Software Metrics

Disclaimer

There’s a plethora of testing tools and static analyzers that compute metrics.

We will not be focusing here on tools but rather on concepts.

COMP 4004 — T2a

General Introduction

COMP 4004 — T2a

9/30/14

9/30/14

Definitions

» Measure - quantitative indication of extent,
amount, dimension, capacity, or size of some
attribute of a product or process.

— E.g., Number of errors

» Metric - quantitative measure of degree to which
a system, component or process possesses a
given (quality?) attribute. “A handle or guess
about a given (quality?) attribute.”

— E.g., Number of errors found per person hours

COMP 4004 — T2a 3

Why Measure Software?

« Determine the quality of the current
product or process

» Predict qualities of a product/process

* Improve quality of a product/process

COMP 4004 — T2a 4

Motivation for Metrics

Estimate the cost & schedule of future projects

Evaluate the productivity impacts of new tools and
techniques

Establish productivity trends over time
Improve software quality
Forecast future staffing needs

Anticipate and reduce future maintenance needs

COMP 4004 — T2a

Example Metrics

Defect rates

— (where a defect is something less serious than an
error wrt reqs)

Error rates

Measured by:
— individual
— Module/class/procedure

Errors should be categorized by origin, type, cost

— Itis a luxury to invest in root cause analysis
COMP 4004 — T2a

6

9/30/14

Product vs. Process

* Process Metrics

— Insights of process paradigm, software engineering
tasks, work product, or milestones

— Lead to long term process improvement

* Product Metrics
— Assess the state of the project
— Track potential risks
— Uncover problem areas
— Adjust workflow or tasks
— Evaluate teams ability to control quality

COMP 4004 — T2a

Types of Measures

» Direct Measures (internal attributes)

— Cost ($9), effort (in man/days), LOC (lines of
code), response speed, memory footprint

— white box viewpoint
* Indirect Measures (external attributes)

— Functionality, complexity, efficiency, reliability,
maintainability

— Black box viewpoint
» Both pertain to quality?

COMP 4004 — T2a

9/30/14

Size-Oriented Metrics

Size of the software produced:
— LOC - Lines Of Code
— KLOC - 1000 Lines Of Code

— SLOC - Statement Lines of Code (ignore
whitespace)

» Popular because easy to compute

* Typical Measures:

— Errors/KLOC, Defects/KLOC, Cost/LOC,
Documentation Pages/KLOC

COMP 4004 — T2a

Complexity Metrics

* LOC - a ‘rough’ function of complexity

* Halstead’s Software Science

— (entropy measures, ie measures towards (quality?)
equilibrium...)

— n, - number of distinct operators
— n, - number of distinct operands
— N, - total number of operators
— N, - total number of operands

COMP 4004 — T2a

10

9/30/14

Example
if (k < 2)
{
if (k > 3)
X = xX*k;
}

 Distinct operators: if (){}><="*;
 Distinct operands: k 2 3 x

* n,=10
* n,=4
* N,=13
* N,=7

COMP 4004 — T2a 1"

Halstead’s Metrics

* Amenable to experimental verification [1970s]

* Program length: N=N, + N, (in ex: 20)

* Program vocabulary: n=n; +n, (in ex: 14)

* Volume V =N *log, n (in ex: 76.14)
+ Difficulty D = (n1/2) + (N2/n2) (in ex: 6.75)
+ EffotE=DxV (in ex: 514)
« Time to program T = (E / 18) seconds (inex:29s)

* Number of delivered bugs B =V / 3000 (in ex: 0.025)

+ Welcome to the science of metrics, for which interpretation is often
an art... For example, D and E are taken to pertain to
understandability...

COMP 4004 — T2a 12

9/30/14

McCabe’s Complexity Measures

« McCabe’s metrics are based on a control
flow representation of the program.

A control flow graph is used to depict
control flow.

« Nodes represent processing tasks (one or
more code statements)

« Edges represent control flow between
nodes

COMP 4004 — T2a 13

Flow Graph Notation

While
Sequence

o—o &0 9

If-then-else Until

—0—0

COMP 4004 — T2a 14

9/30/14

Cyclomatic Complexity

» Defined as the set of independent paths
through the control flow graph

* V(G)=E-N+2
— E is the number of flow graph edges
— N is the number of nodes

« V(G)=P +1
— P is the number of predicate nodes

COMP 4004 — T2a

15

Example

i = 0;
while (i<n-1) do
7 =1+ 1;
while (j<n) do
if A[i]<A[]]
then
swap (A[1], A[j]);
end do;
i=i+4+1;

end do;
COMP 4004 — T2a

16

9/30/14

Flow Graph

COMP 4004 — T2a 17

Computing V(G)

« V(G)=9-7+2=4

* V(G)=3+1=4

« Basic paths are:
-1,7
-1,2,6,1,7
-1,2,3,4,5,2,6,1,7
-1,2,3,5,2,6,1,7

COMP 4004 — T2a 18

9/30/14

Meaning of V(G)
+ Complexity increases with the number of decision paths

and loops

* V(G) is a quantitative measure of the testing difficulty
and, ultimately, an indication of reliability

« Experimental data shows value of V(G) should be no
more then 10 - testing is very difficult above this value

COMP 4004 — T2a 19

McClure's Complexity Metric

« Complexity=C +V
— C is the number of comparisons in a module

—V is the number of control variables
referenced in the module (from ifs and loops)

— Targets decisional complexity
« Somewhat pertains to path sensitization
« Similar to McCabe’s but with regard to
control variables.
— Can this be correlated to software quality?

COMP 4004 — T2a 20

9/30/14

10

McCall's Triangle of Quality

g NN

COMP 4004 — T2a

21

A Comment

McCall’s quality factors were proposed in the
early 1970s. They appear to be as valid today as they

were at that time. It’s likely that software built to conform
to these factors will exhibit high quality well into
the 21st century, even if there are dramatic changes

in technology.

COMP 4004 — T2a

22

9/30/14

1

Quality Model

(is ISO 9126 relevant to this?)

[reliability] [efficiency } [usability } [maintainability] [testability } [

portability] [reusability]

! ! P

Metrics

COMP 4004 — T2a

23

High level Design Metrics

Structural Complexity
Data Complexity
System Complexity

Structural Complexity S(i) of a module i.

= S(i) = fou(0)
— Fan out is the number of modules immediately
subordinate (directly invoked).

COMP 4004 — T2a

24

9/30/14

12

Design Metrics

« Data Complexity D(i)

— D(i) = V(i)/[fouy(i)+1]
— V(i) is the number of inputs and outputs
passed to and from i

» System Complexity C(i)
— C(i) = S(i) + D(i)
— As each C(i) increases the overall complexity
of the architecture increases

COMP 4004 — T2a 25

System Complexity Metric

* Another metric:

— length(i) * [f,,(i) + f,,(i)]?
— Length is LOC
— Fan in is the number of modules that invoke i

» The real question: what are ‘good’
numbers for each of these metrics?

COMP 4004 — T2a 26

9/30/14

13

Coupling for a module

+ Data and control flow: (a key distinction)
— d, input data parameters
— ¢ input control parameters
— d, output data parameters
— ¢, output control parameters

¢ Global

— g4 global variables for data
— g, global variables for control

* Environmental

— wfanin
— r fan out

COMP 4004 — T2a 27

Metrics for Coupling

« M, = kim, k=1

-m=d;+ac,+d,+bc,+gytcg, +tw+r
— Key point: a, b, ¢, k can be adjusted based on
actual data... but how is this done?

 This computation can be so subjective that most
will rely on simpler (if not simplistic) metrics...

COMP 4004 — T2a 28

9/30/14

14

Component Level Metrics

Cohesion (internal interaction) — pertains to data
members

Coupling (external interaction) - a function of input and
output parameters, global variables, and modules called

» Complexity of program flow - hundreds have been
proposed (e.g., cyclomatic complexity)

* Cohesion — difficult to measure
— Bieman '94, TSE 20(8)

COMP 4004 — T2a 29

Using Metrics

* The Process
— Select appropriate (??) metrics for problem
— Use metrics on problem
— Assess and generate feedback

» Steps:
— Formulation
— Collection
— Analysis
— Interpretation
— Feedback

COMP 4004 — T2a 30

9/30/14

15

Metrics for OO Software

COMP 4004 — T2a 31

Metrics for the Object Oriented

» Chidamber & Kemerer '94 TSE 20(6)

» Metrics specifically designed to address
object-oriented software

» Class-oriented metrics:
— No need for procedure level metrics
— Cluster level metrics is simply too complex
— Simple direct measures

COMP 4004 — T2a 32

9/30/14

16

9/30/14

Chidamber and Kemerer
Metrics

Weighted methods per class (MWC)
Depth of inheritance tree (DIT)

Number of children (NOC)

Coupling between object classes (CBO)
Response for class (RFC)

Lack of cohesion metric (LCOM)

33

Weighted methods per class
(WMC)

* ¢, is the complexity of each
method M, of the class

— Often, only public methods are
considered

n
» Complexity may be the McCabe
WMC = E Ci complexity of the method
i=1 » Smaller values are better

* Perhaps the average complexity
per method is a better metric

34

17

Weighted Methods per Class

* Viewpoints from Chidamber and Kemerer:

-The number of methods and complexity of methods is an indicator
of how much time and effort is required to develop and
maintain the object

-The larger the number of methods in an object, the greater the
potential impact on the children

-Objects with large number of methods are likely to be more
application specific, limiting possible reuse

COMP 4004 — T2a 35

Depth of inheritance tree (DIT)

* For the system under examination, consider the
hierarchy of classes

» DIT is the length of the maximum path from the
node to the root of the tree

» Relates to the scope of the properties

— How many ancestor classes can potentially affect a
class

 Smaller values are better

36

9/30/14

18

Number of children (NOC)

For any class in the inheritance tree, NOC is the
number of immediate children of the class
— The number of direct subclasses

How would you interpret this number?

A moderate (??) value indicates scope for
reuse and high values may indicate an
inappropriate abstraction in the design

37

Number of Children

Viewpoints:
As NOC grows, reuse increases - but the abstraction may be diluted

Depth is generally better than breadth in class hierarchy, since it
promotes reuse of methods through inheritance
— Really?? Open-closed principle? Does this not contradict heuristic for DIT?

Classes higher up in the hierarchy should have more sub-classes
then those lower down

NOC gives an idea of the potential influence a class has on the
design: classes with large number of children may require more
testing

COMP 4004 — T2a 38

9/30/14

19

Coupling between Classes

CBO is the number of collaborations between two

classes (fan-out of a class C)

— the number of other classes that are referenced in the class C (where
a reference to another class, A, is a reference to a method or a data

member of class A)

Viewpoints:

High fan-outs denote class coupling to other classes/objects and thus are
undesirable. High fan-ins denote good designs and a high level of reuse
Not possible to maintain high fan-in and low fan outs across the entire
system

Excessive coupling indicates weakness of class encapsulation and may
inhibit reuse

High coupling also indicates that more faults may be introduced due to
inter-class activities COMP 4004 — T2a 39

Response for class (RFC)

* Mc; # of methods called
in response to a
message that invokes
method M, n

— Fully nested set of calls

* Smaller numbers are
better

— Larger numbers indicate 1=
increased complexity and

|
debugging difficulties
If a large number of methods can be invoked in response to
a message, the testing and debugging of the class becomes
more complicated 40

9/30/14

20

Lack of cohesion metric
(LCOM)

Number of methods in a class that reference a
specific instance variable

A measure of the “tightness” of the code

If a method references many instance variables,
then it is more complex and less cohesive

The larger the number of similar methods in a
class the more cohesive the class is

“Cohesion of methods within a class is desirable,

since it promotes encapsulation” (?7?)
41

Lack of Cohesion in Methods

« LCOM — poorly described in Pressman

 Class C, with n methods M,,...M,

* I;is the set of instance variables used by

J

COMP 4004 — T2a 42

9/30/14

21

LCOM

There are nsuchsets /, ,..., |,
=P={{,) [(N 1]) =T}
—Q={(,)| (;n]) =}
If all n sets /;are & then P =&

LCOM = |P| - |Q|, if |P| > |Q|
LCOM = 0 otherwise

COMP 4004 — T2a 43

Example LCOM

Take class C with M,, M,, M,

l,={a, b, c,d,e}

l,={a, b, e}

I3 = {X’ y’ Z}

P=A{(l,, 1), (I,, 15)} /lthose do not intersect
Q={(/, 1,)} /lthose that do

Thus LCOM =1

COMP 4004 — T2a 44

9/30/14

22

Explanation

LCOM is the number of empty intersections
minus the number of non-empty intersections

This is a notion of degree of similarity of
methods

If two methods use common instance variables
then they are (??) similar

LCOM of zero is not maximally cohesive
1Pl =1Qlor|P| <|Q|

COMP 4004 — T2a 45

Some other cohesion metrics

LCOM3 Consider an undirected graph G, where the vertices are the methods of a class, and there
s an edge between two vertices if the corresponding methods use at least an attribute in
common.

LCOMS3 s then defined as the number of connected components of G.

LCOM4 Like LCOMS3, where graph G additionally has an edge between vertices representing
methods i and n, 1f m invokes 7 or vice versa.

Co (connectivity) | Let V be the number of vertices of graph G from measure LCOM4, and E the number of
its edges. Then B -(1-1)

m-1-(n-2)

Co=2-

LCOMS Consider a set of methods {M;} (i=1,...m) accessing a set of attributes {4;} (=1.,...,q).
Let 11(4;) be the number of methods which reference attribute ;. !

Then ~ .
l[Y ,U(.-l.)]-m
a J

Lcoms = 7!
=i

COMP 4004 — T2a 46

9/30/14

23

Class Size

« CS
— Total number of operations (inherited, private,
public)
— Number of attributes (inherited, private,
public)

« May be an indication of too much
responsibility for a class

COMP 4004 — T2a 47

Number of Operations Overridden

« NOO

* A large number for NOO indicates
possible problems with the design

» Poor abstraction in inheritance hierarchy

COMP 4004 — T2a 48

9/30/14

24

Number of Operations Added

NOA

The number of operations added by a
subclass

As operations are added the subclass
‘moves away’ from the parent class

As depth increases NOA should decrease

COMP 4004 — T2a 49

Method Inheritance Factor

' M (C)
MIF = 2
ZMH(CJ
* M(C)) is the number of methods inherited
and not overridden in C,

* M_(C)) is the number of methods that can
be invoked with C,

* My(C)) is the number of methods declared
in C,

COMP 4004 — T2a 50

9/30/14

25

9/30/14

MIF

* M,(C) = My(C) +M(C)
 All that can be invoked = new or
overloaded + things inherited

 MIF is [0,1]
 MIF near 1 means little specialization
« MIF near 0 means large change

COMP 4004 — T2a 51

Coupling Factor

CF= Eizjis_client(ci,c/.)
(TC* -TC)
 is_client(x,y) = 1 iff a relationship exists between

the client class and the server class. 0
otherwise

« (TC2-TC) is the total number of relationships
possible (?7?)

+ CF is [0,1] with 1 meaning high coupling

COMP 4004 — T2a 52

26

9/30/14

Polymorphism Factor

PF= Y M,(C)
S [M,(C)*DC(C))]

M. () is the number of new methods
M,() is the number of overriding methods
DC() is the number of descendent classes of a base class

The factor is computed as the number of methods that redefine
inherited methods, divided by maximum number of possible distinct
polymorphic situations

COMP 4004 — T2a 53

Operational Oriented Metrics

Average operation size (LOC, volume)
Number of messages sent by an operator
Operation complexity — cyclomatic

Average number of parameters/operation

— The larger the number the more complex the
collaboration

COMP 4004 — T2a 54

27

Measuring Encapsulation?

» Lack of cohesion indicates potential lack of
encapsulation

» Consider % of public and protected
— What would this indicate??

* Public access to data members
— What would this indicate??

COMP 4004 — T2a 55

Inheritance

 Number of root classes
* Fan in — multiple inheritance

« NOC, DIT, etc.

COMP 4004 — T2a 56

9/30/14

28

Appendix

COMP 4004 — T2a 57

Main Results

» Metric definitions — first suite:

Chidamber and Kemerer’s (CK) Metric Suite (Class Metrics Only) [3]

Metric Name Value Definition
Weighted Methods Per Sum of complexities of local methods of a class. For simple WMC,
Class (WMC) when all complexities are unity, same as number of class methods.
Depth of Inheritance Max number of edges between a given class and a root class in an
Tree (DIT) inheritance graph (0 for a class which has no base classes).
Num.Children(NOC) A count of the number of direct children of a given class.
Coupling Between Counts other classes whose attributes or methods are used by the given
Objects (CBO) class plus those that use the attributes or methods of the given class.
Response For a Class A count of all of local methods of a class plus all of methods on other
(RFC) classes directly called by any of the methods on the class.

Lack of Cohesion of ~ Num. of disjoint sets of local methods, no two sets intersect, any two
Methods (LCOM) methods on same set share at least one local variable (1998 definition).

58

9/30/14

29

Main Results

» Metric definitions — second suite:

Fernando Brito e Abreu’s MOOD Metric Suite (Class Metrics Only) [2]

Attribute Hiding [1-total num. visible (can be accessed)) attributes in a set of classes] /
Factor (AHF) total num. attributes in the set. Measures visibility of a class definition.
Method Hiding Factor [I-total num. visible (can be called) methods in a set of classes] / total
(MHF) num. methods in the set. Measures visibility of a class definition.
Attribute Inheritance The ratio of inherited attributes to the total number of attributes in a
Factor (AIF) class.

Method Inheritance The ratio of inherited methods to the total number of methods in a
Factor (MIF) class.

59

Main Results

* Metric definitions — third suite:

Bansiya and Davis’ QMOOD Metric Suite (Class Metrics Only) [1]

Avg. Num. Ancestors

Average of DIT for all classes in the system.

(QMOOD_ANA)

Cohesion Among A measure of cohesion that is based on the similarity of method
Methods signatures in a class. Included for completeness; not implemented in
(QMOOD _CAM) this research.

Class Interface Size The count of public methods in a class.

(QMOOD _CIS)

Data Access Metric The ratio of private or protected attributes to the total number of
(QMOOD DAM) attributes declared in a class.

Direct Class Coupling A count of classes that accept instances of a given class as a parameter
(QMOOD_DCC) plus classes including attributes of the given class’ type.

Measure of The percentage of data declarations in the system whose types are of
Aggregation user defined classes, as opposed to those of system defined classes such
(QMOOD MOA) as integers, real numbers, etc.

Measure of Fnctnl. Same as MOOD_MIF.

Abstraction

(QMOOD_MFA)

Number of Methods The number of methods in a class. Same as WMC when weights of the
(QMOOD NOM) methods in the class equal unity.

9/30/14

30

Main Results

Software examined: Mozilla Rhino — an
open source implementation of JavaScript
written in Java

An example of the use of the agile
software development in open source
software

Six Rhino versions were analyzed in this
case study

Delivery cycle time from 2 to 16 months

61

Main Results
Hypotheses:

Hypothesis 1: OO metrics can identify fault-prone
classes in traditional and highly iterative or agile
developed OO software during its initial delivery
Hypothesis 2: OO metrics can identify fault-prone
classes in multiple sequential releases of OO
software systems developed and using highly
iterative or agile software development process

62

9/30/14

31

9/30/14

Main Results
* Model validation:
100
90 '/’\/
[
? 80 —
=
@ 70
K4
o
S 60
B 50
e
S
K] 40
=
@ 30
2
8 20
10
0
14R3 15R1 15R2 15R3 15R4
—e— CK With WMC (All) 85.1 81.9 787 794 629
—#— CK With WMC-McCabe (All) 85.9 90.6 794 83 62.6
CK With RFC (All) 837 85.7 785 80.1 63.2
== MOOD With AIF (All) 69 59 50.9 58.3 41
—=— MOOD With MIF (All) 69.2 251 517 618 41
—e— QMOOD With CIS (All) 78 67.8 58.1 79 468
—+— QMOOD With NOM (All) 81.3 85.2 74.2 81 635 63
Rhino Model Version

Main Results

+ CKand QMOOQOD suites contain similar components and
produce statistical models that are effective in detecting
error-prone classes

+ MOOD metrics suite are not good class fault-proneness
predictors

» The produced models can be useful in assessing quality
in OO classes developed using modern highly iterative
or agile software development processes

64

32

