
9/30/14

1

Software Metrics

1 COMP 4004 – T2a

Disclaimer
There’s a plethora of testing tools and static analyzers that compute metrics.

We will not be focusing here on tools but rather on concepts.

General Introduction

2 COMP 4004 – T2a

9/30/14

2

Definitions
•  Measure - quantitative indication of extent,

amount, dimension, capacity, or size of some
attribute of a product or process.
–  E.g., Number of errors

•  Metric - quantitative measure of degree to which
a system, component or process possesses a
given (quality?) attribute. “A handle or guess
about a given (quality?) attribute.”
–  E.g., Number of errors found per person hours

3 COMP 4004 – T2a

Why Measure Software?

•  Determine the quality of the current
product or process

•  Predict qualities of a product/process

•  Improve quality of a product/process

4 COMP 4004 – T2a

9/30/14

3

Motivation for Metrics
•  Estimate the cost & schedule of future projects

•  Evaluate the productivity impacts of new tools and
techniques

•  Establish productivity trends over time

•  Improve software quality

•  Forecast future staffing needs

•  Anticipate and reduce future maintenance needs

5 COMP 4004 – T2a

Example Metrics
•  Defect rates

–  (where a defect is something less serious than an
error wrt reqs)

•  Error rates

•  Measured by:
–  individual
–  Module/class/procedure

•  Errors should be categorized by origin, type, cost
–  It is a luxury to invest in root cause analysis

6 COMP 4004 – T2a

9/30/14

4

Product vs. Process
•  Process Metrics

–  Insights of process paradigm, software engineering
tasks, work product, or milestones

–  Lead to long term process improvement

•  Product Metrics
–  Assess the state of the project
–  Track potential risks
–  Uncover problem areas
–  Adjust workflow or tasks
–  Evaluate teams ability to control quality

7 COMP 4004 – T2a

Types of Measures
•  Direct Measures (internal attributes)

– Cost ($$), effort (in man/days), LOC (lines of
code), response speed, memory footprint

– white box viewpoint
•  Indirect Measures (external attributes)

– Functionality, complexity, efficiency, reliability,
maintainability

– Black box viewpoint
•  Both pertain to quality?

8 COMP 4004 – T2a

9/30/14

5

Size-Oriented Metrics

Size of the software produced:
–  LOC - Lines Of Code
–  KLOC - 1000 Lines Of Code
–  SLOC – Statement Lines of Code (ignore

whitespace)
•  Popular because easy to compute
•  Typical Measures:

–  Errors/KLOC, Defects/KLOC, Cost/LOC,
Documentation Pages/KLOC

9 COMP 4004 – T2a

Complexity Metrics

•  LOC - a ‘rough’ function of complexity
•  Halstead’s Software Science

–  (entropy measures, ie measures towards (quality?)
equilibrium…)

– n1 - number of distinct operators
– n2 - number of distinct operands
– N1 - total number of operators
– N2 - total number of operands

10 COMP 4004 – T2a

9/30/14

6

Example
if (k < 2)
{
 if (k > 3)
 x = x*k;
}

•  Distinct operators: if () { } > < = * ;
•  Distinct operands: k 2 3 x
•  n1 = 10
•  n2 = 4
•  N1 = 13
•  N2 = 7

11 COMP 4004 – T2a

Halstead’s Metrics
•  Amenable to experimental verification [1970s]

•  Program length: N = N1 + N2 (in ex: 20)
•  Program vocabulary: n = n1 + n2 (in ex: 14)
•  Volume V = N * log2 n (in ex: 76.14)
•  Difficulty D = (n1/2) + (N2/n2) (in ex: 6.75)
•  Effort E = D x V (in ex: 514)
•  Time to program T = (E / 18) seconds (in ex: 29 s)
•  Number of delivered bugs B = V / 3000 (in ex: 0.025)

•  Welcome to the science of metrics, for which interpretation is often
an art… For example, D and E are taken to pertain to
understandability…

12 COMP 4004 – T2a

9/30/14

7

McCabe’s Complexity Measures

•  McCabe’s metrics are based on a control
flow representation of the program.

•  A control flow graph is used to depict
control flow.

•  Nodes represent processing tasks (one or
more code statements)

•  Edges represent control flow between
nodes

13 COMP 4004 – T2a

Flow Graph Notation

Sequence

If-then-else

While

Until

14 COMP 4004 – T2a

9/30/14

8

Cyclomatic Complexity

•  Defined as the set of independent paths
through the control flow graph

•  V(G) = E – N + 2
– E is the number of flow graph edges
– N is the number of nodes

•  V(G) = P + 1
– P is the number of predicate nodes

15 COMP 4004 – T2a

Example
i = 0;
while (i<n-1) do
 j = i + 1;
 while (j<n) do
 if A[i]<A[j]
 then
 swap(A[i], A[j]);
 end do;
 i=i+1;
end do;

16 COMP 4004 – T2a

9/30/14

9

Flow Graph
1

3

5 4

6

7

2

17 COMP 4004 – T2a

Computing V(G)

•  V(G) = 9 – 7 + 2 = 4
•  V(G) = 3 + 1 = 4
•  Basic paths are:

– 1, 7
– 1, 2, 6, 1, 7
– 1, 2, 3, 4, 5, 2, 6, 1, 7
– 1, 2, 3, 5, 2, 6, 1, 7

18 COMP 4004 – T2a

9/30/14

10

Meaning of V(G)

•  Complexity increases with the number of decision paths
and loops

•  V(G) is a quantitative measure of the testing difficulty
and, ultimately, an indication of reliability

•  Experimental data shows value of V(G) should be no
more then 10 - testing is very difficult above this value

19 COMP 4004 – T2a

McClure’s Complexity Metric

•  Complexity = C + V
– C is the number of comparisons in a module
– V is the number of control variables

referenced in the module (from ifs and loops)
– Targets decisional complexity

•  Somewhat pertains to path sensitization

•  Similar to McCabe’s but with regard to
control variables.
– Can this be correlated to software quality?

20 COMP 4004 – T2a

9/30/14

11

McCall’s Triangle of Quality
M!a!i!n!t!a!i!n!a!b!i!l!i!t!y!M!a!i!n!t!a!i!n!a!b!i!l!i!t!y!
F!l!e!x!i!b!i!l!i!t!y!F!l!e!x!i!b!i!l!i!t!y!
T!e!s!t!a!b!i!l!i!t!y!T!e!s!t!a!b!i!l!i!t!y!

P!o!r!t!a!b!i!l!i!t!y!P!o!r!t!a!b!i!l!i!t!y!
R!e!u!s!a!b!i!l!i!t!y!R!e!u!s!a!b!i!l!i!t!y!
I!n!t!e!r!o!p!e!r!a!b!i!l!i!t!y!I!n!t!e!r!o!p!e!r!a!b!i!l!i!t!y!

C!o!r!r!e!c!t!n!e!s!s!C!o!r!r!e!c!t!n!e!s!s!
R!e!l!i!a!b!i!l!i!t!y!R!e!l!i!a!b!i!l!i!t!y!

E!f!f!i!c!i!e!n!c!y!E!f!f!i!c!i!e!n!c!y!
I!n!t!e!g!r!i!t!y!I!n!t!e!g!r!i!t!y!

U!s!a!b!i!l!i!t!y!U!s!a!b!i!l!i!t!y!

P!R!O!D!U!C!T!T!R!A!N!S!I!T!I!O!N!P!R!O!D!U!C!T!T!R!A!N!S!I!T!I!O!N!P!R!O!D!U!C!T!R!E!V!I!S!I!O!N!P!R!O!D!U!C!T!R!E!V!I!S!I!O!N!

P!R!O!D!U!C!T!O!P!E!R!A!T!I!O!N!P!R!O!D!U!C!T!O!P!E!R!A!T!I!O!N!

21 COMP 4004 – T2a

A Comment

McCallʼs quality factors were proposed in the#
early 1970s. They appear to be as valid today as they #
were at that time. Itʼs likely that software built to conform #
to these factors will exhibit high quality well into#
the 21st century, even if there are dramatic changes#
in technology.#

22 COMP 4004 – T2a

9/30/14

12

Quality Model
(is ISO 9126 relevant to this?)

product

operation revision transition

reliability efficiency usability maintainability testability portability reusability

Metrics

23 COMP 4004 – T2a

High level Design Metrics

•  Structural Complexity
•  Data Complexity
•  System Complexity

•  Structural Complexity S(i) of a module i.
–  S(i) = fout

2(i)
–  Fan out is the number of modules immediately

subordinate (directly invoked).

24 COMP 4004 – T2a

9/30/14

13

Design Metrics

•  Data Complexity D(i)
– D(i) = v(i)/[fout(i)+1]
– v(i) is the number of inputs and outputs

passed to and from i

•  System Complexity C(i)
– C(i) = S(i) + D(i)
– As each C(i) increases the overall complexity

of the architecture increases

25 COMP 4004 – T2a

System Complexity Metric

•  Another metric:
–  length(i) * [fin(i) + fout(i)]2

– Length is LOC
– Fan in is the number of modules that invoke i

•  The real question: what are ‘good’
numbers for each of these metrics?

26 COMP 4004 – T2a

9/30/14

14

Coupling for a module
•  Data and control flow: (a key distinction)

–  di input data parameters
–  ci input control parameters
–  do output data parameters
–  co output control parameters

•  Global
–  gd global variables for data
–  gc global variables for control

•  Environmental
–  w fan in
–  r fan out

27 COMP 4004 – T2a

Metrics for Coupling

•  Mc = k/m, k=1

– m = di + aci + do + bco + gd + cgc + w + r
– Key point: a, b, c, k can be adjusted based on

actual data… but how is this done?
•  This computation can be so subjective that most

will rely on simpler (if not simplistic) metrics…

28 COMP 4004 – T2a

9/30/14

15

Component Level Metrics
•  Cohesion (internal interaction) – pertains to data

members

•  Coupling (external interaction) - a function of input and
output parameters, global variables, and modules called

•  Complexity of program flow - hundreds have been
proposed (e.g., cyclomatic complexity)

•  Cohesion – difficult to measure
–  Bieman ’94, TSE 20(8)

29 COMP 4004 – T2a

Using Metrics
•  The Process

–  Select appropriate (??) metrics for problem
–  Use metrics on problem
–  Assess and generate feedback

•  Steps:
–  Formulation
–  Collection
–  Analysis
–  Interpretation
–  Feedback

30 COMP 4004 – T2a

9/30/14

16

Metrics for OO Software

31 COMP 4004 – T2a

Metrics for the Object Oriented

•  Chidamber & Kemerer ’94 TSE 20(6)

•  Metrics specifically designed to address
object-oriented software

•  Class-oriented metrics:
– No need for procedure level metrics
– Cluster level metrics is simply too complex
– Simple direct measures

32 COMP 4004 – T2a

9/30/14

17

33

Chidamber and Kemerer
Metrics

•  Weighted methods per class (MWC)
•  Depth of inheritance tree (DIT)
•  Number of children (NOC)
•  Coupling between object classes (CBO)
•  Response for class (RFC)
•  Lack of cohesion metric (LCOM)

34

Weighted methods per class
(WMC)

•  ci is the complexity of each
method Mi of the class
–  Often, only public methods are

considered
•  Complexity may be the McCabe

complexity of the method
•  Smaller values are better
•  Perhaps the average complexity

per method is a better metric

9/30/14

18

Weighted Methods per Class

•  Viewpoints from Chidamber and Kemerer:

-The number of methods and complexity of methods is an indicator
of how much time and effort is required to develop and
maintain the object

-The larger the number of methods in an object, the greater the
potential impact on the children

-Objects with large number of methods are likely to be more
application specific, limiting possible reuse

35 COMP 4004 – T2a

36

Depth of inheritance tree (DIT)

•  For the system under examination, consider the
hierarchy of classes

•  DIT is the length of the maximum path from the
node to the root of the tree

•  Relates to the scope of the properties
–  How many ancestor classes can potentially affect a

class

•  Smaller values are better

9/30/14

19

37

Number of children (NOC)

•  For any class in the inheritance tree, NOC is the
number of immediate children of the class
–  The number of direct subclasses

•  How would you interpret this number?

•  A moderate (??) value indicates scope for
reuse and high values may indicate an
inappropriate abstraction in the design

Number of Children

•  Viewpoints:
•  As NOC grows, reuse increases - but the abstraction may be diluted

•  Depth is generally better than breadth in class hierarchy, since it
promotes reuse of methods through inheritance

–  Really?? Open-closed principle? Does this not contradict heuristic for DIT?

•  Classes higher up in the hierarchy should have more sub-classes
then those lower down

•  NOC gives an idea of the potential influence a class has on the
design: classes with large number of children may require more
testing

38 COMP 4004 – T2a

9/30/14

20

Coupling between Classes
•  CBO is the number of collaborations between two

classes (fan-out of a class C)
–  the number of other classes that are referenced in the class C (where

a reference to another class, A, is a reference to a method or a data
member of class A)

•  Viewpoints:
•  High fan-outs denote class coupling to other classes/objects and thus are

undesirable. High fan-ins denote good designs and a high level of reuse
•  Not possible to maintain high fan-in and low fan outs across the entire

system
•  Excessive coupling indicates weakness of class encapsulation and may

inhibit reuse
•  High coupling also indicates that more faults may be introduced due to

inter-class activities 39 COMP 4004 – T2a

40

Response for class (RFC)
•  Mci: # of methods called

in response to a
message that invokes
method Mi
–  Fully nested set of calls

•  Smaller numbers are
better
–  Larger numbers indicate

increased complexity and
debugging difficulties

 If a large number of methods can be invoked in response to
a message, the testing and debugging of the class becomes
more complicated

9/30/14

21

41

Lack of cohesion metric
(LCOM)

•  Number of methods in a class that reference a
specific instance variable

•  A measure of the “tightness” of the code
•  If a method references many instance variables,

then it is more complex and less cohesive
•  The larger the number of similar methods in a

class the more cohesive the class is
•  “Cohesion of methods within a class is desirable,

since it promotes encapsulation” (??)

Lack of Cohesion in Methods

•  LCOM – poorly described in Pressman

•  Class Ck with n methods M1,…Mn

•  Ij is the set of instance variables used by
Mj

42 COMP 4004 – T2a

9/30/14

22

LCOM

•  There are n such sets I1 ,…, In
– P = {(Ii, Ij) | (Ii ∩ Ij) = ∅}
– Q = {(Ii, Ij) | (Ii ∩ Ij) ≠ ∅}

•  If all n sets Ii are ∅ then P = ∅

•  LCOM = |P| - |Q|, if |P| > |Q|
•  LCOM = 0 otherwise

43 COMP 4004 – T2a

Example LCOM

•  Take class C with M1, M2, M3
•  I1 = {a, b, c, d, e}
•  I2 = {a, b, e}
•  I3 = {x, y, z}
•  P = {(I1, I3), (I2, I3)} //those do not intersect
•  Q = {(I1, I2)} //those that do

•  Thus LCOM = 1

44 COMP 4004 – T2a

9/30/14

23

Explanation
•  LCOM is the number of empty intersections

minus the number of non-empty intersections

•  This is a notion of degree of similarity of
methods

•  If two methods use common instance variables
then they are (??) similar

•  LCOM of zero is not maximally cohesive
•  |P| = |Q| or |P| < |Q|

45 COMP 4004 – T2a

Some other cohesion metrics

46 COMP 4004 – T2a

9/30/14

24

Class Size

•  CS
– Total number of operations (inherited, private,

public)
– Number of attributes (inherited, private,

public)

•  May be an indication of too much
responsibility for a class

47 COMP 4004 – T2a

Number of Operations Overridden

•  NOO

•  A large number for NOO indicates
possible problems with the design

•  Poor abstraction in inheritance hierarchy

48 COMP 4004 – T2a

9/30/14

25

Number of Operations Added

•  NOA

•  The number of operations added by a
subclass

•  As operations are added the subclass
‘moves away’ from the parent class

•  As depth increases NOA should decrease

49 COMP 4004 – T2a

Method Inheritance Factor

MIF = .

•  Mi(Ci) is the number of methods inherited
and not overridden in Ci

•  Ma(Ci) is the number of methods that can
be invoked with Ci

•  Md(Ci) is the number of methods declared
in Ci

50 COMP 4004 – T2a

9/30/14

26

MIF

•  Ma(Ci) = Md(Ci) + Mi(Ci)
•  All that can be invoked = new or

overloaded + things inherited

•  MIF is [0,1]
•  MIF near 1 means little specialization
•  MIF near 0 means large change

51 COMP 4004 – T2a

Coupling Factor

CF= .

•  is_client(x,y) = 1 iff a relationship exists between
the client class and the server class. 0
otherwise

•  (TC2-TC) is the total number of relationships
possible (??)

•  CF is [0,1] with 1 meaning high coupling
52 COMP 4004 – T2a

9/30/14

27

Polymorphism Factor

PF = .

•  Mn() is the number of new methods

•  Mo() is the number of overriding methods

•  DC() is the number of descendent classes of a base class

•  The factor is computed as the number of methods that redefine
inherited methods, divided by maximum number of possible distinct
polymorphic situations

53 COMP 4004 – T2a

Operational Oriented Metrics

•  Average operation size (LOC, volume)

•  Number of messages sent by an operator

•  Operation complexity – cyclomatic

•  Average number of parameters/operation
–  The larger the number the more complex the

collaboration

54 COMP 4004 – T2a

9/30/14

28

Measuring Encapsulation?

•  Lack of cohesion indicates potential lack of
encapsulation

•  Consider % of public and protected
– What would this indicate??

•  Public access to data members
– What would this indicate??

55 COMP 4004 – T2a

Inheritance

•  Number of root classes

•  Fan in – multiple inheritance

•  NOC, DIT, etc.

56 COMP 4004 – T2a

9/30/14

29

Appendix

57 COMP 4004 – T2a

58

Main Results
•  Metric definitions – first suite:

9/30/14

30

59

Main Results
•  Metric definitions – second suite:

60

Main Results
•  Metric definitions – third suite:

9/30/14

31

61

Main Results
•  Software examined: Mozilla Rhino – an

open source implementation of JavaScript
written in Java

•  An example of the use of the agile
software development in open source
software

•  Six Rhino versions were analyzed in this
case study

•  Delivery cycle time from 2 to 16 months

62

Main Results
•  Hypotheses:

•  Hypothesis 1: OO metrics can identify fault-prone
classes in traditional and highly iterative or agile
developed OO software during its initial delivery

•  Hypothesis 2: OO metrics can identify fault-prone
classes in multiple sequential releases of OO
software systems developed and using highly
iterative or agile software development process

9/30/14

32

63

Main Results
•  Model validation:

64

Main Results

•  CK and QMOOD suites contain similar components and
produce statistical models that are effective in detecting
error-prone classes

•  MOOD metrics suite are not good class fault-proneness
predictors

•  The produced models can be useful in assessing quality
in OO classes developed using modern highly iterative
or agile software development processes

