Intermediate Cucumber Continued

CSCI 5828: Foundations of Software Engineering
Lecture 22 — 04/05/2012

© Kenneth M. Anderson, 2012

(Goals

e Continue to work through a detailed example of using Cucumber by reviewing
the material in chapter 8 of the Cucumber textbook

e Using Cucumber to test a user interface (simple web app)
e Involves use of three frameworks: Capybara, launchy, and Sinatra

e Cucumber Hooks

© Kenneth M. Anderson, 2012

Where Were \We"?

e |n the last lecture on Cucumber, we
¢ started a detailed example centered around a simple ATM domain model
¢ [earned about transforms (they help convert captured regex strings)
¢ [earned about the world object (helps step definitions share state)
e [earned about features/support
e and how that directory can help us separate
e our step definitions (app-specific test code)
e from our “testing harness” (app-independent (ish) test code)

® our testing harness from the system under test

© Kenneth M. Anderson, 2012

Next Up: Adding a Ul (and testing it)

¢ \We are now going to transition from testing our domain model directly
¢ to testing a user interface that will
¢ instantiate an instance of the domain model
e and make calls on it in response to user commands

¢ \We need to find a place in the code where we can insert a handle to the user
iInterface and call it instead of the classes in our domain model directly

e But first, we need to get our project ready to add a Ul

e \We’ll make use of Bundler to ensure that we have the right frameworks
installed

© Kenneth M. Anderson, 2012

Updating our Gemfile (l)

e Recall back in Lecture 9, we covered steps to install Cucumber
* |t went like this
e |Install ruby version manager
e Use it to install ruby 1.9.3
¢ Install bundler: “gem install bundler”
e Create a Gemfile and invoke “bundler install”

e The gemfile contained code that listed the gems we needed

© Kenneth M. Anderson, 2012

Updating our Gemfile (ll)

¢ Having done all that work, we are now in a much better position to add new
frameworks

¢ \We can now change our Gemfile to look like this and run “bundler install”
e source :rubygems
e gem 'sinatra’', '1.3.1°
e group :development do
e gem 'rspec', '2.7.0'
e gem 'cucumber', '1.1.3'
e gem 'capybara', '1.1.2'
e gem 'launchy', '2.0.5°
* end

e Don’t worry about the “group” statement, this essentially loads all four
listed gems

e and any of the frameworks they depend on

© Kenneth M. Anderson, 2012

Sinatra

e Sinatra is a ruby framework that makes it easy to generate simple web
applications

e |f we add this code to our system (nicebank.rb)
e require 'sinatra'
e get '/' do
* 'Welcome to our nice bank.'
* end

e we will have created a web app that returns the above string when
accessed

e by default Sinatra runs on port 4567

e To launch Sinatra (in the ATM directory):
bundle exec ruby lib/nicebank.rb

© Kenneth M. Anderson, 2012

Connecting our Environment

e Recall that the file env.rb in features/support is used to connect our testing
harness to the system under test

e Since we are developing a web app (using Sinatra)
e \We will use a framework called Capybara to test it
e Capybara was designed to interact with web apps

e First, we connect our test environment with Sinatra with the following code in
env.rb

e require 'capybara/cucumber’
Capybara.app = Sinatra::Application
Sinatra::Application.set :environment, :test

e This tells Capybara to talk to Sinatra and configures Sinatra with a default env

© Kenneth M. Anderson, 2012

Connecting the Test to the Ul (])

e Now, we need to connect our Cucumber Feature/Scenario to our new UI
e Our acceptance test should work no matter what it is connected to

e \We want a withdrawal for $20 to work regardless if the transaction is
handled

® in person

e over the web

® via e-mall

¢ via text message
* etc.

e Therefore, we want to keep as much of our tests independent from Ul

© Kenneth M. Anderson, 2012

Connecting the Test to the Ul (ll)

e To keep most of the existing test infrastructure the same, we must try to avoid
changing our

e features
® scenarios
¢ step definitions
e That doesn’t leave many options; what’s left? Our world object
e \We used our World object to generate instances of our domain model
e For instance, if a step definition needs access to the “teller” object
e then we went to the world object and asked it for a teller object

¢ \We can use this set-up to hide the fact that a Ul has now entered the equation

© Kenneth M. Anderson, 2012

10

Connecting the Test to the Ul (lll)

e For instance, our withdraw step definition says

* When /"I withdraw (#{CAPTURE CASH AMOUNT})$%/ do |
amount |

e teller.withdraw _from(my_account, amount)
* end
¢ In that single line of code, we have a “contract”
* I'm going to ask for a teller object
e but | don’t really care if | get one
e what | care about is that | get back an object that

® responds to the message “withdraw_from”

© Kenneth M. Anderson, 2012

11

Connecting the Test to the Ul (IV)

e This type of contract is also known as “duck typing”
e “If it looks like a duck, walks like a duck, & quacks like a duck, it’s a duck”

e S0, in our world object, we’re going to create a Userinterface class and we’re
going to return it rather than an instance of the teller object

¢ \We go from this
e def teller
e @teller ||= Teller.new(cash slot)

e end
And, we make sure that

Userinterface can respond to
« @teller |]|= UserInterface.new withdraw_from messages

® {0

© Kenneth M. Anderson, 2012

12

Sreakage

e Of course, now with this change, our Cucumber acceptance test fails

e \When we withdraw money, we invoke our Userinterface class and it
currently does nothing

e As a result
®* N0 money gets put into the cash slot, and
e our balance is not updated
e But, we will fix this one step at a time

¢ First, we need to know what our Ul will look like

© Kenneth M. Anderson, 2012

13

Prototype Ul

e \We're going to pretend our web app currently looks like this

Amount:

e Before we create this form 500

e we will create the code that tests it E

e This fits in with the style of TDD

e we first need a failing test case
e then we’ll make the changes necessary to cause the test to pass

e \We’ll make use of the Capybara’s domain specific language (DSL) that is
designed to test web applications to write our “test” (the code that interacts
with this form)

© Kenneth M. Anderson, 2012 14

Using Capylbara in UserInterface

e To do this, we create a UserInterface class (in world_extensions.rb)
e class UserlInterface

 include Capybara: :DSL

e def withdraw _from(account, amount)
e visit '/
« f11ll _in '"Amount', :with => amount
e click button "Withdraw'

* end

* end The DSL makes writing the test simple!

© Kenneth M. Anderson, 2012

15

Running the Test

¢ |f we run the test now
e we will see it fail
e but with an error message generated by Capybara

e cannot fill in, no text field, text area or password field with id, name, or
label 'Amount’ found

¢ The test fails but we’re actually

e launching a web server, calling it, parsing its return value, and failing
because we didn’t get back the form we expected!

¢ all in one test, all due to the power of the frameworks involved

© Kenneth M. Anderson, 2012

16

Behind the Scenes

* Now, we know why the test is failing
e Sinatra is currently configured to return just this string
e 'Welcome to our nice bank.'

e Capybara is looking for an HTML form that has a form element with the
“Amount” label

¢ [t doesn’t find it, so it falls

e But, as our application gets more complex, we won’t necessarily be able to
predict what web page is being generated by our test code

e \We need a way therefore to see what page was presented

e To do that, we need to learn about a new Cucumber feature: Hooks

© Kenneth M. Anderson, 2012

17

Hooks (l)

e Hooks are methods you can define in your Cucumber support code that will
run before or after each scenario

¢ You use the keywords “Before” and “After” to define them

e |f we return to our calculator example and add hooks.rb to its support
directory with this code

e Before do
e puts "Go!"
* end
o After do
e puts "Stop!"
* end

e then you will see “Go!” and “Done!” printed for each scenario DEMO

© Kenneth M. Anderson, 2012

18

Hooks (lI)

e Hooks are thus similar to the methods setup() and teardown() found in JUnit

e You can create tagged hooks that will only run if a scenario with their tag is
about to execute

e Before(‘@admin’) do

* end
e will only execute its code

e f a feature/scenario tagged with @admin is run

© Kenneth M. Anderson, 2012

19

Hooks (lI)

e You can get information about the scenario that is about to run by adding a
scenario parameter to the Before and After methods

e After do [scenario|
e puts "Oh dear" if scenario.failed?
* end

* This code will examine the scenario that just finished running and see if it
failed

e if it did, it prints “Oh dear”

¢ \We can use this feature in our ATM test cases to print out the web page that
was generated by our application when a scenario fails (like it is now)

© Kenneth M. Anderson, 2012

20

Displaying the Web Page

e To do that, we’re going to add a file called debugging.rb to our features/
support directory and add the following hook:

e After do |scenario]
e save_and_open_page if scenario.failed?
* end

e The method “save_and_open_page” is provided by Capybara. Internally, it
makes use of the launchy framework to open a web browser and

e display the web page that is causing the test case to falil

e And, sure enough, if we run cucumber now, a .html page is automatically
saved and our default browser launches and displays it

e Fun! Note: This proves that Sinatra is being launched and our
web app is being run each time we run cucumber!

© Kenneth M. Anderson, 2012

21

Create the Form

e Back in nicebank.rb, we will now update our Sinatra web app to generate a
form and we will also add a method to generate a “fail” response when the
“Withdraw” button is pushed (thus submitting the form)

e DEMO
¢ \With those changes in place, we will see in our web browser that
e the form is being generated
® an error is being generated
e the text of our error is appearing in cucumber’s output

* Due to the power of the frameworks, the integration between test code and
app is seamless

© Kenneth M. Anderson, 2012 22

Fix the Test Case (I)

e Okay, we now have everything in place to write the code that will fully link the
test code and the application

e \What we need to do is the following

* Make sure that the domain objects being used by the step definitions
are the same objects being used by the web application

¢ To do that, we will use something called “settings” in a Sinatra web
application to store instances of ruby classes

e Think of it as a hash table

© Kenneth M. Anderson, 2012

23

Fix the Test Case (ll)

e Here’s what currently happens
* The world object auto-creates an account object and a cash slot

e The world object currently creates a Userlnterface object when asked to
create a teller object

e Here’s what we need to happen
e The world object can continue to create the account object
* The web app will create a teller object automatically
e when processing the withdraw form action,;
e |t will create a Cash Slot and store that as a setting automatically

e |t will expect to find an account object in its settings
e it will generate an error if it doesn’t find an account object

e The step definitions will now need to set the account object and make use
of the new cash slot

© Kenneth M. Anderson, 2012 24

Fix the Test Case (lll)

* In nicebank.rb change the code for the withdraw action to

e set :cash_slot, CashSlot.new Running cucumber now
causes the test to fail with the

o - ‘6 ’)
set :account do account has not been set

e fail 'account has not been set! error message; that's because
we have not yet updated the
* end world object to do the right
thing

e post '/withdraw' do

e teller = Teller.new(settings.cash_slot)
e teller.withdraw_from(settings.account, params[:amount].to_i)

e end

© Kenneth M. Anderson, 2012 25

Fix the Test Case (IV)

e Now, update the world object

e [For the cash slot helper method, we now use the instance created by
Sinatra

e def cash_slot
e Sinatra::Application.cash_slot
* end

¢ |n our Userinterface class, we make sure that Sinatra uses the account
class that is passed into the withdraw_from method

e Sinatra::Application.account = account

¢ Run cucumber and the test now passes

© Kenneth M. Anderson, 2012

26

How? (1)

e \What’s the big picture of the system as it now stands?
e 1. We invoke cucumber
e a. It invokes env.rb
® i) which runs our system in nicebank.rb
¢ a) which launches Sinatra and defines our app
e b) and creates an instance of Cash Slot and stores it as a setting
e ii) and connects Capybara with our Sinatra app

e b. Cucumber processes all of its support files, recording transforms,
hooks, step definitions, etc.

© Kenneth M. Anderson, 2012

27

How? (ll)

e c. Cucumber finds our feature file and finds a scenario within
e d. It matches steps and during those steps it
e |) calls the account helper function of the world object
e a) creating an account object
e ji) calls the teller helper function of the world object
¢ a) creating a user interface object
e jii) calls withdraw_from passing in an amount and the account
e a) this uses Capybara to set the account on Sinatra
e b) and fill out the form and submit it
e c) which causes the “withdraw” handler to execute
e this creates a teller object which uses the previously created

account and cash slot objects to perform the withdrawal

© Kenneth M. Anderson, 2012

28

How? (ll)

e d. It matches steps and during those steps it

e jv) it verifies that the cash slot and the account have their correct
values; the world object makes sure those steps use the correct
objects

e v) It declares success and returns
e ¢. The “After” hook runs but does nothing because the scenario passed

e |f it had failed, the After hook would have displayed the web page
that was generated by Sinatra

e f. The cucumber command finished and returns a success status to the
shell that invoked it

e \Wow!

© Kenneth M. Anderson, 2012

29

Summary

e Brief introduction on how to integrate Cucumber with a user interface
e In this case a web app, powered by Sinatra and accessed via Capybara

e Saw how to use Sinatra settings to help share state between the
application and the step definitions

e | earned about Cucumber hooks and used it to help us with a failing test case

© Kenneth M. Anderson, 2012 30

Coming Up Next

e | ecture 23: More Cucumber

e | ecture 24: Agent Model of Concurrency

© Kenneth M. Anderson, 2012

31

