
1

Acceptance testing
 An introduction

Alessandro Marchetto

Fondazione Bruno Kessler - IRST

Outline

•  Introduction
•  Acceptance and Unit testing
•  Table-based testing and Fit/Fitnesse
•  Fit/Fitnesse: An Example

2

•  One of the practical methods commonly used to detect
the presence of errors (failures) in a computer program
is to test it for a set of inputs.

Our program
The output
is correct? I1, I2, I3,

…, In, …

Expected results
 = ?
Obtained results “Inputs”

Testing

Test last

New functionality Understand

Implement functionality

Write tests

Run all tests

Result? Rework
fail

pass

Next functionality

The most conventional approach…

3

Test first
“Extreme programming” (XP) champions the use of tests as a development tool …

New functionality Understand

Add a single test

Add code for the test

Run all test

Result? Rework

Functionality
complete?

fail
pass No

Next functionality
Yes

Add the skeleton of the
class and methods

(without body)

Test-first with Junit

Rework

Refactoring
“improving the structure”

Add a testcase

Run test

Run test

4

Test first advantages

•  Each method has associated a test-case
•  the confidence of our code increases …

•  It simplifies:
•  refactoring
•  restructuring
•  maintenance
•  the introduction of new functionalities

•  Test first helps in writing the documentation
•  test cases are good “use samples”

•  Unit testing – this is basically testing of a single function,
procedure, class.

•  Integration testing – this checks that units tested in
isolation work properly when put togheter.

•  System testing – here the emphasis is to ensure that the
whole system can cope with real data, monitor system
performance, test the system’s error handling and
recovery routines.

•  Acceptance testing – this check that the overall system
is functioning as required

Test levels

5

Business
Logic

GUI

Web UI

Persistence
Layer

Jemmy/Abbot/JFCUnit/…

HttpUnit/Canoo/Selenium

Junit/SQLUnit/XMLUnit

FIT/Fitnesse (High level)

Junit (Low level)

Cactus

Perfomance and
Load Testing

JMeter/JUnitPerf

The tools picture

Outline

•  Introduction
•  Acceptance and Unit testing
•  Table-based testing and Fit/Fitnesse
•  Fit/Fitnesse: An Example

6

 Acceptance Testing

•  Acceptance Tests are specified by the customer and
analyst to test that the overall system is functioning as
required (Do developers build the right system?).

•  Acceptance tests typically test the entire system, or
some large chunk of it.

•  When all the acceptance tests pass for a given user
story (or use case, or textual requirement), that story
is considered complete.

•  An acceptance test could consist of a script of user
interface actions and expected results that a human
can run.

•  Ideally acceptance tests should be automated, either
using the unit testing framework, or a separate
acceptance testing framework.

Unit Testing

•  Unit Tests are tests written by the developers to test
functionality as they write it.

•  Each unit test typically tests only a single class, or a
small cluster of classes.

•  Unit tests are typically written using a unit testing
framework, such as JUnit (automatic unit tests).

•  Target errors not found by Unit testing:
 - Requirements are mis-interpreted by developer.
 - Modules do not integrate with each other

7

Acceptance vs. Unit Testing

The motivation of unit testing is finding faults. The motivation of acceptance testing is demonstrating
working functionalities.

Written and executed during the development. Written before the development and executed after.

Written using a unit testing framework. Written using an acceptance testing framework (also
unit testing framework).

Starting point: new capability (to add a new
module/function or class/method). …. (the unit)

Starting point: User stories, User needs, Use Cases,
Textual Requirements, … (the whole system)

Used to find faults in individual modules or units
(individual programs, functions, procedures, web
pages, menus, classes, …) of source code. Used for
documentation (low level)

Used to verify that the implementation is complete and
correct. Used for Integration, System, and regression
testing. Used to indicate the progress in the
development phase. (Usually as %). Used as a
contract. Used for documentation (high level)

(extreme programming) When unit tests pass, write
another test that fails.

(extreme programming) When acceptance tests pass,
stop coding. The job is done.

Written by developers. Written by Customer and Analyst.

Unit Tests Acceptance Tests

In summary:

Traditional approaches to acceptance testing

•  Manual Acceptance testing.
User exercises the system
manually using his creativity.

•  Acceptance testing with “GUI
Test Drivers” (at the GUI
level). These tools help the
developer to do functional/
acceptance testing through a
user interface such as a native
GUI or web interface. “Capture
and Replay” Tools capture
events (e.g. mouse, keyboard)
in modifiable script.

Disadvantages:
expensive, error prone,

not repeatable, …

Disavantages:
Tests are brittle, i.e., have
to be re-captured if the
GUI changes.

8

Outline

•  Introduction
•  Acceptance and Unit testing
•  Table-based testing and Fit/Fitnesse
•  Fit/Fitnesse: An Example

Table-based approach for acceptance Testing

•  Starting from a user story
(or use case or textual
requirement), the
customer enters in a
table (spreadsheet
application, html, Word,
…) the expectations of
the program’s behavior.

•  At this point tables can
be used as oracle. The
customer can manually
insert inputs in the
System and compare
outputs with expected
results.

Pro: help to clarify requirements, used in System testing, …
Cons: expensive, error prone, …

inputs
output

9

What is Fit?

•  The Framework for Integrated Test (Fit) is the most
well-known implementation (open source framework)
of the table-based acceptance testing approach.

•  Fit lets customers and analysts write “executable”
acceptance tests by means of tables written using
simple HTML.

•  Developers write “fixtures” to link the test cases with
the actual system itself.

•  Fit compares these test cases, written using HTML
tables, with actual values, returned by the system, and
highlights the results with colors and annotations.

The picture

User Story

Fit Table

Fixture

Customer/
Analyst (i, o)

System

i
o’

Developer

o ≠ o’

Test Runner

Output Table

O = expected output
O’ = actual output

10

Fixture

Fit provides a set of fixtures:
•  Column fixture for testing calculations.
•  Action fixture for testing the user interfaces or

workflow.
•  Row fixture for validating a collection of domain

objects. Used to check the result of a query.
•  Summary fixture to display a summary of all test on

a page.
•  Html fixture to examine and navigate HTML pages.
•  Table fixture, Command line fixture, …

What is FitNesse?

A collaborative testing and documentation tool:
•  It supports Java (eclipse plug-in), .Net, C++
•  It combines Fit with a Wiki Web for writing “natural

language requirements” + Fit tables.
•  It provides a simple way to run tests (Fit tables) and

suits.
•  It Supports Wiki and sub Wikis for managing multiple

projects.

11

How to use FitNesse?

•  Install and start.
•  Define the project on the

FitNesse Wiki.
•  Write requirements and fit

tables on the FitNesse
Wiki.

•  Write the glue code
(fixture), the unit tests and
the business logic in your
favorite IDE (eclipse).

•  Execute the acceptance
tests by a click on the Web
page (test button).

•  See the results (green or
red) of executing the tests
on the Web page. “expected 170, actual 190”

Outline

•  Introduction
•  Acceptance and Unit testing
•  Table-based testing and Fit/Fitnesse
•  Fit/Fitnesse: An Example

12

An example: the Football-team Application

•  A sports magazine decides to add a new feature to
its Website that will allow users to view top football
teams according to their ratings.

•  An analyst and a developer get together to discuss the
change requirements.

•  The outcome of the discussion is:
–  a user story card that summarizes the change

requirements
–  a set of acceptance tests
–  an excel file with sample data

user story
(change requirement)

set of acceptance tests

excel file with sample data

13

The domain object representing a football team
package sport.businessObjects;
public class Team {
 public String name;
 public int played;
 public int won;
 public int drawn;
 public int lost;
 public int rating;

 public Team(String name, int ply, int won, int drawn, int lst) {
 super();
 this.name = name;
 this.played = played;
 this.won = won;
 this.drawn = drawn;
 this.lost = lost;
 calculateRating();
 }

 private void calculateRating() {
 float value = ((10000f*(won*3+drawn))/(3*played))/100;
 rating = Math.round(value);
 }
}

Test1: Fit Table
“verify the rating is calculated properly”

•  For a team, given the number of
matches played, won, drawn,
and lost, we need to verify that
the ratings are calculated
properly.

•  The first step is to express the
logic using a Fit table.

•  The table created using Excel
can be easily converted into a Fit
table by just adding a fixture
name and modifying the labels.

•  The Fit table on the right
represents the first acceptance
test case to verify the rating
calculation.

•  Now that we have created the Fit
table, we need to write the glue
code that will bridge the test
case to the system under test.

“column fixture”

14

Test1: Fixture
“verify the rating is calculated properly”

•  For each input attribute
represented by Columns 1
through 5 in the second row
of the Fit table, there is a
public member with the same
name

•  A public method public long
rating() corresponds to the
calculation in the sixth
column.

•  The rating() method in
VerifyRating creates a Team
object using the input data
specified by the test case and
returns the rating from the
Team object; this is where
the bridging between the test
case and the system under
test happens.

public class VerifyRating
 extends ColumnFixture {

 public String teamName;
 public int played;
 public int won;
 public int drawn;
 public int lost;

 public long rating() {
 Team team = new Team(teamName,

 played,won,drawn,lost);
 return team.rating;
 }
}

Test1: Running
“verify the rating is calculated properly”

•  Here is what happens when you
run the test:

1.  Fit parses the table and creates an
instance of “sample.VerifyRating”

2.  For each row in the table Fit set the
values specified in Columns 1
through 5 to the corresponding
fields in the fixture.

3.  The rating() method is executed to
get the actual value to be
compared against the expected
value specified in the sixth column.

4.  If the expected value matches the
actual value, then the test passes;
otherwise it fails.

75 5 7 26 38 Wigan

100 expected

 93 actual

2 1 35 38 Dummy

93 2 1 35 38 Chelsea

54 16 2 20 38 Aston Villa

83 5 2 31 38 Arsenal

rating() lost drawn won played team name

sport.fixtures.VerifyRating

passed
failed
exception

Launch the test runner …

