes except the formal definition. Appendices, Addenda, Corrigenda, Implementers’ guides or Supplements will be issued as decided by the Study Group. To ensure effective distribution of the Master list of Changes to Z.URN, it will be published as COM Reports and by appropriate electronic means.

e) For deficiencies in Z.URN the formal definition should be consulted. This may lead to either a clarification or correction that is recorded in the Master list of changes to Z.URN.

IV.3 Change request procedure

The change request procedure is designed to enable URN users from within and outside ITU-T to ask questions about the precise meaning of Z.URN, make suggestions for changes to URN or Z.URN, and to provide feedback on proposed changes to URN. The URN experts' group shall publish proposed changes to URN before they are implemented.

Requests for changes should either use the Change Request Form (see next page) or provide the information listed by the form. The kind of request should be clearly indicated (error correction, clarification, simplification, extension, modification or deprecated feature). It is also important that for any change other than an error correction, the amount of user support for the request is indicated.

The ITU-T Study Group responsible for Z.URN should formally process all change requests at scheduled meetings. For corrections or clarifications the changes may be put on the list of corrections without consulting users. Otherwise a list of open items is compiled. The information should be distributed to users:

· as ITU-T white contribution reports;

· as electronic mail to URN mailing lists (such as ITU-T informal list, and URNnews@URN-forum.org);

· by others means as agreed by the Study Group 10 experts.

Study Group experts should determine the level of support and opposition for each change and evaluate reactions from users. A change will only be put on the accepted list of changes if there is substantial user support and no serious objections to the proposal from more than just a few users. Finally all accepted changes will be incorporated into a revised Z.URN. Users should be aware that until changes have been incorporated and approved by Study Group responsible for Z.URN they are not recommended by ITU-T.

URN Change Request Form

Please fill in the following details

Character of change:
 error correction
 clarification

 simplification
 extension

 modification
 decommission

Short summary of change request

Short justification of the change request

Have you consulted other users
 yes
 no

Is this view shared in your organization
 yes
 no

 11-100
 over 100

How many users do you represent?
q 1-5
q 6-10

q 11-100
q over 100

Your name and address

Please attach further sheets with details if necessary

URN (Z.150) Rapporteur, c/o ITU-T, Place des Nations, CH-1211, Geneva 20, Switzerland. Fax: +41 22 730 5853, e‑mail: URN.rapporteur@itu.int

Bibliography

This section contains references to books, standards, journal papers and conferences papers dealing with requirements engineering and with usability.

Dumas, J.S. & Redish, J.C. (1993). A Practical Guide to Usability Testing. Norwood, USA. Ablex.

Gotel, O. and Finkelstein, A. (1994) "An analysis of the requirements traceability problem". In: First Int. Conference on Requirements Engineering (ICRE'94), Colorado Springs, USA, 94-101.
ISO 9241-11:1998, Ergonomic requirements for office work with visual display terminals (VDTs) – Part 11 Guidance on Usability.

ISO 13407:1999, Human-centred design processes for interactive systems. Technical Committee/Sub-Committee: TC159/SC4. Geneva.

ISO 14598-5:1998 Information Technology Software Product Evaluation – Part 5: Process for Evaluation. Technical Committee/Sub-Committee: JT1/SC7. Geneva.

Nielsen, J. (1993). Usability engineering. San Francisco, USA. Morgan Kaufmann.

Nuseibeh, B. and Easterbrook, S. (2000) "Requirements Engineering: A Roadmap". In: Finkelstein, A. (ed.) The Future of Software Engineering. Special track of the 2nd Int. Conference on Software Engineering (ICSE'2000), ACM Press.

Rubin, J. (1994). Handbook of Usability Testing. How to plan, design, and conduct effective tests. New York, USA. Wiley.

U.S. National Institute of Standards and Technology — NIST (1997), Industry Usability Reporting (IUSR), http://zing.ncsl.nist.gov/iusr/overview.html

U.S. National Institute of Standards and Technology — NIST (1999), Common Industry Format for Usability Test Reports, version 1.1, October 28, 1999. http://zing.ncsl.nist.gov/iusr/documents/cifv1.1b.htm
van Lamsweerde, A. (2000) "Requirements Engineering in the Year 00: A Research Perspective". In: Proc. 22nd Int. Conference on Software Engineering (ICSE'2000). Limerick, June 2000, ACM press.

6. Declare goals and requirements fulfilled

5. Evaluate design prototypes according to goals and requirements

4. Produce design prototypes

3. Specifying organizational and user requirements

2. Understanding and specifying the context

1. Need for user centred system development

� We use here the notion that an NFR can rarely be said to be satisfied. Goal satisficing suggests that the solution used is expected to satisfy within acceptable limits.

Printed in Switzerland, Geneva - 1996
Printed in Switzerland

Geneva, 1998

