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Abstract

Software engineering comprehends several disciplines

devoted to prevent and remedy malfunctions and to war-

rant adequate behaviour. Testing, the subject of this paper,

is a widespread validation approach in industry, but it is

still largely ad hoc, expensive, and unpredictably effective.

Indeed, software testing is a broad term encompassing a va-

riety of activities along the development cycle and beyond,

aimed at different goals. Hence, software testing research

faces a collection of challenges. A consistent roadmap of

the most relevant challenges to be addressed is here pro-

posed. In it, the starting point is constituted by some im-

portant past achievements, while the destination consists of

four identified goals to which research ultimately tends, but

which remain as unreachable as dreams. The routes from

the achievements to the dreams are paved by the outstand-

ing research challenges, which are discussed in the paper

along with interesting ongoing work.

1. Introduction

Testing is an essential activity in software engineering.

In the simplest terms, it amounts to observing the execu-

tion of a software system to validate whether it behaves

as intended and identify potential malfunctions. Testing is

widely used in industry for quality assurance: indeed, by

directly scrutinizing the software in execution, it provides a

realistic feedback of its behavior and as such it remains the

inescapable complement to other analysis techniques.

Beyond the apparent straightforwardness of checking a

sample of runs, however, testing embraces a variety of activ-

ities, techniques and actors, and poses many complex chal-

lenges. Indeed, with the complexity, pervasiveness and crit-

icality of software growing ceaselessly, ensuring that it be-

haves according to the desired levels of quality and depend-

ability becomes more crucial, and increasingly difficult and

expensive. Earlier studies estimated that testing can con-

sume fifty percent, or even more, of the development costs

[3], and a recent detailed survey in the United States [63]

quantifies the high economic impacts of an inadequate soft-

ware testing infrastructure.

Correspondingly, novel research challenges arise, such

as for instance how to conciliate model-based derivation

of test cases with modern dynamically evolving systems,

or how to effectively select and use runtime data collected

from real usage after deployment. These newly emerging

challenges go to augment longstanding open problems, such

as how to qualify and evaluate the effectiveness of testing

criteria, or how to minimize the amount of retesting after

the software is modified.

In the years, the topic has attracted increasing interest

from researchers, as testified by the many specialized events

and workshops, as well as by the growing percentage of

testing papers in software engineering conferences; for in-

stance at the 28th International Conference on Software En-

gineering (ICSE 2006) four out of the twelve sessions in the

research track focused on “Test and Analysis”.

This paper organizes the many outstanding research

challenges for software testing into a consistent roadmap.

The identified destinations are a set of four ultimate and un-

achievable goals called “dreams”. Aspiring to those dreams,

researchers are addressing several challenges, which are

here seen as interesting viable facets of the bigger unsolv-

able problem. The resulting picture is proposed to the soft-

ware testing researchers community as a work-in-progress

fabric to be adapted and expanded.

In Section 2 we discuss the multifaced nature of software

testing and identify a set of six questions underlying any test

approach. In Section 3 we then introduce the structure of

the proposed roadmap. We summarize some more mature

research areas, which constitute the starting point for our

journey in the roadmap, in Section 4. Then in Section 5,

which is the main part of the paper, we overview several

outstanding research challenges and the dreams to which

they tend. Brief concluding remarks in Section 6 close the

paper.
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2. The many faces of software testing

Software testing is a broad term encompassing a wide

spectrum of different activities, from the testing of a small

piece of code by the developer (unit testing), to the cus-

tomer validation of a large information system (acceptance

testing), to the monitoring at run-time of a network-centric

service-oriented application. In the various stages, the test

cases could be devised aiming at different objectives, such

as exposing deviations from user’s requirements, or assess-

ing the conformance to a standard specification, or evaluat-

ing robustness to stressful load conditions or to malicious

inputs, or measuring given attributes, such as performance

or usability, or estimating the operational reliability, and so

on. Besides, the testing activity could be carried on ac-

cording to a controlled formal procedure, requiring rigor-

ous planning and documentation, or rather informally and

ad hoc (exploratory testing).

As a consequence of this variety of aims and scope, a

multiplicity of meanings for the term “software testing”

arises, which has generated many peculiar research chal-

lenges. To organize the latter into a unifying view, in the

rest of this section we attempt a classification of problems

common to the many meanings of software testing. The

first concept to capture would be what is the common de-

nominator, if it exists, between all possible different testing

“faces”. We propose that such a common denominator can

be the very abstract view that, given a piece of software

(whichever its typology, size and domain) testing always

consists of observing a sample of executions, and giving a

verdict over them.

Starting from this very general view, we can then con-

cretize different instances, by distinguishing the specific as-

pects that can characterize the sample of observations:

WHY: why is it that we make the observations? This

question concerns the test objective, e.g.: are we looking

for faults? or, do we need to decide whether the product can

be released? or rather do we need to evaluate the usability

of the User Interface?

HOW: which sample do we observe, and how do we

choose it? This is the problem of test selection, which can

be done ad hoc, at random, or in systematic way by applying

some algorithmic or statistical technique. It has inspired

much research, which is understandable not only because

it is intellectually attractive, but also because how the test

cases are selected -the test criterion- greatly influences test

efficacy.

HOW MUCH: how big of a sample? Dual to the ques-

tion of how do we pick the sample observations (test se-

lection), is that of how many of them do we take (test ad-

equacy, or stopping rule). Coverage analysis or reliability

measures constitute two “classical” approaches to answer

such question.

WHAT: what is it that we execute? Given the (possi-

bly composite) system under test, we can observe its ex-

ecution either taking it as a whole, or focusing only on a

part of it, which can be more or less big (unit test, compo-

nent/subsystem test, integration test), more or less defined:

this aspect gives rise to the various levels of testing, and to

the necessary scaffolding to permit test execution of a part

of a larger system.

WHERE: where do we perform the observation?

Strictly related to what do we execute, is the question

whether this is done in house, in a simulated environment

or in the target final context. This question assumes the

highest relevance when it comes to the testing of embedded

systems.

WHEN: when is it in the product lifecycle that we per-

form the observations? The conventional argument is that

the earliest, the most convenient, since the cost of fault re-

moval increases as the lifecycle proceeds. But, some obser-

vations, in particular those that depend on the surrounding

context, cannot always be anticipated in the laboratory, and

we cannot carry on any meaningful observation until the

system is deployed and in operation.

These questions provide a very simple and intuitive char-

acterization schema of software testing activities, that can

help in organizing the roadmap for future research chal-

lenges.

3. Software testing research roadmap

A roadmap provides directions to reach a desired desti-

nation starting from the “you are here” red dot. The soft-

ware testing research roadmap is organised as follows:

• the “you are here” red dot consists of the most notable
achievements from past research (but note that some of

these efforts are still ongoing);

• the desired destination is depicted in the form of a set
of (four) dreams: we use this term to signify that these

are asymptotic goals at the end of four identified routes

for research progress. They are unreachable by defini-

tion and their value exactly stays in acting as the poles

of attraction for useful, farsighted research;

• in the middle are the challenges faced by current and
future testing research, at more or less mature stage,

and with more or less chances for success. These chal-

lenges constitute the directions to be followed in the

journey towards the dreams, and as such they are the

central, most important part of the roadmap.

The roadmap is illustrated in Figure 1. In it, we have

situated the emerging and ongoing research directions in the

center, with more mature topics -the achievements- on their
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left, and the ultimate goals -the dreams- on their right. Four

horizontal strips depict the identified research routes toward

the dreams, namely:

1. Universal test theory;

2. Test-based modeling;

3. 100% automatic testing;

4. Efficacy-maximized test engineering.

The routes are bottom-up ordered according somehow to

progressive utility: the theory is at the basis of the adopted

models, which in turn are needed for automation, which is

instrumental to cost-effective test engineering.

The challenges horizontally span over six vertical strips

corresponding to the WHY, HOW, HOW MUCH, WHAT,

WHERE, and WHEN questions characterizing software

testing faces (in no specific order).

Software testing research challenges find their place in

this plan, vertically depending on the long term dream, or

dreams, towards which they mainly tend, and horizontally

according to which question, or questions, of the introduced

software testing characterization they mainly center on.

In the remainder of this paper, we will discuss the ele-

ments (achievements, challenges, dreams) of this roadmap.

We will often compare this roadmap with its 2000’s prede-

cessor by Harrold [43], which we will refer henceforth as

FOSE2000.

4. You are here: Achievements

Before outlining the future routes of software testing re-

search, a snapshot is here attempted of some topics which

constitute the body of knowledge in software testing (for a

ready, more detailed guide see also [8]), or in which im-

portant research achievements have been established. In the

roadmap of Figure 1, these are represented on the left side.

The origins of the literature on software testing date back

to the early 70’s (although one can imagine that the very no-

tion of testing was born simultaneously with the first expe-

riences of programming): Hetzel [44] dates the first confer-

ence devoted to program testing to 1972. Testing was con-

ceived like an art, and was exemplified as the “destructive”

process of executing a program with the intent of finding er-

rors, opposed to design which constituted the “constructive”

party. It is of these years Dijkstra’s topmost cited aphorism

about software testing, that it can only show the presence of

faults, but never their absence [25].

The 80’s saw the assumption of testing to the status of an

engineered discipline, and a view change of its goal from

just error discovery to a more comprehensive and positive

view of prevention. Testing is now characterized as a broad

and continuous activity throughout the development process

([44], pg.6), whose aim is the measurement and evaluation

of software attributes and capabilities, and Beizer states:

More than the act of testing, the act of designing tests is

one of the best bug preventers known ([3], pg. 3).

Testing process. Indeed, much research in the early

years has matured into techniques and tools which help

make such “test-design thinking” more systematic and in-

corporate it within the development process. Several test

process models have been proposed for industrial adoption,

among which probably the “V model” is the most popular.

All of its many variants share the distinction of at least the

Unit, Integration and System levels for testing.

More recently, the V model implication of a phased and

formally documented test process has been argued by some

as being inefficient and unnecessarily bureaucratic, and in

contrast more agile processes have been advocated. Con-

cerning testing in particular, a different model gaining at-

tention is test-driven development (TDD)[46], one of the

core extreme programming practices.

The establishment of a suitable process for testing was

listed in FOSE2000 among the fundamental research topics

and indeed this remains an active research today.

Test criteria. Extremely rich is the set of test criteria de-

vised by past research to help the systematic identification

of test cases. Traditionally these have been distinguished

between white-box (a.k.a. structural) and black-box (a.k.a.

functional), depending on whether or not the source code is

exploited in driving the testing. A more refined classifica-

tion can be laid according to the source from which the test

cases are derived [8], and many textbooks and survey arti-

cles (e.g., [89]) exist that provide comprehensive descrip-

tions of existing criteria. Indeed, so many criteria among

which to choose now exist, that the real challenge becomes

the capability to make a justified choice, or rather to under-

stand how they can be most efficiently combined. In recent

years the greatest attention has been turned to model-based

testing, see Section 5.2.

Comparison among test criteria. In parallel with the

investigation of criteria for test selection and for test ade-

quacy, lot of research has addressed the evaluation of the

relative effectiveness of the various test criteria, and espe-

cially of the factors which make one technique better than

another at fault finding. Past studies have included several

analytical comparisons between different techniques (e.g.,

[31, 88]). These studies have permitted to establish a sub-

sumption hierarchy of relative thoroughness between com-

parable criteria, and to understand the factors influencing

the probability of finding faults, focusing more in partic-

ular on comparing partition (i.e., systematic) against ran-

dom testing. “Demonstrating effectiveness of testing tech-

niques” was in fact identified as a fundamental research

challenge in FOSE2000, and still today this objective calls

for further research, whereby the emphasis is now on em-
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pirical assessment.

Object-oriented testing. Indeed, at any given period,

the dominating paradigm of development has catalyzed test-

ing research for adequate approaches, as we further de-

velop in Section 5.5. In the 90’s the focus was on test-

ing of Object-oriented (OO) software. Rejected the myth

that enhanced modularity and reuse brought forward by

OO programming could even prevent the need for testing,

researchers soon realized that not only everything already

learnt about software testing in general also applied to OO

code, but also OO development introduced new risks and

difficulties, hence increasing the need and complexity of

testing [14]. In particular, among the core mechanisms

of OO development, encapsulation can help hide bugs and

makes test harder; inheritance requires extensive retesting

of inherited code; and polymorphism and dynamic bind-

ing call for new coverage models. Besides, appropriate

strategies for effective incremental integration testing are

required to handle the complex spectrum of possible static

and dynamic dependencies between classes.

Component-based testing. In the late 90’s, component-

based (CB) development emerged as the ultimate approach

that would yield rapid software development with fewer

resources. Testing within this paradigm introduced new

challenges, which we would distinguish between technical

and theoretical in kind. On the technical side, components

must be generic enough for being deployed in different plat-

forms and contexts, therefore the component user needs to

retest the component in the assembled system where it is

deployed. But the crucial problem here is to face the lack

of information for analysis and testing of externally devel-

oped components. In fact, while component interfaces are

described according to specific component models, these

do not provide enough information for functional testing.

Therefore research has advocated that appropriate informa-

tion, or even the test cases themselves (as in Built-In Test-

ing), are packaged along with the component for facilitating

testing by the component user, and also that the “contract”

that the components abide to should be made explicit, to

allow for verification.

The testing of component-based systems was also listed

as a fundamental challenge in FOSE2000. For a more recent

survey see [70].

What remains an open evergreen problem is the theoret-

ical side of CB testing: how can we infer interesting prop-

erties of an assembled system, starting from the results of

testing the components in isolation? The theoretical founda-

tions of compositional testing still remain a major research

challenge destined to last, and we discuss some directions

for research in Section 5.1.

Protocol testing. Protocols are the rules that govern the

communication between the components of a distributed

system, and these need to be precisely specified in order to

facilitate interoperability. Protocol testing is aimed at veri-

fying the conformance of protocol implementations against

their specifications. The latter are released by standard or-

ganizations, or by consortia of companies. In certain cases,

also a standard conformance test suite is released.

Pushed by the pressure of enabling communication, re-

search in protocol testing has proceeded along a separate

and, in a sense, privileged trail with respect to software

testing. In fact, thanks to the existence of precise state-

based specifications of desired behaviour, research could

very early develop advanced formal methods and tools for

testing conformance to those established standard specifica-

tions [16].

Since these results were conceived for a restricted well-

defined field of application, they do not readily apply to gen-

eral software testing. However, the same original problem

of ensuring proper interaction between remote components

and services arises today on a broader scale for any mod-

ern software; therefore software testing research could fruit-

fully learn from protocol testing the habit of adopting stan-

dardized formal specifications, which is the trend in mod-

ern service-oriented applications. Viceversa, while early

protocols were simple and easily tractable, today the fo-

cus is shifting to higher levels of communication protocols,

and hence the complexity plague more typical of software

testing starts also to become pressing here. Therefore, the

conceptual separation between protocol testing and general

software testing problems is progressively vanishing.

Reliability testing. Given the ubiquity of software, its

reliability, i.e., the probability of failure-free operation for a

specified period of time in a specified environment, impacts

today any technological product. Reliability testing recog-

nizes that we can never discover the last failure, and hence,

by using the operational profile to drive testing, it tries to

eliminate those failures which would manifest themselves

more frequently: intuitively the tester mimics how the users

will employ the system. Software reliability is usually in-

ferred based on reliability models: different models should

be used, depending on whether the detected faults are re-

moved, in which case the reliability grows, or not, when

reliability is only certified.

Research in software reliability has intersected research

in software testing in many fruitful ways. Models for soft-

ware reliability have been actively studied in the years 80’s

and 90’s [58]. These models are now mature and can be en-

gineered into the test process providing quantitative guid-

ance for how and how much to test. For instance, this was

done by Musa in his Software-Reliability-Engineered Test-

ing (SRET) approach ([58], Chapt.6), and is also advocated

in the Cleanroom development process, which pursues the

application of statistical test approaches to yield certified

reliability measures [69].

Unfortunately, the practice of reliability testing has not
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proceeded at the same speed of theoretical advances in soft-

ware reliability, probably because it is (perceived as) a com-

plex and expensive activity, but also for the inherent dif-

ficulty of identifying the required operational profile [41].

Yet today the demand for reliability and other dependabil-

ity qualities is growing and hence the need arises for prac-

tical approaches to coherently test functional and extra-

functional behaviour of modern software-intensive systems,

as discussed further in Section 5.5. For future challenges in

reliability testing we refer to Lyu’s roadmap [57].

5. The routes

In this section we describe the dreams of software testing

research, and for each of them some relevant challenges to

be addressed to advance the state of the art closer to the

dream itself.

5.1. Dream: Universal test theory

One of the longstanding dreams of software testing re-

search would be to build a sound comprehensive theory

which is useful to backup and nourish test technology. By

asking for a “universal” test theory I mean one coherent and

rigorous framework to which testers can refer to understand

the relative strengths and limitations of existing test tech-

niques, and to be guided in selecting the most adequate one,

or mix thereof, given the present conditions.

Seminal work in software testing theory dates back to

the late 70’s, when the related notions of a “reliable” [45]

or an “ideal” [36] test suite were first introduced. Thanks to

this pioneering work, we have logical arguments to corrob-

orate the quite obvious fact that testing can never be exact

[25]. But such knowledge per se, in addition to the warning

that even though many tests passed, the software can still

be faulty, provides little guidance about what is it then that

we can conclude about the tested software after having ap-

plied a selected technique, or going even further, about how

we could dynamically tune up our testing strategy as we

proceed with accumulating test results, taking into account

what we observe.

The dream would be to have a test machinery which ties

a statement of the goal for testing with the most effective

technique, or combination of techniques, to adopt, along

with the underlying assumptions that we need to make. To-

wards this dream research needs to address several chal-

lenges.

Challenge: Explicit test hypotheses

Ultimately, given that testing is necessarily based on ap-

proximations (remember we started from the statement that

testing amounts to sampling some executions), this uni-

versal theory should also make explicit for each technique

which are its underlying assumptions, or test hypotheses:

firstly formalized in [6], the concept of a test hypothesis

justifies the common and intuitive test practice behind the

selection of every finite test set, by which a sample is taken

as the representative of several possible executions. With

the exception of few formal test approaches, test hypothe-

ses are usually left implicit, while it would be of utmost

importance to make them explicit. In this way, if we per-

form “exhaustive” testing according to the selected test cri-

terion, from successfully completing the testing campaign

we could justifiably conclude that the software is correct

under the stated hypotheses: i.e., we still know that actu-

ally the software could be faulty, but we also know what we

have assumed to be true at the origin and could instead be

false. This notion is similar to the one of a “fault model”,

which is used instead in the realm of protocol testing, where

a test suite is said to provide fault coverage guarantee for a

given fault model.

A summary of test hypotheses behind most common

testing approaches is given for instance by Gaudel [34], who

mentions among others Uniformity Hypothesis for black-

box partition criteria (the software is assumed to behave

uniformly within each test subdomain), and Regularity Hy-

pothesis, using a size function over the tests. Such research

should be extended to cover other criteria and approaches.

The test hypotheses should be modularized by the test ob-

jective: different theories/hypotheses would be necessary

when testing for reliability, when testing for debugging, and

so on.

By making explicit our assumptions, this challenge re-

fines the WHY do we observe some executions.

Challenge: Test effectiveness

To establish a useful theory for testing, we need to as-

sess the effectiveness of existing and novel test criteria. Al-

though as said among the Achievements, several compari-

son studies have been conducted to this purpose, Fose2000

already signalled that additional research was needed to

provide analytical, statistical, or empirical evidence of the

effectiveness of the test-selection criteria in revealing faults,

in order to understand the classes of faults for which the

criteria are useful. These challenges are still alive. In par-

ticular, it is now generally agreed that it is always more ef-

fective to use a combination of techniques, rather than ap-

plying only one, even if judged the most powerful, because

each technique may target different types of fault, and will

suffer from a saturation effect [58].

Several works have contributed to a better understanding

of inherent limitations of different testing approaches, start-

ing from the seminal Hamlet and Taylor’ paper discussing

partition testing and its underlying assumptions [41]. Yet

further work is needed, notably to contextualize such com-

parisons to the complexity of real world testing (for in-

stance, Zhu and He [90] analyse the adequacy of testing

concurrent systems), as well as to refine assumptions at the
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bases of such comparisons, to take into account progresses

in test automation. For example, even the conventional con-

troversy about the relative merits of systematic vs. random

techniques is today revitalized by the arising sophisticated

methods for automating random test generation (which are

discussed in Section 5.3).

This challenge addresses the WHY, HOW and HOW

MUCH of testing, in terms of the faults (which and how

many) we target.

Challenge: Compositional testing

The ever growing complexity of software makes testing

hard, and hinders progress towards any of research dreams,

included test theory. Traditionally, test complexity has been

addressed by the ancient divide et impera strategy, i.e., the

testing of a large complex system is decomposed into the

separate testing of its composing “pieces”. Much past re-

search has addressed techniques and tools for helping in-

cremental testing strategies in organizing and executing pro-

gressively different aggregations of components. For exam-

ple, different strategies have been proposed to generate the

test order which is more efficient in minimizing the need

of stubs and scaffolding, see [18] for a recent comparison.

The problem has become particularly relevant today with

the emergence of the CB development paradigm, as already

discussed in FOSE2000, and even more with the increasing

adoption of dynamic system compositions.

So, we need a chapter of testing theory addressing com-

positional testing: we need to understand how we can re-

use the test results observed in the separate testing of the

individual pieces (be them Units or Components or Subsys-

tems), in particular what conclusions can be inferred about

the system resulting from the composition, and which ad-

ditional test cases must be run on the integration. Several

promising directions of study have been undertaken in dif-

ferent contexts. For instance, Hamlet has proposed a simple

foundational theory for component-based software reliabil-

ity [40], recently extended with the notion of state [39], but

work is still needed to make it generally applicable.

Blundell and coauthors [15] are instead investigating the

application to testing of assume-guarantee reasoning, a ver-

ification technique used to infer global system properties by

checking individual components in isolation. Since to be

able to verify a component individually, we need to make

assumptions about its context, assume-guarantee verifica-

tion checks whether a component guarantees a property as-

suming the context behaves correctly, and then symmetri-

cally the context is checked assuming the component is cor-

rect. The promise of assume-guarantee testing would be

that by observing the test traces of the individual compo-

nents one could infer global behaviours.

The protocol test community is also actively investigat-

ing compositional testing. For example, van der Bijl and

coauthors [81] have formally analysed the parallel composi-

tion of two given communication components, based on the

ioco-test theory [79], which works on Labeled Transition

Systems. In particular, if two components have been sepa-

rately tested and proved to be ioco-correct, is their integra-

tion ioco-correct as well? The authors show that in general

this cannot be concluded, but the answer can be affirma-

tive for components whose inputs are completely specified

[81]. Gotzhein and Khendek [37] instead have considered

the glue code for the integration of communicating compo-

nents, have produced a fault model for it and developed a

procedure to find the test cases for the glue.

This challenge is clearly related to WHAT we test.

Challenge: Empirical body of evidence

Today the importance of experimentation to advance the

maturity of software engineering discipline certainly does

not need to be underlined (Siøberg and coauthors [77] dis-

cuss in depth research challenges faced by empirical meth-

ods). In every topic of software engineering research, em-

pirical studies are essential to evaluate proposed techniques

and practices, to understand how and when they work, and

to improve on them. This is obviously true for testing as

well, in which controlled experimentation is an indispens-

able research methodology [26].

In FOSE2000, Harrold identified in this regard the fol-

lowing needs: controlled experiments to demonstrate tech-

niques; collecting and making publicly available sets of ex-

perimental subjects; and industrial experimentation. All

such needs can be confirmed today, and a more recent re-

view of testing technique experiments [48] sadly concluded

that over half of the existing (testing technique) knowledge

is based on impressions and perceptions and, therefore, de-

void of any formal foundation.

Indeed, by experimenting, we should aim at producing

an empirical body of knowledge which is at the basis for

building and evolving the theory for testing. We need to

examine factors that can be used to early estimate where

faults reside and why, so that test resources can be properly

allocated. And for doing this we need to have meaning-

ful experiments, in terms of scale, of the subjects used, and

of context, which is not always realistic. Banally, for all

three aspects, the barrier is cost: careful empirical studies

on large scale products, within real world contexts (such

as [66]), and possibly replicated by several professional

testers so to attain generally valid results are of course pro-

hibitively expensive. A possible way out to overcome such

barrier could be that of joining the forces of several research

groups, and carrying out distributed and widely replicated

experiment. Roughly the idea would be that of launch-

ing sort of ”Open Experiments” initiative, similarly to how

several Open Source projects have been successfully con-

ducted. Awareness of the need to unite forces is spreading,

and some efforts are already being taken toward building

shared data repositories, as in [26], or distributed experi-
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mental testbeds, such as the PlanetLab [68] collection of

more than 700 machines connected around the world.

This is a fundamental challenge which spans over all six

characterizing questions.

5.2. Dream: Test-based modeling

A great deal of research focuses nowadays on model-

based testing, which we discuss below. The leading idea

is to use models defined in software construction to drive

the testing process, in particular to automatically generate

the test cases. The pragmatic approach that testing research

takes is that of following what is the current trend in mod-

eling: whichever be the notation used, say e.g. UML or

Z, we try to adapt to it a testing technique as effectively as

possible.

But if we are allowed to consider the dream, from the

tester’s viewpoint the ideal situation would be to reverse this

approach with respect to what comes first and what comes

after: instead of taking a model and see how we can best

exploit it for testing, let us consider how we should ide-

ally build the model so that the software can be effectively

tested. Wouldn’t it be nice if developers -fully aware of the

importance and difficulty of thorough model-based testing-

care in advance about testing and derive appropriate models

already enhanced with information instrumental for testing?

This is the motivation why we are here reversing the current

view of “model-based testing” towards the dream of “test-

based modeling”.

Admittedly, this is just a new term for an old idea, as

actually we can find already several research directions that

more or less explicitly have been working toward approach-

ing this dream. On one side, this notion of test-based mod-

eling is closely related to, actually a factor of, the old idea of

“Design-for-testability”, which is primarily concerned with

designing software so as to enhance Controllability (of in-

puts) and Observability (of outputs). But also related can be

seen former approaches to testing based on assertions, and

more recent ones based on Contracts. Assertions in partic-

ular have early been recognized as a useful tool to enhance

testing, since they can verify at runtime the internal state

of a program. Descending from assertions, contracts were

originally introduced at the level of classes for OO software,

and have then been adopted for components: intuitively, a

contract establishes a “legal” agreement between two inter-

acting parties, which is expressed by means of three differ-

ent types of assertions: pre-conditions, post-conditions and

invariants. The step to using such contracts as a reference

for testing is short, and much interesting research is going

on with promising results, e.g., [20, 52].

Challenge: Model-based testing

The often cited trends in this paper of rising levels of

complexity and needs for high quality are driving the cost

of testing higher, to the point where traditional testing prac-

tices become uneconomic, but fortunately at the other end,

the increasing use of models in software development yields

perspective of removing the main barrier to the adoption of

model-based testing, which is (formal) modeling skills.

Model-based testing is actually a sort of Back to the fu-

ture movie for software testing. Indeed, the idea of model-

based testing has been around for decades (Moore [62]

started the research on FSM-based test generation in 1956!),

but it is in the last few years that we have seen a ground-

swell of interest in applying it to real applications (for an

introduction to the different approaches and tools in model-

based testing see, e.g., [80]).

Nonetheless, industrial adoption of model-based testing

remains low and signals of the research-anticipated break-

through are weak. Therefore, beyond theoretical chal-

lenges, researchers are today focusing on how to beat the

barriers to wide adoption. There are important technical

and process-related issues pending.

A widely recognized issue is how can we combine dif-

ferent styles of modeling (such as transition-based, pre/post

condition-based and scenario-based). For instance, we need

to find effective ways to compose state-based and scenario-

based approaches [9, 38]. At Microsoft, where model-based

testing has been championed for various years now, but with

limited follow-up, a multi-paradigmatic approach [38] is

now pursued to favor a wider adoption. The idea is that

models stemming from different paradigms and expressed

in any notation can be seamlessly used within one integrated

environment. The lesson learned is in fact that forcing users

to use a new notation does not work, instead the core of

a model-based testing approach should be agnostic and let

developers use existing programming notations and envi-

ronments [38]. We also need ways to combine model-based

criteria with other approaches; for instance a promising idea

is to use testing over simulations [72] to optimize the test

suite and to boost testing.

Process-related issues concern the need to integrate

model-based testing practice into current software pro-

cesses: perhaps the crucial issues here are the two related

needs for test management of making test models as abstract

as possible, while still retaining the ability to generate exe-

cutable tests on one side; and of keeping traceability from

requirements to tests all along the development process, on

the other. We finally also need industrial-strength tools for

authoring and interactive modeling, that can help reduce the

inadequate education of current testers (or maybe the exces-

sive expertise requirements of proposed techniques).

A special case of model-based testing is conformance

testing, i.e., checking whether the system under test com-

plies with its specification, under some defined relation

(which is strictly related to the test hypotheses previously

discussed). Starting from the 70’s, many algorithms have
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been proposed; a recent extensive overview of current open

challenges is given in Broy and coauthors’ tutorial on

model-based testing for reactive systems [21]. The results

achieved so far are impressive on theoretical grounds, but

many of the proposed methods are hardly applicable to real-

istic systems, even though several tools have been produced

and some of these are applied in specialized domains. A

good overview of tools for model-based conformance test-

ing built on a sound theory is provided by Belinfante and

coauthors [4], who highlight the need to improve and ease

the application of the theory.

This challenge refers to the HOW we select which test

executions to observe, and partly to the HOW MUCH of

them.

Challenge: Anti-model-based testing

Parallel to model-based testing, several efforts are being

devoted towards novel forms of testing which lay directly

on the analysis of program executions, rather than on an

a-priori model. Instead of taking a model, devise from it

a test plan, and hence compare the test results back to the

model, these other approaches collect information from ex-

ecuting the program, either after actively soliciting some ex-

ecution, or passively during operation, and try to synthesize

from these some relevant properties of data or of behaviour.

There can be cases in which the models simply do not exist

or are not accessible, such as for COTS or legacy compo-

nents; other cases in which the global system architecture

is not decided a-priori, but is created and evolves dynam-

ically along the life of a system; or, a model is originally

created, but during development it becomes progressively

less useful since its correspondence with the implementa-

tion is not enforced and is lost. Hence, symmetrically to

model-based testing, we have that (explicitly or implicitly)

a model is derived a posteriori via testing, which we refer to

as anti-model-based testing, as anticipated in [11]. By this

term we refer to all various approaches that by means of

testing, reverse-engineering a model, in the form of an in-

variant over the program variables, or in the form of a state-

machine, or a Labelled Transition System, or a Sequence

diagram, and so on, and then check such a model to detect

whether the program behaves appropriately.

Anti-model-based testing can rely over the great ad-

vances of dynamic program analysis, which is a very active

research discipline today, as discussed by Canfora and Di

Penta [22].

We need to be able to infer system properties by reason-

ing on a limited set of observed traces, or even partial traces,

since we might observe the components that form the sys-

tem. In a recent work, Mariani and Pezzè [59] propose the

BCT technique to derive behaviour models for monitored

COTS components. In their approach the behavioural mod-

els consist of both I/O models, obtained by means of the

well-known Daikon dynamic invariant detector [30], and

interaction models, in the form of Finite State Automata.

Interestingly, these derived models can afterward be used

for model-based testing if and when the components are re-

placed by new ones. A related challenge is to maintain the

dynamically derived models up-to-date: depending on the

type of upgrade to the system, also the model can need to be

refined, as Mariani and Pezzè also observe, outlining some

possible strategies.

This challenge as well refers to the HOW and the HOW

MUCH we observe of test executions.

Challenge: Test oracles

Strictly related to test planning, and specifically to the

problem of how to derive the test cases, is the issue of de-

ciding whether a test outcome is acceptable or not. This

corresponds to the so-called “oracle”, ideally a magical

method that provides the expected outputs for each given

test cases; more realistically, an engine/heuristic that can

emit a pass/fail verdict over the observed test outputs.

Although it is obvious that a test execution for which we

are not able to discriminate between success or failure is

a useless test, and although the criticality of this problem

has been very early raised in literature [85], the oracle prob-

lem has been paid little attention by research and in practice

few alternative solutions still exist to human eyeballing. But

such state of affairs which is already today not satisfactory,

with the increasing complexity and criticality of software

applications is destined to become a blocking obstacle to

reliable test automation (in fact, the test oracles challenge

also overlaps the route toward test automation). Indeed,

the precision and efficiency of oracles greatly affects test-

ing cost/effectiveness: we don’t want that test failures pass

undetected, but on the other side we don’t want either to be

notified of many false-positives, which waste important re-

sources. We need to find more efficient methods for realiz-

ing and automating oracles, modulo the information which

is available.

A critical survey of oracle solutions is provided by Baresi

and Young [1], who conclude by highlighting areas where

research progress is expected, which we borrow and expand

below: Concrete vs. abstract state and behavior: model-

based testing promises to alleviate the oracle problem, since

the same model can act as the oracle; however, for ora-

cles based on abstract descriptions of program behavior, the

problem remains of bridging the gap between the concrete

observed entities and the abstract specified entities; Partial-

ity: plausibly partial oracles are the only viable solution to

oracle automation: the challenge is to find the best trade-

off between precision and cost; Quantification: for test or-

acles implemented via executable specification languages

a compromise between expressiveness and efficiency must

be sought, so far there is no clear optimum balance nor any

fully satisfactory approach to accommodating quantifiers;

Oracles and test case selection: ideally, oracles should be
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orthogonal to test case selection; however, in model-based

testing the available models are often used to derive test

classes and test-class-specific test oracles together.

This challenge refers to the WHY question, in the sense

of what we test against.

5.3. Dream: 100% automatic testing

Far-reaching automation is one of the ways to keep qual-

ity analysis and testing in line with the growing quantity

and complexity of software. Software engineering research

puts large emphasis on automating the production of soft-

ware, with a bulk of modern development tools generating

ever larger and more complex quantities of code with less

effort. The other side of the coin is the large danger that the

methods to assess the quality of the so produced software, in

particular testing methods, cannot keep the pace with such

software construction methods.

A large part of current testing research aims at improv-

ing the degree of attainable automation, either by develop-

ing advanced techniques for generating the test inputs (this

challenge is expanded below), or, beyond test generation,

by finding innovative support procedures to automate the

testing process.

The dream would be a powerful integrated test envi-

ronment which by itself, as a piece of software is com-

pleted and deployed, can automatically take care of possi-

bly instrumenting it and generating or recovering the needed

scaffolding code (drivers, stubs, simulators), generating the

most suitable test cases, executing them and finally issuing

a test report. This idea, although chimeric, has attracted fol-

lowers, for instance in the early DARPA sponsored initiative

for Perpetual Test (also mentioned in FOSE2000) and more

recently in Saff and Ernst’ Continuous Testing approach

[74], which exactly aims to run tests in the background on

the developer’s machine while they program.

Quite promising steps have recently been made towards

realization of this dream for unit testing, which is widely

recognized as an essential phase to ensure software qual-

ity, because by scrutinizing individual units in isolation it

can early detect even subtle and deeply-hidden faults which

would hardly be found in system testing. Unfortunately,

unit testing is often poorly performed or skipped altogether

because quite expensive. We need approaches to make it

feasible within the industrial development processes. A ma-

jor component of unit testing high cost is the huge quan-

tity of extra coding necessary for simulating the environ-

ment where the unit will be run, and for performing the

needed functional checking of the unit outputs. To alleviate

such tasks, highly successful between developers have been

the frameworks belonging to the family of XUnit. Among

these, the most successful is JUnit [47], which permits to

automate the coding of Java test cases and their manage-

ment, and has favored the spread of already mentioned test-

driven development.

However such frameworks do not help with test gener-

ation and environment simulation. We would like to push

automation further, as for example in the Directed Auto-

mated Random Testing (DART) approach [35], which fully

automates unit testing by: automated interface extraction

by static source-code analysis; automated generation of a

random test driver for this interface; and dynamic analysis

of program behaviour during execution of the random test

cases, aimed at automatically generating new test inputs that

can direct the execution along alternative program paths.

Another example is provided by the notion of “software

agitation” [17], an automatic unit test technique supported

by the Agitator commercial tool, which combines different

analyses, such as symbolic execution, constraint solving,

and directed random input generation for generating the in-

put data, together with the already cited Daikon system [30].

Yet another approach is constituted by Microsoft Param-

eterized Unit Tests (PUT) [78], i.e., coded unit tests that

are not fixed (as it happens for those programmed in XUnit

frameworks), but depend on some input parameters. PUTs

can describe abstract behavior in concise way by using sym-

bolic execution techniques and by constraint solving can

find inputs for PUTs that achieve high code coverage.

The three cited examples are certainly not exhaustive

of the quite active and fruitful stage that test automation

is currently enjoying. The common underlying trend that

emerges is the effort to combine and efficiently engineering

advances coming from different types of analysis, and this,

together with the exponential increase of computational re-

sources available, could be the really winning direction to-

wards the 100% automation dream.

Challenge: Test input generation

Research in automatic generation of test inputs has al-

ways been very active and currently so many advanced

technologies are under investigation that even devoting the

whole paper just to this topic would not yield sufficient

space to adequately cover it. What is dismaying is that

until nowadays all such effort has produced limited im-

pact in industry, where the test generation activity remains

largely manual (as reported for instance at ISSTA 2002

Panel[7]). But finally the combination of theoretical pro-

gresses in the underlying technologies, such as symbolic

execution, model checking, theorem proving, static and

dynamic analyses, with technology advances in modeling

industry-strength standards and with available computa-

tional power seems to make this objective closer and has

revitalized researchers’ faith.

The most promising results are announced to come from

three directions, and especially from their mutual conver-

gence: the already widely discussed model-based approach,

“clever” ways to apply random generation, and a wealthy
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variety of search-based techniques used for both white-box

and black-box test generation.

Concerning model-based test generation, clearly re-

search is posing great expectations in this direction since

the emphasis on using (formal) models to guide testing re-

sides exactly in the potential for automated derivation of

test cases. References to ongoing work have already been

provided in speaking of model-based testing challenges.

Many of the existing tools are state-based and do not deal

with input data. Research is needed to understand how

we can incorporate data models within more traditional

state-based approaches; one direction could be the intro-

duction of symbolism over the state-based models, which

could avoid the state-space explosion during test genera-

tion, and would preserve the information present in data

definitions and constraints for use during the test selection

process. For example, such an approach is being realized

by the Symbolic Transition Systems approach [33], which

augment transition systems with an explicit notion of data

and data-dependent control flow. Also we need to increase

the efficiency and potential of automated test generation

by reusing within model-based approaches latest advances

in theorem proving, model-checking and constraint satis-

faction techniques. In particular, dating back to the mid

70’s, symbolic execution might be considered the most tra-

ditional approach to automated test data generation. Such

approach, which has been put aside for some time, because

of the many underlying difficulties, is today revitalized by

the resurgence of strongly-typed languages and by the de-

velopment of more powerful constraint solvers; Lee and

coauthors [53] survey most promising developments.

Concerning random test generation, this used to be con-

sidered a shallow approach, with respect to systematic tech-

niques, deemed to be more comprehensive and capable to

find important corner cases that would be likely to be over-

looked by random techniques. However, previous stud-

ies mainly compared strawman implementations of random

testing to sophisticated implementations of systematic tech-

niques. Today, several researchers are proposing clever im-

plementations of random testing that appear to outperform

systematic test generation, if not else in terms of feasibility.

The underlying idea of such approaches is that the random

generation is improved dynamically, by exploiting feedback

information collected as the tests are executed. For instance,

Sen and coauthors have built on top of the cited DART ap-

proach, a notion of “concolic testing” [75], which is the

combination of concrete (random) testing with symbolic ex-

ecution. The concrete and symbolic executions are run in

parallel and “help” each other. Instead, Pacheco and coau-

thors [67] randomly select a test case, execute it and check

it against a set of contracts and filters.

The most promising direction then is to figure out effi-

cient ways to combine the respective strengths of systematic

(model-based) and random testing.

Finally, concerning search-based test generation, this

consists of exploring the space of solutions (the sought test

cases) for a selected test criterion, by using metaheuris-

tic techniques that direct the search towards the potentially

most promising areas of the input space. The attractive fea-

ture is that this approach appears to be fruitfully applicable

to an unlimited range of problems; a recent survey is pro-

vided by McMinn [60]. Search-based test data generation is

just one possible application of search-based software engi-

neering [42].

This challenge addresses the HOW the observations are

generated.

Challenge: Domain-specific test approaches

Domain-specific languages emerge today as an efficient

solution towards allowing experts within a domain to ex-

press abstract specifications closer to their exigencies of ex-

pression, and which can then be automatically translated

into optimized implementations. Testing as well can ben-

efit from restricting the scope of application to the needs of

a specific domain.

Research should address how domain knowledge can

improve the testing process. We need to extend domain-

specific approaches to the testing stage, and in particular to

find domain-specific methods and tools to push test automa-

tion. Domain-specific testing could use specialized kinds

of approaches, processes and tools. These in turn need

to make use of customizable modeling and transformation

tools, hence the challenge also overlaps the test-based mod-

eling route.

Test techniques for specific domains have been investi-

gated, for instance for databases, for GUI usability, for web

applications, for avionics, for telecommunication systems;

but few works having as their very focus the development of

methodologies for exploiting domain-knowledge exist. One

interesting pioneering work is due to Reyes and Richardson

[71], who early developed a framework, called Siddhartha,

for developing domain-specific test drivers. Siddhartha im-

plemented an example-driven, iterative, method for devel-

oping domain-specific translators from the Test Specifica-

tions to a Domain-specific driver. It however required the

tester input in the form of a general, example manually-

coded driver. More recently, Sinha and Smidts have devel-

oped the HOTTest technique [76], which refers to a strongly

typed domain-specific language to model the system under

test and demonstrates how this permits to automatically ex-

tract and embed domain specific requirements into the test

models. I believe such research efforts show promising re-

sults in demonstrating the efficiency improvements of spe-

cific domain test approaches, and hopefully further research

will follow.

This challenge refers to the kind of application being ob-

served, i.e., the WHAT question.
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Challenge: On-line testing

In parallel with the traditional view of testing as an ac-

tivity carried on before release to check whether a program

will behave as expected, a new concept of testing is emerg-

ing around the idea of monitoring a system’s behaviour

in real life operation, using dynamic analysis and self-test

techniques.

Actually runtime monitoring has been in use for over

30 years, but a renewed interest arises because of the in-

creasing complexity and ubiquitous nature of software sys-

tems. Terminology is not uniform, and different terms such

as monitoring, runtime testing, on-line testing are used in

the literature (Delgado and coauthors [24] present a recent

taxonomy). All approaches share the goal to observe the

software behavior in the field, with the aims of determining

whether it complies with its intended behavior, detecting

malfunctions or also performance problems. In some cases

an on-line recovery is attempted, in other cases the analysis

is conducted off-line in order to produce a profile or to get

reliability figures.

One distinguishing feature of on-line testing is that we

do not need to devise a test suite to stimulate the system un-

der test, since we limit ourselves to passively observe what

happens. In fact, in communication protocol testing mon-

itoring approaches are called passive testing. Message ex-

change along the real channels is traced, and the observed

patterns are compared to the specified ones.

In principle, the inherent “passivity” of any on-line test-

ing approaches makes them less powerful than proactive ap-

proaches. All approaches can be reconducted to verifying

the observed execution traces against assertions which ex-

press desired properties, or against specification invariants.

For instance, Bayse and coauthors [2] have developed a tool

that support passive testing against invariants derived from

FSMs; they distinguish between simple invariants and obli-

gation invariants. More in general, on-line testing effective-

ness will depend on the identification of the reference asser-

tions. Also, the collection of traces could degrade system

performance. We need to understand which are the good

places and the right timing for probing the system.

In the midland between classical testing before deploy-

ment, and passive monitoring in the field, we could also

conceive proactive testing in the field, i.e., actively stimu-

lating the application after deployment, either when some

events happen, for instance a component is substituted, or

at scheduled intervals. A similar idea is exploited in the so-

called “audition” framework [10], proposing an admission

testing stage for web services.

Another issue concerns the ability to carry on the testing

in the field, especially for embedded applications that must

be deployed in a resource constrained environment, where

the overhead required by testing instrumentation could not

be feasible. An interesting new research direction has been

taken by Kapfhammer et al. [49], who are developing the

Juggernaut tool for testing Java applications within a con-

strained environment. Their original idea is to exploit exe-

cution information, so far used to tune the test suite, also for

adapting the test environment (they use in particular adap-

tive code unloading to reduce memory requirements). Such

idea is attractive and can certainly find many other useful

applications.

This challenge concerns mainly the WHERE and WHEN

to observe the test executions, with particular attention to

dynamically evolving systems.

5.4. Dream: Efficacy-maximized test engi-
neering

The ultimate goal of software testing research, today as

it was in FOSE2000, remains that of cost-effectively engi-

neering “practical testing methods, tools and processes for

development of high quality software” [43].

All theoretical, technical and organization issues sur-

veyed so far should be reconciled into a viable test process

yielding the maximum efficiency and effectiveness (both

summarized by the term efficacy). Besides, the inherent

technicalities and sophistication of advanced solutions pro-

posed by researchers should be hidden behind easy to use

integrated environments. This vision makes such a chal-

lenging endeavor that we qualify it as the highest ultimate

dream of software testing research.

The main obstacle to such a dream, that undermines all

research challenges mentioned so far, is the growing com-

plexity of modern systems. This complexity growth af-

fects not only the system itself, but also the environments

in which these systems are deployed, strongly characterized

by variability and dynamicity.

Strategies to align the development process so to max-

imize testing effectiveness belong to design for testability.

We have already mentioned testability in speaking of mod-

els and precode artifacts which can be enhanced so to facil-

itate testing. However, testability is a broader concept than

just how the system is modelled, it also involves character-

istics of the implementation, as well as of the test technique

itself and its support environment. Indeed, design for testa-

bility has been attributed by practitioners to be the primary

cost driver in testing [5].

Efficacy-maximized test engineering passes through

many challenges, some of which are discussed here below.

Challenge: Controlling evolution

Most testing activities carried on in industry involve re-

testing already tested code to ascertain that changes either in

the program or in the context did not adversely affect system

correctness. As pointed out in FOSE2000, because of the

high cost of regression testing, we need effective techniques

to reduce the amount of retesting, to prioritize regression

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00  © 2007

jean-pierre corriveau


jean-pierre corriveau


jean-pierre corriveau


jean-pierre corriveau


jean-pierre corriveau


jean-pierre corriveau


jean-pierre corriveau


jean-pierre corriveau




test cases and to automate the re-execution of the test cases.

In general, we need strategies to scale up regression test-

ing to large composite systems. We have already discussed

theoretical issues behind compositional testing (see Section

5.1); we also need practical approaches to regression test-

ing global system properties as some system parts are mod-

ified. For instance, given a component which is originally

designed with an architecture, we need to understand how

to test whether this piece of software evolves in line with

its architecture. Such problem is also central to testing of

product families.

A related idea is test factoring, which consists into con-

verting a long-running system test into a collection of many

small unit tests. These unit tests can exercise a small part of

the system in exactly the same way that the system testing

did, but being more focused they can pinpoint failures in

specific selected parts of the system. Test factoring is today

actively investigated [73, 65, 28] since it promises order-of-

magnitude improvements in execution of regression tests.

A common basic assumption of many existing ap-

proaches to regression testing is that a software artifact

can be assumed for reference, for instance the requirements

specification, or the software architecture. For modern soft-

ware applications which continuously evolve, often dynam-

ically in ways we cannot know in advance, neither such pre-

code artifacts nor even the source code itself might be avail-

able, and the testing paradigm is shifting from regression

testing towards one of continuous testing at runtime.

Hence, a crucial issue concerns how to maintain control

of the quality of software which evolves dynamically in the

field. We need to understand what is the meaning of re-

gression testing in such an evolutive context, and how we

can modify and extend the basic idea of selective regression

testing, i.e., how often do we need to check the execution

traces? how can we compare the traces taken in different

temporal intervals and understand if the evolution did not

bring any malfunctions?

This challenge concerns broadly the WHAT, WHERE

and WHEN do we replay some executions following soft-

ware evolution.

Challenge: Leveraging user population and resources

We have already mentioned the emerging trend of con-

tinuous validation after deployment, by means of on-line

testing approaches (see Section 5.3), when traditional off-

line testing techniques become ineffective. Since software

intensive systems can behave very differently in varying en-

vironments and configurations, we need practical ways to

scale up on-line testing to cover the broad spectrum of pos-

sible behaviors. One rising approach to address this chal-

lenge is to augment in-house quality assurance activities

by using data dynamically collected from the field. This is

promising in that it can help to reveal real usage spectra and

expose real problems on which to focus the testing activi-

ties and on which testing is lacking. For instance, by giving

each user a different default configuration, the user base can

be leveraged to more quickly expose configurations con-

flicts or problems, such as in [87]. And fielded profiles

can also be used for improving a given test suite, such as

in [56, 64, 29]. Although also some commercial initiatives

start to appear, such as Microsoft’s Customer Experience

Improvement Program [61], these efforts are still in their

infancy, and one important research challenge left open is

how to define efficient and effective techniques to unleash

the potential represented by a large number of users, run-

ning similar applications, on interconnected machines. This

high-level challenge involves several more specific chal-

lenges, among which:

- How can we collect runtime data from programs run-

ning in the field without imposing too much overhead?

- How can we store and mine the collected (potentially

huge) amount of raw data so to effectively extract relevant

information?

- How can we effectively use the collected data for aug-

menting and improving in-house testing and maintenance

activities?

This challenge proposes that the users instantiate the

WHERE and WHEN to scrutinize software runs.

Challenge: Testing patterns

We have already mentioned under the dream of a useful

test theory, that we need to understand the relative effec-

tiveness of test techniques in the types of faults they tar-

get. To engineering the test process, we need to collect ev-

idences for such information to be able to find the most ef-

fective pattern for testing a system. This is routinely done,

when for instance functional testing based on the require-

ments is combined with measures of code coverage ade-

quacy. Another recurring recommendation is to combine

operational testing with specific verification of special case

inputs. However, such practices need to be backed up by

a systematic effort to extract and organize recurring and

proved effective solutions to testing problems into a cata-

logue of test patterns, similarly to what is now a well estab-

lished scheme for design approaches.

Patterns offer well proven solutions to recurring prob-

lems, or, in other words, they make explicit and document

problem-solving expertise. As testing is recognized as ex-

pensive and effort-prone, making explicit which are suc-

cessful procedures is highly desirable.

A related effort is Vegas and coauthors characterization

schema of how test techniques are selected [82]. They sur-

veyed the type of knowledge that practitioners use to choose

the testing techniques for a software project and have pro-

duced a formalized list of the relevant parameters. How-

ever, organizations that use the proposed schema might not

dispose of all required information, hence more recently

they are also investigating the sources of information, and
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how these sources are to be used [82]. Similar studies are

needed to formalize and document successful practices for

any other testing-related activity.

In fact this challenge spans over all six questions.

Challenge: Understanding the costs of testing

Since testing does not take place in abstract, but within

the concrete world, with its risks, and safety as well as eco-

nomic constraints, ultimately we want to be able to link the

testing process and techniques with their cost.

Each and every research article on software testing starts

from claiming that testing is a very expensive activity, but

we lack up-to-date and reliable references; it is somehow

dismaying that still today references to quantify the high

cost of testing cite textbooks dating back to more than

twenty years ago. This might admittedly be due to the

sensibility of failure data, which are company confidential.

Nonetheless, to usefully transfer research advances to prac-

tice we need to be able to quantify direct and indirect costs

of software testing techniques.

Unfortunately, most research in software testing takes

a value-neutral position, as if every fault found is equally

important or has the same cost, but this is of course not

true; we need ways to incorporate economic value into the

testing process, to help test managers apply their judge-

ment and select the most appropriate approaches. Boehm

and colleagues have introduced the value-based software

engineering (VBSE) paradigm [12], in which quantitative

frameworks to support software managers decisions are

sought that enhance the value of delivered software sys-

tems. In particular, various aspects of software quality as-

surance have been investigated including value-based and

risk-based testing, e.g., [13]. VBSE concerns mainly the

management of processes, for instance, w.r.t. testing, dif-

ferent types of stakeholder utility functions are considered

to trade-off time of delivery vs. market value. We would

also need to be able to incorporate estimation functions of

the cost/effectiveness ratio of available test techniques. The

key question is: given a fixed testing budget, how should it

be employed most effectively?

This challenge clearly addresses mainly the HOW and

HOW MUCH of testing.

Challenge: Education of software testers

Finally, for software testing as for any other software

engineering activity, a crucial resource remains the human

factor. Beyond the availability of advanced techniques and

tools and of effective processes, the testers’ skill, commit-

ment and motivation can make a big difference between a

successful test process or an ineffective one. Research on

its side should strive for producing engineered effective so-

lutions that are easily integrated into development and do

not require deep technical expertise. But we also need to

work in parallel for empowering the human potential. This

is done by both education and motivation. Testers should

be educated to understand the basic notions of testing and

the limitations and the possibilities offered by the available

techniques. While it is research that can advance the state of

the art, it is only by awareness and adoption of those results

by the next-coming generation of testers that we can also ad-

vance the state of practice. Education must be continuing,

to keep the pace with the advances in testing technology.

Education by itself poses several challenges, as discussed

in [54].

It is evident that education must cover all characterizing

aspects of testing.

5.5. Transversal challenges

By transversal challenges we identify some research

trends that go through all the four identified dreams. In par-

ticular we discuss here two transversal challenges.

Challenge: Testing within the emerging development

paradigm

The history of software engineering research is phased

by the subsequent emerging of novel paradigms of devel-

opment, which promise to release higher quality and less

costly software. Today, the fashion is Service-oriented

Computing and many interesting challenges emerge for the

testing of service-oriented applications.

Several similarities exist with CB systems, and as in CB

testing, services can be tested from different perspectives,

depending on who is the involved stakeholder [23]. The

service developer, who implements a service, the service

provider, who deploys and makes it available, and the ser-

vice integrator, who composes services possibly made avail-

able by others, access different kinds of information and

have different testing needs. Except for the service devel-

oper, black-box test techniques need to be applied, because

design and implementation details of services are not avail-

able.

One peculiar aspect of services is that they are forced

to make available a standard description in computer pro-

cessable format to enable search and discovery. So, given

that this is often the only information available for analy-

sis, research is investigating how to exploit this compulsory

specification for testing purposes. Currently, this descrip-

tion only includes the service interface in terms of the signa-

ture of methods provided (for instance the WSDL definition

for Web Services). Clearly method signatures provide poor

expressiveness for testing purposes, and in fact researchers

aim at enriching such description to allow for more mean-

ingful testing.

Towards promoting interoperability, a first concern is

to ensure that the services comply with established stan-

dardized protocols for message exchange. For instance,

guidelines have been released by the WS-I (Web Services-

Interoperability) organization, along with testing tools to
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monitor and check that the message exchanged comply with

the guidelines. Such an approach is certainly necessary

to assure interoperability, but not sufficient, in particular it

does not test dynamic behaviour and is not concerned with

the verification of extra-functional properties.

Conceptually, off-line and on-line testing of services can

be distinguished. With regard to off-line testing, the two

approaches that emerge are model-based and mutation. For

model-based testing of services, the general idea is to as-

sume that the service developers and/or integrators make

available models suitable for the automatic derivation of

test cases. We need then to adapt the wealth of existing

approaches to model-based testing to the context and con-

straints of services, and several proposals are being made,

e.g. [55, 32, 50]. Mutation strategies adapted to services

instead foresee the mutation of the input messages, as pre-

sented in [23].

On-line testing (discussed in 5.3), assumes a special im-

portance for testing of services, since monitoring the real-

world execution is the only way to observe the applica-

tion behaviour. A service-oriented application generally re-

sults from the integration of several services, controlled and

owned by different organizations. As a result, the control of

an application is distributed, and the services composing it

discover each other at run time and can change without prior

notice, so nobody can predict the receiver or the provider of

a given service. Monitoring of services introduces many

subtle problems, relative to performance degradation, pro-

duction of undesired side effects and cost. We need to un-

derstand on one side how we can observe the execution in

a distributed network without (too) negatively affecting the

system performance; on the other, we need means to reason

at the abstract level of service composition and understand

what and when we need to check.

Challenge: Coherent testing of functional and extra-

functional properties

By far the bulk of software testing literature addresses

functionality testing, i.e., checking that the observed be-

haviour complies with the logic of the specifications. But

this is not enough to guarantee the real usefulness and ad-

equacy to purpose of the tested software: as importantly,

well-behaving software must fulfill extra-functional prop-

erties, depending on the specific application domain. No-

tably, while conventional functionality testing does not pro-

vide for any notion of time, many features of the exhibited

behaviour of a piece of software can depend on when the

results are produced, or on how long they take to be pro-

duced. Similarly, while functionality testing does not tackle

resource usage and workloads, in specific domains, such as

telecommunications, performance issue account for a major

fault category [84].

We would like to have test approaches to be applied at

development time that could provide feedback as early as

possible. On-going research that can pave the way is not

much, and adopted approaches can be classified into model-

based and genetic. Among the former, we need effective

ways to enhance models with desired extra-functional con-

straints. In this direction, researchers from Aalborg Univer-

sity [51] have been long investigating the extension of exist-

ing conformance testing theory to timed setting, producing

a tool that can generate test cases from Timed Automata and

execute them monitoring the produced traces.

Model-based approaches are certainly an important in-

strument also for real-time embedded systems, but they will

probably take a long course before being akin to large-scale

application, also in view of the many technical issues that

need to be modelled, such as environment dependency, dis-

tribution, resource constraints. It is thus advisable to look

in parallel for innovative approaches: for instance, Wegener

and Grochtmann [83] have proposed the use of evolutionary

algorithms. They reduce real-time testing to the optimiza-

tion problem of finding the best-case and the worst-case val-

ues of execution time. Such idea could be extended to other

extra-functional properties, by appropriately translating the

constraint into an optimization problem.

6. Conclusions

We believe that software testing is a lively, difficult and

richly articulated research discipline, and hope that this pa-

per has provided a useful overview of current and future

challenges. Covering into one article all ongoing and fore-

seen research directions is impossible; we have privileged

broadness against depth, and the contribution of this pa-

per should be seen rather as an attempt to depict a compre-

hensive and extensible roadmap, in which any current and

future research challenge for software testing can find its

place. The picture which emerges must be taken as a work-

in-progress fabric that the community may want to adapt

and expand.

It is obvious that those goals in such roadmap which have

been settled as the dreams are destined to remain so. How-

ever, in a research roadmap the real thing is not the label

on the finish, but the pathways along the traced routes. So,

what actually is important that researchers focus on to sign

progress are those called the challenges, and certainly the

roadmap provides plenty of them, some at a more mature

stage, other just beginning to appear.

What is assured is that software testing researchers do

not risk to remain without their job. Software testing is and

will continue to be a fundamental activity of software engi-

neering: notwithstanding the revolutionary advances in the

way it is built and employed (or perhaps exactly because

of), the software will always need to be eventually tried and

monitored. And as extensively discussed in this paper, for

sure we will need to make the process of testing more ef-
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fective, predictable and effortless (which coincides with the

ultimate of the four testing dreams).

Unfortunately, progress may be slowed down by frag-

mentation of software testing researchers into several dis-

joint communities: for instance, different events have been

established by the communities as the loci where to meet

to discuss the latest results, such as the ACM International

Symposium on Software Testing and Analysis (ISSTA), or

the IFIP International Conference on the Testing of Com-

municating Systems (TESTCOM) events, just to cite a cou-

ple, showing little overlap between PC members, participa-

tion, mutual knowledge and citations (which is a pity). In

addition to scientific challenges faced by testing research,

which have been discussed in Section 5, then we would like

to also rise a challenge, which is opportunistic: the time has

come that the different existing test research communities

eventually converge and reconcile the respective achieve-

ments and efforts, since this would certainly be of the great-

est benefit to advance the state of art1.

A necessary concluding remark concerns the many fruit-

ful relations between software testing and other research

areas. By focussing on the specific problems of software

testing, we have in fact overlooked many interesting op-

portunities arising at the border between testing and other

disciplines. Some have been just touched upon in this pa-

per, for instance model-checking techniques, see [27] (e.g.,

to drive model-based testing), or the use of search-based

approaches, see [42], for test input generation, or the appli-

cation of test techniques to assess performance attributes,

see [86]. We believe that really many are the openings that

may arise from a more holistic approach to software testing

research, and in [19] readers can certainly find and appre-

ciate many new interesting synergies spanning across the

research disciplines of software engineering.
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