
10/6/13

1

1 1

xUnit Test
Patterns

Adapted by JP from:

Negar Koochakzadeh

Venkat Mantripragada

AND

Meszaros’s book

2

Agile Development Cycles

edit

Story/task

Daily Build

Task

Task

Test

Test

User Stories Working
Software

10/6/13

2

3

System Under Test
  It may have Depended-on components (DOCs)

4 4

Four phase testing

Image From: xunit Test Patterns, G. Meszaros

10/6/13

3

5

Test Case ‘Generation’
  Recorded Test (esp. for GUI)

  When to use:
  We do not expect a lot of changes for the system.

  Scripted Test
  We write it by hand

  ‘Automated’ Test case generation
  Model-based testing

In this presentation we discuss the art of writing tests.

6

Recorded Test

Image From: xunit Test Patterns, G. Meszaros

10/6/13

4

7

Scripted Test

Demo
Image From: xunit Test Patterns, G. Meszaros

8

Image SRC: www.dilbert.com

Right Attitude towards Testing?

10/6/13

5

9 9

Terminology

Is the BB vs. WB distinction relevant to TDD??

10

Coding Objectives Comparison

10

From: xunit Test Patterns, G. Meszaros

10/6/13

6

11 11

A Sobering Thought

Answer: Test Automation!!

12 12

Goals of test automation
  Improve quality
 Understand the SUT
  Reduce the risk (of error, of omission, of delay)
  Easy to run
  Easy to write
  Easy to maintain

10/6/13

7

13 13

Why are Tests so Important?

14

Economics of Maintainability

14 Image From: xunit Test Patterns, G. Meszaros

10/6/13

8

15 15

Principles in test automation

  TDD: Write the test first
  Each test should be:

  Small and simple
  Independent of other tests
  Repeatable
  Self-checking Fully Automated

  First do “State verification” (controllability)
  Make sure you are in the right state to test what you want to test

 and then “Behavior Verification” (observability)

16 16

Benefits of Automated Tests

10/6/13

9

17 17

? Which part can be automated?

Image From: xunit Test Patterns, G. Meszaros

18 18

Common features of XUnit family
  Specify a test as a test Method
  Specify the expected results within the test method in

the form of calls to Assertion Methods
  Aggregate the tests into test suites that can be run as a

single operation
  Run one or more tests to get a report on the results of

the test run.

10/6/13

10

19 19

Some XUnit Tools
  C: CUnit, Check, RCUNIT
  C++: CPPUnit, CppUnitLite, CxxTest
  Delphi: DUnit
  Java: JUnit, TestNG
  JavaScript: JSUnit
  Matlab: mlUnit
  .Net: csUnit, NUnit, MbUnit, xUnit
  PHP: PHPUnit, Testilence
  Python: PyUnit, Trial

20

A Recipe for Success
1. Write some tests

  start with the easy ones!
2. Note the Test Smells that show up
3. Refactor to remove obvious Test Smells

  Apply appropriate xUnit Test Patterns
4. Write some more tests

  possibly more complex
5. Repeat from Step 2 until:

  All necessary tests are written
  No smells remain

20

10/6/13

11

21

What is a Test Smell?

 A Smell is a symptom of a problem in a test code.

 Not necessarily the actual cause
 There may be many possible causes for the symptom
 Some root causes may contribute to several different
 smells

 Not all problems are considered as smells

 Smells must pass “Sniffability test” (ie be obvious to
detect)

22

What is a Xunit Test Pattern?

10/6/13

12

23 23

Kinds of Test Smells
  Code Smells

  Recognized by looking at test code

  Behavior smells
  Effects the outcome of tests as they execute

  Project Smells
  Recognized by project managers. Root cause can be one or more

code/ behavioral smells

24 24

Code Smells
A problem visible when looking at test code:
  Tests are hard to understand
  Tests contain coding errors that may result in

  Missed bugs
  Erratic Tests

  Tests are difficult or impossible to write
  No test API on SUT
  Cannot control initial state of SUT
  Cannot observe final state of SUT

  Sniff Test
  Problem must be visible to test automater or test reader

10/6/13

13

25 10/6/13 25

General Code Smells
  Obscure Test
  Conditional Test Logic
  Hard-to-Test Code
  Test Code Duplication
  Test Logic in Production

26 26

Obscure Test
“Test is hard to understand”
  Common Causes:
 Verbose Test

  So much test code that it obscures the test intent
 Eager Test

  Several tests merged into one Test Method
 General Fixture

  Fixture contains objects irrelevant for this test
 Obtuse Assertion

  Using the wrong kind of assertion
 Hard-Coded Test Data

  Lots of “Magic Numbers” or Strings used when creating
 objects

10/6/13

14

27

Eager Test
 public void testFlightMileage_asKm2() throws Exception
 { // set up fixture // exercise constructor
 Flight newFlight = new Flight(validFlightNumber);
// verify constructed object
 assertEquals(validFlightNumber, newFlight.number);
 assertEquals("", newFlight.airlineCode); assertNull(newFlight.airline);
 newFlight.setMileage(1122); // set up mileage
 int actualKilometres = newFlight.getMileageAsKm(); // try mileage translator
 int expectedKilometres = 1810;
 assertEquals(expectedKilometres, actualKilometres);
 newFlight.cancel(); // now try it with a canceled flight
 try { newFlight.getMileageAsKm(); fail("Expected exception"); }
 catch (InvalidRequestException e)
 { assertEquals("Cannot get cancelled flight mileage", e.getMessage()); }

 }

Testing too
many

functionalities

28

Irrelevant Information
public void testAddItemQuantity_severalQuantity () {
final int QUANTITY = 5;
Address billingAddress = new Address("1222 1st St SW",
"Calgary", "Alberta", "T2N 2V2", "Canada");
Address shippingAddress = new Address("1333 1st St SW",
"Calgary", "Alberta", "T2N 2V2", "Canada");
Customer customer = new Customer(99, "John", "Doe", new
 BigDecimal("30"), billingAddress, shippingAddress);
Product product = new Product(88, "SomeWidget", new
BigDecimal("19.99"));
Invoice invoice = new Invoice(customer);
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY);

Hard to
 determine
Which val

Effects outcome

10/6/13

15

29 29

Obscure Test
 Indirect Testing

  Interacting with the SUT via other software
  A cause of Fragile Tests (Behavior Smell)

 Mystery Guest
  Lots of “Magic Numbers” or Strings used as keys to database.
  “Lopsided” feel to tests

  either Setup or Verification of outcome is external to test

30 30

Conditional Test Logic
  Tests containing conditional logic (IF statements or loops)

  Hard to verify correctness.

  A cause of Buggy Tests (Project Smell)

10/6/13

16

31

Conditional Test Logic
actual = null; // verify Vancouver is in the list
 i = flightsFromCalgary.iterator();
 while (i.hasNext())
 {
 FlightDto flightDto = (FlightDto) i.next();
 if (flightDto.getFlightNumber().equals

(expectedCalgaryToVan.getFlightNumber())) {
 actual = flightDto;
 assertEquals("Flight from Calgary to Vancouver",

 expectedCalgaryToVan, flightDto); break; }
 }
 }

Which code
path is the
one actually
executed

32 32

Test Code Duplication
  Same code sequences appear many times in many tests

  More code to modify when something changes

  A cause of Fragile Tests (Behavior Smell)

10/6/13

17

33

Test Code Duplication
public void testInvoice_addTwoLineItems_sameProduct()
 { Invoice inv = createAnonInvoice();
 LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
 LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
 inv.addItemQuantity(product, QUANTITY1);
 inv.addItemQuantity(product, QUANTITY2);
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 2);
 LineItem actual = (LineItem)lineItems.get(0); // Verify first item
 assertEquals(expItem1.getInv(), actual.getInv());
 assertEquals(expItem1.getProd(), actual.getProd());
 assertEquals(expItem1.getQuantity(), actual.getQuantity());
 actual = (LineItem)lineItems.get(1); // Verify second item
 assertEquals(expItem2.getInv(), actual.getInv());
 assertEquals(expItem2.getProd(), actual.getProd());
 assertEquals(expItem2.getQuantity(), actual.getQuantity());
 }

34 34

Test Logic in Production
“The production code contains logic that should be exercised

only during tests”

  Test Hook
  For Tests Only
  Test Dependency in Production
  Equality Pollution

10/6/13

18

35 35

Hard to Test Code
 Code can be hard to test for a number of reasons:

  Too closely coupled to other software
  No interface provided to set state and/or to observe state
  etc.

Root Cause is lack of Design for Testability
  Comes naturally with Test-Driven Development
  Likely to have to be retrofitted to legacy software

Temporary Workaround is Test Hook
  Becomes Test Logic in Production (code smell) if not removed

36 36

Test Double Pattern

10/6/13

19

37 37

Testability Patterns

38 38

Behavior Smells
  A problem seen when running tests.

  Tests fail when they should pass
  or pass when they should fail (rarer)

  The problem is with how tests are coded
  not a problem in the SUT

  Sniff Test:
  Detectable via compile or execution behavior of tests

10/6/13

20

39 39

General Behavior Smells
  Assertion Roulette
  Erratic Test
  Fragile Test
  Frequent debugging
  Manual Intervention
  Slow Tests

40 40

Assertion Roulette
  Symptom:

  One or more unit tests are failing in the automated build and
you cannot tell why without rerunning the tests in your IDE.
When you cannot reproduce the problem in your IDE you
have no idea what is going wrong.

  Impact:
  It takes longer to determine what is wrong with the code.
  Bugs that cannot be reproduced cannot be fixed.

  Root Cause:
  Missing/Unclear Assertion Messages

10/6/13

21

41 10/6/13 41

Erratic Test
  Interacting Tests

  When one test fails, a bunch of other tests fail for no apparent
reason because they depend on other tests’ side effects

  Unrepeatable Tests
  Tests can’t be run repeatedly without intervention

  Test Run War
  Seemingly random, transient test failures
  Only occurs when several people testing simultaneously

  Resource Optimism
  Tests depend on something in the environment that isn’t available

  Non-Deterministic Tests
  Tests depend on non-deterministic inputs

42 10/6/13 42

Fragile Tests
Causes:
  Interface Sensitivity

  Every time you change the SUT, tests won’t compile or start
failing

  You need to modify lots of tests to get things “Green”again
  Greatly increases the cost of maintaining the system

  Behavior Sensitivity
  Behavior of the SUT changes but it should not affect test

outcome
  Caused by being dependent on too much of the SUT’s

behavior.

10/6/13

22

43 10/6/13 43

Fragile Tests
Causes:
  Data Sensitivity

  Alias: Fragile Fixture
  Tests start failing when a shared fixture is modified e.g. New

records are put into the database

  Context Sensitivity
  Something outside the SUT changes e.g. System time/date,

contents of another application

44 10/6/13 44

Frequent Debugging
  Symptom:

  One or more tests are failing and you cannot tell why without
  resorting to the debugger. This seems to be happening a lot

lately!
  Impact:

  Debugging is a very time-intensive activity.
  While it may help you find the bug, it won’t keep it from

coming back.
  Root Causes:

  Missing Unit Tests
  Poor Assertion Messages

10/6/13

23

45 10/6/13 45

Manual Intervention
  Symptom:

  A test requires a person to perform some manual action each time it
is run

  Impact:
  May result in frequent debugging
  High test maintenance cost
  Makes it impractical to have a fully automated Integration build

and regression test process
  Causes:

  Manual Fixture Setup
  Manual Result Verification
  Manual Event Injection

46 10/6/13 46

Slow Tests
“It takes several minutes to hours to run all the tests”

  Impact
  Lost productivity caused by waiting for tests
  Lost quality due to running tests less frequently

  Causes
  Slow Component Usage e.g. Database
  Asynchronous Test e.g. Delays or Waits
  General Fixture e.g. too much fixture being setup

10/6/13

24

47 10/6/13 47

Project Smells

  A Test Smell that a project manager is likely to observe
  Symptoms are typically developer behavior or feedback

from other organizations
  There may be metrics that point out the smell

  e.g. Number of bugs found in Acceptance Test

  Root cause is often Code or Behavior Smells
  Cannot be addressed directly

  Solution is to address underlying smell's

48 10/6/13 48

General Project Smells
  Buggy Tests
  Developers Not Writing Tests
  High Test Maintenance Cost
  Production Bugs

10/6/13

25

49 10/6/13 49

Buggy Tests
  Symptoms:

  Tests are failing when they shouldn’t (the SUT works fine)

  Impact:
  No one trusts the tests any more

  Possible Causes:
  Erratic Tests
  Fragile Tests
  Untested Test Code

50 10/6/13 50

Developer’s Not Writing Tests
  Symptoms:

  No tests can be found when you ask to see the
  unit tests for a task,
  customer tests for a User Story,

  Lack of clarity about what a user story or task really means
  Impact:

  Lack of safety net
  Lack of focus

  Possible Causes:
  Hard to Test Code?
  Not enough time?
  Don’t have the skills?
  Have been told not to?
  Don’t see the value?

10/6/13

26

51 10/6/13 51

High Maintenance Costs
  Symptoms:

  A lot of effort is going into maintaining the tests
  Impact:

  Cost of building functionality is increasing
  People are agitating to abandon the automated test

  Possible Causes:
  Erratic Test
  Fragile Test
  Buggy Test
  Obscure Test
  Hard to Test Code

52 10/6/13 52

Production Bugs
  Symptoms:

  Bugs are being found in production
  Impact:

  Expensive trouble-shooting
  Development team’s reputation is in jeopardy

  Possible Causes:
  Lost/Missing Tests
  Slow Tests
  Untested Code
  Hard-to-Test Code
  Developers Not Writing Tests

10/6/13

27

53 10/6/13 53

Effective test automation
 After test generation by considering all paths and the

features and organization specified, our test still may
have these bad smells:

  Slow Tests
  Test Code Duplication
  Obscure Tests
  Buggy Tests

 so we need Refactoring.

