
Carleton University TR SCE-01-01- Version 4 Revised June 2002

1

A UML-Based Approach to System Testing

Lionel Briand, Yvan Labiche
Software Quality Engineering Laboratory

Systems and Computer Engineering Department, Carleton University,
1125 Colonel By Drive, Ottawa, Canada, K1S 5B6

{briand, labiche}@sce.carleton.ca

ABSTRACT

System testing is concerned with testing an entire system based on its specifications. In

the context of object-oriented, UML development, this means that system test

requirements are derived from UML analysis artifacts such as use cases, their

corresponding sequence and collaboration diagrams, class diagrams, and possibly Object

Constraint Language (OCL) expressions across all these artifacts. Our goal here is to

support the derivation of functional system test requirements, which will be transformed

into test cases, test oracles, and test drivers once we have detailed design information. In

this paper, we describe a methodology in a practical way and illustrate it with an

example. In this context, we address testability and automation issues, as the ultimate

goal is to fully support system testing activities with high-capability tools.

Keywords: Testing of object-oriented systems, System testing, UML, Use Cases,

Sequence Diagrams, Testability

1 INTRODUCTION

System testing is concerned with testing an entire system based on its specifications, and

involves several activities such as functional testing (testing from behavioral descriptions

of the system) and performance testing (response time and resource utilization) [5]. In

other words, the implementation under test is compared to its intended specification. In

this article, we concentrate on functional system testing and we are thus interested in

deriving test cases from the analysis stage [19]. In the context of object-oriented, UML

development, this means that we use UML analysis artifacts to derive system test

requirements, that is a precise specification of what test scenarios should be executed. For

example, use cases, their corresponding sequence or collaboration diagrams, and class

diagrams can be used as a source of relevant information for testing purposes.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

2

As mentioned in [5], little has been written about system testing for object-oriented

systems as it is often believed that existing approaches (e.g., [4, 15]) apply with no loss of

generality to both conventional and object-oriented systems (e.g., [12]). However, though

system testing techniques are in principle implementation-independent, they depend on

the notations used to represent the system specifications. In the context of UML-based

object-oriented analysis, it is then necessary to develop techniques to derive system test

requirements from analysis models such as use case models, interaction diagrams, or

class diagrams. A recent work [2] proposes to use message sequences between objects

from UML sequence diagrams and then combine it with category-partition testing [18].

The algorithms to generate message sequences and identify oracles are not described but

this is nevertheless an attempt to integrate existing black-box testing techniques in the

UML framework. [16] proposes test criteria to generate test cases based on statecharts.

However, in most methodologies, statecharts are used to model state-dependent classes or

small class clusters and, therefore, it does not apply to system testing. In [17], the authors

adapt traditional data-flow coverage criteria (e.g., all definition-uses) in the context of

UML collaboration diagrams but do not address test case generation. Last, some of the

earlier approaches are interesting but too general as they lack detailed, operational

descriptions1.

The small amount of work regarding object-oriented system testing is also due to the fact

that UML analysis models vary significantly from one development method to another.

As there is no well-accepted standard method for object-oriented development, some

variability in the analysis models’ content and structure is unavoidable. For example, [2]

does not make specific assumptions about the usage of UML use cases and sequence

diagrams, e.g., use of guard conditions, modeling and indexing of alternative scenarios,

and it is a reason why it is then difficult to propose algorithms to automate their testing

approach. However, most development methods assume that Analysis produces use case

diagrams, use case descriptions in some standard format, sequence and/or collaboration

diagrams associated with each use case, a class diagram including application domain

1 For instance in OOSE [12], system testing from use cases is not described in great details. During system
testing, each use case is initially tested separately: “Basic course” and “alternative course” tests are derived.
When all use cases have been tested separately, the entire system is tested as a whole. Then several use
cases are executed in parallel.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

3

objects, and possibly a set of contracts for each operation (pre- and post- conditions) and

class (invariant). With the exception of use cases, this description is, for example, similar

to what the Fusion method [9] proposed before UML became a standard.

Based on analysis artifacts that we precisely define in Section 2, our goal is to support the

derivation of test requirements. At a later point in the development process, using test

requirements and detailed design information, test cases, test oracles, and test drivers can

be developed. Test requirements can be generated early, after analysis artifacts are

completed. This is very important as they help devising a system test plan, size the

system test task, and plan appropriate resources early in the life cycle. Once the low level

design is complete, when detailed information is available regarding both application

domain and solution domain classes, then test requirements can be used to derive test

cases, test oracles, and test drivers.

One important issue is the one of testability: The degree to which a model (in our case, a

UML diagram) has sufficient information to allow automatic generation of test cases [5].

Since the use of the UML notation is not constrained by any particular, precise method,

one can find a great variability in terms of the content and form of UML artifacts,

whether at the analysis or design stages. However, the way UML is used determines the

testability of the produced UML artifacts. We therefore address the testability

requirements we need to impose on UML artifacts − and therefore on any development

methodology − to be able to support functional system testing efficiently (Section 4).

Another important aspect is automation. Large systems are inherently complex to test and

require, regardless of the test strategy, large numbers of test cases. If a system testing

method requires the tester to perform frequent, complex manual tasks, then such a

method is not likely to be usable in a context where time to market is tight and qualified

personnel is scarce. Therefore, the potential for automation of a test methodology is an

important criterion to consider (Section 5).

The paper starts by providing an overview of our methodology for system testing,

referred to as the TOTEM2 methodology (Section 2). Section 3 then gets into the core of

2 This is named after the project that this work is part of: http://www.sce.carleton.ca/Squall/Totem/.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

4

the paper, describing the procedure we use to derive functional test requirements, using a

system analysis example that is further detailed in the appendices. Section 4 summarizes

the testability requirements of our approach and justifies the decisions and trade-offs that

were made. Section 5 is dedicated to automation issues. Section 6 then concludes and

outlines future work.

2 OVERVIEW OF THE TOTEM SYSTEM TEST METHODOLOGY

The TOTEM system test methodology, as far as deriving test requirements is concerned,

is based on the artifacts produced at the end of the Analysis development stage. These

artifacts include:

- Use case diagram;

- Use case descriptions;

- Sequence or collaboration diagrams for each use case;

- Class diagrams composed of application domain classes;

- A data dictionary that describes each class, method, and attribute.

In addition, as discussed further in Section 4, we assume each class is characterized by a

class invariant expressed with OCL and each operation is described by a contract in OCL,

detailing pre- and post-conditions [21].

Those artifacts are similar, though we use a different terminology, with what is proposed

by Fusion [9]. Furthermore, as discussed in detail in Section 3, use cases have sequential

constraints that have to be specified. Such constraints are the direct result of the logic of

the business process the system purports to support3. In other words, use case scenarios

are usually not executed in arbitrary orders. Some use case scenarios need to be executed

before others. We can think, for example, of a library system4 where a user needs to

register before being able to borrow a book. Registering and borrowing correspond to

different use cases and, for a given library user, one has to be performed before the other.

Therefore, in addition to the artifacts above, we will see that one of our testability

3 This aspect bears some similarity with the notion of life-cycle model in Fusion.
4 We use a Library system as a running example throughout the paper, as it is readily understandable by all
readers. Details regarding the analysis artifacts are provided in the appendices.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

5

requirements is to specify such sequential constraints, for example in the form of an

activity diagram [8].

Figure 1 summarizes the steps of the TOTEM system testing methodology. In this paper,

we will focus on activities A2, A3, and A5 and leave the evaluation of their relative cost

to future work. A1 is the first step where we check that the provided UML diagrams are

complete and fulfill our testability requirements. A4 is not addressed here though it is an

important contribution to test requirements [5] and is to be addressed by future work.

However, activities A2, A3, and A5 constitute by themselves a self-contained

methodology and the fact that A4 is missing will not affect the validity and usefulness of

what we present in this paper.

A1: Check completeness, correctness,
consistency of the Analysis model

A4: Derive test requirements
from system class diagram

A2: Derive Use Case
dependency sequences

A3: Derive test requirements from
system sequence diagrams

A5: Derive variant sequences

A6: Derive requirements for system testing

A7: Derive test cases for system testing

A8: Derive test oracles and harness

Figure 1 – TOTEM System Test Steps (activity diagram)

Once testability is ensured (A1), we go on to derive test requirements from the different

artifacts (from A2 to A5). Then these requirements are merged into one set of test

requirements, thus avoiding redundancy and combining test requirements into one test

plan. A7 and A8 are concerned with generating the test cases and code for oracles, and

embedding them into executable test drivers. These steps are typically performed at a

later stage once detailed design information is available and they will not be discussed

Carleton University TR SCE-01-01- Version 4 Revised June 2002

6

here. One important objective of TOTEM is to provide a systematic methodology to

perform the activities presented above and to automate them to the maximum extent

possible.

3 GENERATING SYSTEM TEST REQUIREMENTS AT THE COMPLETION

OF ANALYSIS

This section covers the steps A2, A3, and A5 of the TOTEM system test methodology in

a chronological order, covering each activity with one subsection.

3.1 Generating Use Case Sequences

Use cases are a first good source for deriving system test requirements. After all they

represent the high level functionalities provided by the system to the user . But they are

usually not independent. Not only they may have <<extend>> and <<include>>

dependencies but they may also have sequential dependencies [5, 8] which stem from the

logic of the business process the system supports. When planning test cases for use cases,

we need to identify possible execution sequences of use cases. We aim at “covering”

such use case sequences during testing as they may trigger different failures.

In this section, we will provide an overview of the principles underlying the

representation and generation of possible use case test sequences. These principles are

formalized by the description of algorithms provided in Appendix H. In a subsequent

subsection, we provide a detailed, illustrative example based on the Library system.

3.1.1 Representation of Use Case Sequential Dependencies

We represent sequential dependencies between use cases by the means of an activity

diagram for each actor in the system [8]. Such a representation will facilitate the

identification and visualization of these dependencies by application domain experts, as

activity diagrams are easy to interpret.

In such a diagram, the vertices are use cases and the edges are sequential dependencies

between the use cases: An edge between two use cases (from a tail use case to a head use

case) specifies that the tail use case must be executed in order for the head use case to be

executed, but the tail use case may be executed without any execution of the head use

case. In addition, specific situations require that several use cases be executed

Carleton University TR SCE-01-01- Version 4 Revised June 2002

7

independently (without any sequential dependencies between them) for another use case

to be executed, or after the execution of this other use case. This is modeled by join and

fork synchronization bars in the activity diagram, respectively.

To be more precise, the vertices of our activity diagram are extended use cases, as

described in [5]. Whether explicitly specified or not, use cases have parameters that

determine the behavior they can exhibit, as well as output values (results of their

execution). Extended use cases require Formal use case parameters to be defined by

providing their type (either basic UML type or user-defined type) and kind, i.e., whether

they are in, out, or inout, like for operations. Furthermore, Actual use case parameters

are represented in the activity diagram by simply listing them between brackets. The

reason to have actual parameters in this context is to show the dependencies between

parameters during the execution of a path in the activity diagram, e.g., an out parameter

from one use case being an in parameter of a subsequent use case.

The use cases are grouped into swimlanes5, according to their responsibilities in terms of

manipulated objects (application domain classes). Each swimlane represents what is

referred to as Entity-life histories in [11]. Entity-life histories describe the life cycle of an

application domain object (in the Analysis class diagram) from their creation in the

system, through all the functions being performed on them, to their destruction. If not

related by cross-swimlanes sequential dependencies or synchronizations (or their

transitive closure), use cases from different swimlanes are independent, and thus can

occur independently, in any order. This is modeled by the concept of interleaving when

modeling sequences in the Fusion method [9].

An example from our Library system (see use case diagram in Appendix A) can be found

in Figure 2 (use cases are identified by their name and also, for brevity, by a capital letter

from A to K). Formal parameters are provided for each use case in Appendix B. Such

definitions should be part of any template to define use cases so as to make them

testable [5]. Actual parameters, such as uid (user ID), are visible within each action state

in the activity diagram and can be mapped to their corresponding formal parameter based

on their ordering.

5 Swimlanes partition an activity diagram to assign responsibilities for actions to objects [6].

Carleton University TR SCE-01-01- Version 4 Revised June 2002

8

Figure 2 – Use Case Sequential Constraints for the Librarian (activity diagram)

This activity diagram is built for the Librarian (actor) and, in general, one diagram

should be provided for each actor. If we use this example to illustrate some of the

concepts presented above, the sequential dependency between AddTitle and

RemoveTitle specifies that AddTitle must be executed first in order to execute

RemoveTitle, but the execution of AddTitle does not require the execution of

RemoveTitle. Both AddUser and AddItem need to be executed before BorrowLoanCopy

can, as modeled by a join synchronization. Regarding actual parameters, isbn is required

as an input by RemoveTitle (and matches formal parameter isbn: Integer in Appendix

B) and uid and itemid are input parameters required by the BorrowLoanCopy use case

(matching formal parameters uid: Integer and itemid: Integer).

3.1.2 Generation of Use Case Sequences

In this context, our objective is to generate legal sequences of use cases (according to the

sequential dependencies specified in the activity diagram), in a fully automated way.

Those use case sequences will constitute the first component of the system test

requirements.

Monitor
System

User Loan Item Library

Add Title
(isbn)

Remove Item
(itemid)

Remove Title
(isbn)

Borrow
LoanCopy

(uid, itemid)

Renew Loan
(uid,itemid)

Return
LoanCopy

(uid, itemid)

Add User
(uid)

Remove User
(uid)

Title

Add Item
(isbn, itemid)

Collect Fine
(uid, itemid)

A I

H

G

F

E

D

C

B

K

J

Carleton University TR SCE-01-01- Version 4 Revised June 2002

9

Paths in the activity diagram represent a possible life history for an object type (e.g.,

path6 AddUser.RemoveUser for class User) or a combination of object types (e.g, path

AddTitle.AddItem.RemoveItem.RemoveTitle for classes Title and User). The

activity diagram in Figure 2 specifies an infinite number of paths, a property due to the

loop between use cases CollectFine and RenewLoan. However, given that a loan can be

renewed only twice, the number of paths between use cases BorrowLoanCopy and

ReturnLoanCopy equals 14, thus leading to 130 paths in the whole activity diagram7.

Note that when the maximum number of times a loop can be taken is too high (thus

leading to too many paths), we can use a strategy similar to what is used to test loops in

code (i.e., we can make sure that each loop is bypassed – if possible, taken only once, a

representative or average number above 1, and a maximum number of times).

Paths are first determined through a simple depth-first search (that accounts for loops) in

the directed graph corresponding to our activity diagram. Then we need to determine

dependencies in terms of actual parameter values between the use cases in a path. For

instance, in path AddTitle.AddItem.RemoveItem.RemoveTitle, parameter isbn for

use case AddItem must be identical to parameter isbn in AddTitle. Similarly, the

itemid (resp. isbn) removed in use case RemoveItem (resp. RemoveTitle) must be the

one added in AddItem (resp. AddTitle). Such dependencies among actual parameter

values are needed in order to identify the data flow between use case executions,

something that will be necessary for the generation of test input data. They can simply be

determined based on the actual parameters in our activity diagram, such parameters

serving as placeholders for actual values. We can simply document such dependencies by

adding actual parameters into the use case sequences, which are referred to as

parameterized use case sequences. Using the example path above, we obtain:

AddTitle(isbn).AddItem(isbn,itemid).RemoveItem(itemid).RemoveTitle(isbn)

6 We use ‘.’ to denote the sequence of two use cases in a path (like regular expressions).
7 Given that node E can appear at the most twice in a path, there are 14 possible paths between nodes D and
F (a tree representing these paths is easy to build). Nodes A, I, and G (with I always before G) must be
taken before D, thus leading to 3 possibilities (A.I.G, I.A.G, I.G.A). The same situation occurs after node F,
with nodes C, H, and J. Then there are 3 x 3 x 14 = 126 paths involving all nodes from A to J. There exist
four other paths: K, I.J, I.G.H.J, and A.C.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

10

If we execute any path between AddTitle and RemoveTitle, such as the one above

which is an output of the depth first search, use cases AddTitle and AddItem are

executed at most once. That is, at best, each title corresponds to only one item in the

library. If we want to test our Library system under more realistic situations, we

obviously need more than one item per title and more than one loan per user and item.

We also need to proceed with large number of users, items, and loans if we want to test

the scalability of our system.

As a consequence, our construction of use case sequences may need to instantiate several

times, with different values, the parameters of a number of use cases specified by the

activity diagram. The number of times use case parameters must be instantiated is

determined by the information provided by tester in terms of the scale of the test to take

place, e.g., the (average) number of users, or items per title. In the simple example where

2 items and 1 title must be created, we get two instantiated use case sequences (S1, S2)

from the parameterized sequence above, where title1, item1, and item2 are symbolic

values8 for the isbn and itemid parameters:

S1:AddTitle(title1).AddItem(title1,item1).RemoveItem(item1).RemoveTitle(title1)

S2:AddTitle(title1).AddItem(title1,item2).RemoveItem(item2).RemoveTitle(title1)

Similarly, the tester must indicate constraints on dependency loops, e.g., in our Library

system use case RenewLoan can be executed at most twice for a particular loan.

Furthermore, the test strategy for loops needs to be specified in ways that are similar to

code loop testing, as discussed above. This is necessary to determine which use case

sequences need to be tested.

At this point, all instantiated use case sequences need to be combined to generate

complete sequences to be tested. This is due to the fact that the sequences we have

generated so far are incomplete as synchronizations were not accounted for. For our

simple example above (S1,S2), a possible combined sequence is:

AddTitle(title1).AddItem(title1,item1).AddItem(title1,item2).

RemoveItem(item2).RemoveItem(item1).RemoveTitle(title1)

8 They are just place holders for values to be assigned based on formal parameters type analysis.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

11

The combination of instantiated use case sequences must be carefully performed as it

must preserve the use case dependencies and avoid the duplication of instantiated use

cases. This can be formalized by the concept of interleaving [9] (where || denotes

interleaving in a sequence) and implemented as such to derive possible sequences. In our

simple example, the two sequences (S1,S2) would be combined as:

AddTitle(title1).((AddItem(title1,item1).RemoveItem(item1))

|| (AddItem(title1,item2).RemoveItem(item2))).RemoveTitle(title1)

Let us take a more general example and suppose we have to combine the two following

sequences:

prefix1.X.middle1.Y.suffix1

prefix2.X.middle2.Y.suffix2

where X and Y represent common instantiated use cases and the prefix/middle/suffix

keywords represent any subsequence. It is implied that prefix1 and prefix2 (and

middle1 and middle2, and suffix1 and suffix2, respectively) are instantiated use case

sequences that do not have common elements (same use case with the same symbolic

values). They show different indices so as to express that their corresponding

subsequences are different. In this situation, the resulting set of sequences to test can be

modeled and derived using interleaving:

(prefix1 || prefix2).X.(middle1 || middle2).Y.(suffix1 || suffix2)

From this example, we can understand what the general procedure to combine

instantiated use case sequences will look like. Common instantiated use cases will be

identified across pairs of sequences and, for each pair, all the subsequences in between

each common, instantiated use cases will be combined using interleaving. This procedure

will be performed for all pairs of sequences extracted from the activity diagram.

Furthermore, when performing the interleaving to generate sequences, we will only

sample a subset of all possible resulting sequencing in order to avoid a combinatorial

explosion.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

12

3.1.3 Summary

To summarize (Figure 3), parameterized use case sequences are derived from the activity

diagram. Given the information provided by the tester about the scale of testing, these

sequences are instantiated (with symbolic values) and then combined using an iterative

procedure in order to obtain the final instantiated use case sequences to be tested. In a

subsequent step, which is out of the scope of this paper, actual values for these symbolic

values will have to be (e.g., randomly) generated by analyzing the type of the

corresponding use cases’ formal parameters.

Sequential Constraints (Activity Diagram)

Test Scale Information

1 Extract UC Sequences

2 Analyze Parameter Dependencies

Parameterized UC Sequences

Instantiated UC Sequences (incomplete)

Complete Test UC Sequences

3 Extract Test Sequences

Step 1

Step2

Step3

Figure 3 –Steps for Extracting Use Case (UC) sequences to be tested

All three activities in Figure 3 must be automated. We discuss below the complexity of

doing so:

1 The derivation of parameterized use case sequences from the (augmented) UML

activity diagram can easily be done with a depth first search through a directed graph

capturing the activity diagram in Figure 2.

2 The derivation of instantiated use case sequences from the test scale information

provided by the tester does not require any complex algorithm either. Recall that we

Carleton University TR SCE-01-01- Version 4 Revised June 2002

13

want to cover all parameterized test sequences. In addition, we want now to “cover”

as many instances of each class as specified by the tester. Typically, parameterized

sequences will be instantiated several times so as to fulfill the test scale specification.

3 This is the most complex activity to automate. It requires the identification of

common instantiated use cases across sequences, which indicate either a

synchronization or a common initial subsequence. Subsequences between

synchronizations are then interleaved to generate complete use case sequences.

However, as we will see, it is not practical, in most cases, to generate all possible

sequences so some random sampling is likely to be necessary.

We will now illustrate the details of each step by using our working example.

3.1.4 Example

In this section we show how, in the case of our Library system, the three activities in

Figure 3 produce complete use case sequences to be tested. In Step 1, parameterized use

case sequences are derived from a directed graph (Figure 4) corresponding to the activity

diagram that describes sequential dependencies between use cases (Figure 2). Such a

directed graph can be derived by transforming join and fork synchronizations into regular

edges, e.g, join synchronization from activities A and G to activity D in Figure 2 are

transformed into an edge from A to D and an edge from G to D (Figure 4).

From this directed graph, a depth-first search, that takes into account that edge E (use

case RenewLoan) cannot be taken more than twice, produces 60 paths that we show as a

tree in Figure 5. Those path represent possible sequences of parameterized use cases that

can be executed. In this figure, any path that begins with Start.A.D eventually reaches

F and continues with either C.End or H.J.End. Due to space constraints, we omitted

this last alternative in all these paths (denoted with ‘…’). For the same reason, all the

branches from D are omitted in the paths that start with Start.I.G.D.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

14

Start

IA

G

J

H

D

EB

End

F

C

K

Start

IA

G

J

H

D

EB

End

F

C

K

Figure 4 – Directed Graph corresponding to activity diagram in Figure 2.

Start

A

End D

I K

EndG J

H

J

End

End

…

DC

B F

C H

J

End

…

E

B EF

… B F

…F

…

EF

B F

…F

…

F

…

E

B EF

… B F

…F

…

EF

B F

…F

…

…

End

Figure 5 – Tree derived from directed graph in Figure 4

Step 2 in Figure 3 requires test scale information. Let us assume that the tester wants: 2

users, 3 titles, 2 items per title, 1 loan per user, no renew or collect fine for loans, and no

system monitoring. Such a situation, though not representative of a realistic use of the

Library system, is deemed adequate as it implies a small number of sequences (7 out of

60 are now possible) but allows us to illustrate all the steps. For that particular example,

Table 1 summarizes the requirements for the derivation of instantiated use case

sequences. The first row presents the parameterized use case sequences to be tested. The

Carleton University TR SCE-01-01- Version 4 Revised June 2002

15

last sequence, using interleaving, models 9 sequences9. The second row shows, for each

class, the parameter instances (using place holders as symbolic values) corresponding to

the test scale specified by the tester. The instantiation of parameterized use case

sequences is aimed to replace actual parameters with symbolic values as derived from the

test scale information. Note that, in Table 1, Loan instances are characterized by pairs

(uid, itemid) and that we do not use symbolic values for Loan instances. This stems

from the fact that a loan is uniquely identified by a user and item and that there is no use

case parameter of type Loan.

Parameterized
Use Case
Sequences

- A(uid).C(uid)

- I(title).J(title)

- I(title).G(title, item).H(item).J(title)

- (A(uid)||I(title).G(title,item)).D(uid,item).
F(uid,item).(C(uid)||H(item).J(title))

Parameter
Instances
(Symbolic
values)

- Users (2): u1, u2

- Titles (3): t1, t2, t3

- Items (one per title): (t1,i11), (t1,i12), (t2,i21),
(t2,i22), (t3,i31), (t3,i32)

- Loans (one per user and item): pairs (u1, i22) and (u2,
i32)

Table 1 – Requirements for the derivation of instantiated use case sequences.

The instantiation selects one parameterized sequence at a time, assigns actual parameters

with symbolic values, and starts again from the first sequence if symbolic values are still

to be assigned after covering all sequences. So the instantiated use case sequences we

obtain are, to some extent, arbitrary, as it selects parameterized sequences and symbolic

values in arbitrary orders. But what is important is that these sequences fulfill our

requirements: They cover the parameterized use case sequences and match the test scale

specification. Regarding our example, following the orders in Table 1, we would obtain

the following 8 instantiated use case sequences:

Seq1: A(u1).C(u1)

Seq2: I(t1).J(t1)

Seq3: I(t2).G(t2, i21).H(i21).J(t2)

9 There are three possibilities for the two interleavings in the sequence (e.g., A||I.G produces sequences
A.I.G, I.A.G, and I.G.A), and thus a total of 9 sequences.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

16

Seq4: I(t3).A(u2).G(t3,i32).D(u2,i32).F(u2,i32).
C(u2).H(i32).J(t3)

Seq5: I(t1).G(t1, i11).H(i11).J(t1)

Seq6: I(t1).G(t1, i12).H(i12).J(t1)

Seq7: A(u1).I(t2).G(t2,i22).D(u1,i22).F(u1,i22).H(i22).
C(u1).J(t2)

Seq8: I(t3).G(t3, i31).H(i31).J(t3)

We can see that we end up with 4 and 2 instances of the 3rd and 4th sequence in Table 1,

respectively. This is necessary in order to cover all parameter instances.

Another issue is that some sequences are included in others. What we mean is that all the

instantiated use cases in one sequence are present, in the same order, in another sequence.

For example, Seq1 and Seq2 are included in Seq7 and Seq5, respectively. In order to

decrease the number of sequences, a reasonable heuristic is to keep only sequences that

are not included in others. In our example, we would then obtain the following final set of

sequences: {Seq3, Seq4, Seq5, Seq6, Seq7, Seq8}.

Instantiated use case sequences are then combined together, in a stepwise manner, to

produce complete use case sequences to be tested (Step 3 in Figure 3). Each time two

sequences are combined10, interleaving of instantiated use case subsequences can occur,

thus possibly leading to large numbers of complete sequences to be tested. In practice, a

reasonable number of sequences will have to be determined, e.g., by sampling the entire

set of sequences in order to maintain the number of test sequences under a threshold.

Regarding our example, we illustrate a complete series of interleaving steps leading to a

complete test sequence but we only show one resulting test sequence at each step.

First, following the order of sequences, Seq3 and Seq4 are combined and produce 495

interleavings11 which include:

S: I(t3).A(u2).I(t2).G(t3,i32).G(t2,i21).D(u2,i32).H(i21).
F(u2,i32).C(u2).H(i32).J(t2).J(t3)

10 Recall that common elements must be identified first. Algorithms for the combination of sequences are
provided in Appendix H.
11 We use this term as a shorthand for sequences resulting from the interleaving of a pair of sequences.
Given two sequences S1 and S2 of length n and m, respectively, the number of interleavings from S1 and
S2 is C(m+n, n) = (m+n)!/(n!m!).

Carleton University TR SCE-01-01- Version 4 Revised June 2002

17

Then, Seq5 and S are combined and produce 1820 interleavings which include:

S1: I(t3).I(t1).G(t1,i11).A(u2).I(t2).G(t3,i32).H(i11).G(t2,i21).
D(u2,i32).H(i21).J(t1).F(u2,i32).C(u2).H(i32).J(t2).J(t3)

Seq6 and S1 produce 45 interleavings (two elements in common) which include:

S2: I(t3).I(t1).G(t1,i11).G(t1,i12).A(u2).I(t2).G(t3,i32).
H(i11).G(t2,i21).D(u2,i32).H(i12).H(i21).J(t1).F(u2,i32).
C(u2).H(i32).J(t2).J(t3)

Seq7 and S2 produce 18018 interleavings which include:

S3: I(t3).I(t1).A(u1).G(t1,i11).G(t1,i12).A(u2).I(t2).G(t2,i22).
G(t3,i32).H(i11).D(u1,i22).G(t2,i21).F(u1,i22).D(u2,i32).
H(i12).H(i21).J(t1).H(i22).C(u1).F(u2,i32).C(u2).H(i32).J(t2)
.J(t3)

In this particular case, we perform the interleaving of 2 sequences which have 2 common

instantiated use cases (I(t2), J(t2)). The subsequences between them are interleaved

as illustrated by the following table. The total number of possible interleavings results

from multiplying the number of interleavings of subsequences between common

instantiated use cases (18018 = 6 * 3003).

Seq7 A(u1). G(t2,i22).D(u1,i22).
F(u1,i22).H(i22).
C(u1).

Common I(t2). J(t2)

S21 I(t3).I(t1).
G(t1,i11).
G(t1,i12).
A(u2).

 G(t3,i32).H(i11).
G(t2,i21).D(u2,i32).
H(i12).H(i21).J(t1).
F(u2,i32).C(u2).H(i32).

 J(t3)

 6 interleavings 3003 interleavings

The last step shown here leads to a complete instantiated use case sequence to be tested.

Seq8 and S3 produce 276 interleavings (two elements in common, i.e., I(t3) and

J(t3)) which include:

S4: I(t3).I(t1).G(t3,i31).A(u1).G(t1,i11).G(t1,i12).A(u2).I(t2).
G(t2,i22).G(t3,i32).H(i11).D(u1,i22).G(t2,i21).H(i31).
F(u1,i22).D(u2,i32).H(i12).H(i21).J(t1).H(i22).C(u1).
F(u2,i32).C(u2).H(i32).J(t2).J(t3)

To address step A7 in Figure 1, symbolic values will have to be substituted to actual

ones. This will require to perform a type analysis of the corresponding formal

parameters in the use case descriptions (Appendix B) and generate legal values that

Carleton University TR SCE-01-01- Version 4 Revised June 2002

18

satisfy a number of constraints. This is out of the scope of this paper and will be

addressed by future work.

3.2 Identifying Use Case Scenarios

To each use case corresponds an interaction model, i.e., either a collaboration or a

sequence diagram. These diagrams show how the use case is realized through the

interactions of objects, that is instances of classes in the analysis class diagrams. In

practice, such diagrams may be decomposed into several interconnected diagrams, for the

sake of legibility. But these diagrams still represent one interaction model describing

alternative object interactions, each of them realizing one possible scenario of a use case.

In many cases, an interaction diagram models one nominal scenario and a number of

error/exceptional scenarios, where the system has to react appropriately. At the analysis

stage, interaction diagrams may also be seen as modeling alternative execution sequences

of public operations belonging to application domain classes, each alternative sequence

capturing a scenario.

In the previous section, we have seen how to derive use case sequences that should be

part of the test plan. Now, using the interaction diagrams associated with use cases, we

have to go down one more level into details, and derive sequences of use case scenarios

to be tested. This bears some similarity with the work of [17] on deriving operation

sequences from collaboration diagrams. The main difference lies in the fact that the

authors make use of low-level design information (e.g., data flow within operations)

rather than analysis documents. Furthermore, the issues of initial test conditions and test

oracles are not addressed.

Let us illustrate the procedure we propose using an example and then summarize this

procedure. Figure 6 presents a sequence diagram for the use case Remove Title. The

class diagram for our library system and other sequence diagrams that we will use in this

example are provided in Appendices C and D, respectively.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

19

Figure 6 – Analysis Sequence Diagram for Remove Title (after merging it with

included use cases)

Note that UML conventions for numbering messages in sequence diagrams have been

extended to better address alternatives [10]: Capital letters are used to denote alternatives.

In Figure 6, message numbered 1.2.1 is the main branch, and message numbered 1.2.1A

is the alternative. Given this extension, both sequence and collaboration diagrams can

equally be used to derive sequences of use case scenarios as described in this section. We

describe here the procedure using sequence diagrams since they are more often used

during Analysis than collaboration diagrams (e.g., [8]).

3.2.1 Expressing Sequence Diagrams as Regular Expressions

In order to represent them in an analyzable and compact form, the sequence diagrams can

be re-expressed as a regular expression whose alphabet are the public methods of the

objects playing a role in sequence diagrams. So, for example, for Remove Title, this

 : Librarian

 : Tit leControl : Tit le : Item : LibrarianTerminal

1.2.1:[self.title->exists(t:Title|t.isbn=isbn)]
item[]:=getItem(title)

2.1.1: [self.loancopy->select (loancopyStatus=onloan)->size =0 and
 self.title.titleReservationCounter = 0] destroy()

2.1.1.1: *[i:=1..self.title.item->size] destroy()

1.1:create()

1.2:requestTitleInfo(isbn)

1.2.1A:[Not self.title.isbn->exists(t:Title|t.isbn=isbn)] titleNotExist(isbn)

1.2.1.1: displayTitleInfo(title,item[])

2.1: removeTitle(title)

2.1.1A: [self.loancopy->select(loancopyStatus=onloan)->size>0 or
self.title.titleReservationCounter>0]

loanORreservationExist(title,loancopy)

3.1: destroy()

1:requestTitleInfo(isbn)

1.2.1A.1: titleNotExist(isbn)

1.2.1.1.2: *[i:=1..title.item->size]
displayItemInfo (item [i].*)

2: [self.l ibrarianTerminal.titleControl.title->exists(t:Title|t.isbn=isbn)]
removeT it le (i sbn)

3: exit()

2.1.1A.1 :loanORreserva tionExist(i sbn)

1.2.1.1.1: displayTitleInfo(title.*)

Carleton University TR SCE-01-01- Version 4 Revised June 2002

20

would yield the following regular expressions where we use the notation OperationClass

to denote which operation is executed and to which class it belongs12:

Remove Title ->
RequestTitleInfoLibrarianTerminal.createTitleControl.requestTitleInfoTitleControl.
(
 getItemTitle.displayTitleInfoLibrarianTerminal.displayTitleInfoUser.
 displayItemInfoUser*. removeTitleLibrarianTerminal.removeTitleTitleControl.
 (destroyTitle.destroyItem*+loanORreservationExistLibrarianTerminal)+
 titleNotExistLibrarianTerminal.titleNotExistUser
).exitLibrarianTerminal.destroyTitleControl

To automate the transition to regular expressions, the sequence diagram can be modeled

as a labeled graph (where the labels are the operations) and matrix based algorithms can

be used to automatically derive the corresponding regular expression [4].

The next step, in order to be able to identify scenarios, is to re-express the regular

expression above in a sum-of-products form (here 3 product terms separated by “+”):

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

displayItemInfo
User

*.removeTitle
LibrarianTerminal

.removeTitle
TitleControl

.
destroy

Title
.destroy

Item
*.exit

LibrarianTerminal
.destroy

TitleControl

+
RequestTitleInfo

LibrarianTerminal
.create

TitleControl
.requestTitleInfo

TitleControl
.

getItem
Title

.displayTitleInfo
LibrarianTerminal

.displayTitleInfo
User

.
displayItemInfo

User
*.removeTitle

LibrarianTerminal
.removeTitle

TitleControl
.

loanORreservationExist
LibrarianTerminal

.loanORreservationExist
User

.
exit

LibrarianTerminal
.destroy

TitleControl

+
RequestTitleInfo

LibrarianTerminal
.create

TitleControl
.requestTitleInfo

TitleControl
.

titleNotExist
LibrarianTerminal

.titleNotExistUser.exit
LibrarianTerminal

.
destroy

TitleControl

Each product term represent either a use case scenario or a set of scenarios if iteration

symbols are present.

3.2.2 Identifying Path Realization Conditions for Product Terms

From our example above, we have obtained a regular expression with three product terms

(referred to below as Term 1, 2, and 3, respectively). Each term is associated with a

number of conditions enabling or disabling its execution. Indeed, associated with each

path within a sequence/collaboration diagram, one can derive from the guard conditions

associated with these paths, the conjunction of conditions that must be fulfilled for that

12 We do not address here the issue of overloading. In that case, the name is not enough and the operation
signatures are required to model sequence diagrams as regular expression.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

21

path to be enabled. Recall we require that these conditions be expressed in the Object

Constraint Language (OCL) so as to be unambiguous [21]. So for Term 1 listed above,

the path realization condition is:

Term1, path realization condition:

self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
(self.loancopy->select(loancopyStatus=onloan)->size=0 and
self.title.titleReservationCounter=0)

In the path realization conditions, the elements that do not take part in a navigation

expression, e.g., isbn, can either be parameters of the operation that triggered the use

case or strings matching enumeration types, e.g., onloan.

Note that OCL guard conditions, which compose the conjuncts of path realization

conditions such as the one above, have to be re-expressed as they assume different

contexts13 in the interaction diagrams. The transformation should ensure that every guard

condition in the path realization condition uses the same context. It is convenient to

assume, as a general rule, that the boundary class [8] corresponding to the use case

executed14 (e.g., LibrarianTerminal in our example) be used as a common context.

For Term 2, the situation is a bit more complex than for Term 1. The path realization

condition is:

Term2, path realization condition:

self.titleControl.title->exists(t:Title | t.isbn=isbn) and
(self.titleControl.loancopy->select(loancopyStatus=onloan)->
size>0 or self.titleControl.title.titleReservationCounter>0)

Because the above condition contains a disjunction, it can be satisfied in three ways:

Term2, Condition 1:

self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
(self.titleControl.loancopy->select(loancopyStatus=onloan)-> size>0
and self.titleControl.title.titleReservationCounter>0)

13 We use the OCL definition of context here [21]. In a sequence diagram, the context of an OCL guard
condition is the message source class. All attributes and operations of this class can be used directly. Public
attributes and operations of other classes can be reached through OCL navigation.
14 There are, in most cases, several boundary classes involved in a use case. But one actor initiates the use
case through a specific boundary class. This is this particular class we refer to here.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

22

Term2, Condition 2:

self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
(self.titleControl.loancopy->select(loancopyStatus=onloan)-> size>0
and self.titleControl.title.titleReservationCounter=0)

Term2, Condition 3:

self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
(self.titleControl.loancopy->select(loancopyStatus=onloan)-> size=0
and self.titleControl.title.titleReservationCounter>0)

It is important that all three conditions be tested as the implementation may not

implement one or more cases correctly and not testing one of them could lead to the non-

detection of a fault in the implementation of the path realization condition of Term 2.

This issue is related to the literature on testing logic expressions [5]. Complex conditions

need to be tested by exercising operation sequences under several alternative conditions.

These alternatives correspond to the different combinations of truth values of logical

clauses in a path realization condition such that this condition holds true.

3.2.3 Specifying Operation Sequences

Having identified the test conditions under which each term is going to be executed and

therefore tested, we need to identify the precise operation sequences to be executed for

each term. Since product terms may contain iteration symbols (*, +), precise sequences to

be tested need to be defined by giving those iteration symbols actual values. We can use a

strategy which is similar to what we did earlier to cover use case sequences: The iteration

is bypassed (for * only), performed once, an intermediary number of times (possibly a

statistical median if available), and a maximum M number of times. Term 3 has no

iteration symbol. If we take Term 2 − which is simpler than Term 1 − as a first example,

the sequences obtained using this strategy are:

Term 2, sequence 1: displayItemInfoUser is bypassed

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

removeTitle
LibrarianTerminal

.removeTitle
TitleControl

.
loanORreservationExist

LibrarianTerminal
.exit

LibrarianTerminal
.destroy

TitleControl

Term 2, sequence 2: displayItemInfoUser is executed once

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

23

displayItemInfo
User

.removeTitle
LibrarianTerminal

.removeTitle
TitleControl

.
loanORreservationExist

LibrarianTerminal
.exit

LibrarianTerminal
.destroy

TitleControl

Term 2, sequence 3: displayItemInfoUser is executed twice (intermediary value)

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

displayItemInfo
User

2.removeTitle
LibrarianTerminal

.removeTitle
TitleControl

.
loanORreservationExist

LibrarianTerminal
.exit

LibrarianTerminal
.destroy

TitleControl

Term 2, sequence 4: displayItemInfoUser is executed a maximum M number of times

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.

displayTitleInfo
User
.displayItemInfo

User

M.removeTitle
LibrarianTerminal

.
removeTitle

TitleControl
.

loanORreservationExist
LibrarianTerminal

.exit
LibrarianTerminal

.destroy
TitleControl

The maximum number of iterations M represents the number of items corresponding to a

title, modeled in OCL by title.item->size in the UML interaction diagram. The

specific number of items depends on the test scale information provided by the tester (see

Section 3.1).

If we now turn our attention to Term 1, which contains 2 iteration symbols:

Term 1, sequence 1:

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleinfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

removeTitle
LibrarianTerminal

.removeTitle
TitleControl

.
exit

LibrarianTerminal
.destroy

titleControl

Term 1, sequence 2:

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleinfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.display

ItemInfo
User

.removeTitle
LibrarianTerminal

.removeTitle
TitleControl

.
destroy

Title
.destroy

Item
.exit

LibrarianTerminal
.destroy

TitleControl

Term 1, sequence 3:

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleinfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.

displayTitleInfo
User
.displayItemInfo

User

2.removeTitle
LibrarianTerminal

.remo
veTitle

TitleControl
.destroy

Title
.destroy

Item

2.exit
LibrarianTerminal

.destroy
TitleControl

Term 1, sequence 4:

RequestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleinfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.

displayTitleInfo
User
.displayItemInfo

User

M.removeTitle
LibrarianTerminal

.remo
veTitle

TitleControl
. destroy

Title
.destroy

Item

M.exit
LibrarianTerminal

.destroy
TitleControl

In the sequences above, the two iteration symbols are inter-dependent. More specifically,

they must be the same since they are both determined by the number of items associated

with a title. In general we have to expect such dependencies between iteration symbols.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

24

Such dependencies can automatically be detected from the sequence diagram, where

iteration conditions are specified. In Figure 6, the iteration conditions of both iterative

operations in Term 1 are identical: [i:=1..self.title.item->size]. Multiple

iterations in a term do not have to share identical iteration conditions and may exhibit

more complex relationships. This is the type of analysis that automation needs to support.

3.2.4 Identifying Test Oracles

Now assuming we have defined the operation sequences to be executed and tested, we

need to derive test oracles for each tested sequence. It is crucial to address efficiently the

oracle problem in order to make automated testing possible. The main source for deriving

a test oracle is the post-condition of operations in a sequence, which are defined using

OCL.

If we take Sequence 4 in Term 1 as an example, we note that only the two removeTitle

operations have a non-trivial post-condition. The removeTitleLibrarianTerminal operation

merely delegates to removeTitleTitleControl (see sequence diagram in Figure 6) and they,

therefore, have the same post-conditions (but defined using a different context, as

expected). From the data dictionary, where all model elements are defined and where pre-

and post-conditions are assumed to be provided, we can extract:

TitleControl::removeTitle(title, loancopy):void
post: self.title=self.title@pre-set{title} and
 item.allinstances.title->select(isbn = title.isbn)->size=0

This expression’s context is a titleControl object, created to control the execution of

the Remove Title use case. This object has, however, disappeared by completion of the

use case as the last message triggers it destruction and cannot be used as context object in

the test oracle expression15. Then, the oracle that needs to be checked by the test driver

for our example is :

Title.allInstances= Title.allInstances@pre-set{title} and
Item.allInstances.title->select(isbn = title.isbn)->size=0

We therefore need, in general, to transform the postconditions to make them usable as

test driver oracles. A general transformation rule is that self should be removed in the

15 It is typical [9] to instantiate a control object during a use case’s initiation and then to dispose of it when
its corresponding use case is completed.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

25

postcondition and allInstances should be used to refer to the instances of the class

following self in the navigation expression (Title here). Then select can be used, if

necessary, to select the appropriate instances and check the required condition. It is,

however, not necessary in the above example as all Title instances are of interest.

In the above oracle expression, just after the select bracket, isbn is not the result of a

navigation expression and is a parameter of an operation triggered by the use case on the

boundary class LibrarianTerminal:: requestTitleInfo(). Such parameters, defined

in what Binder calls extended use cases [5], were first introduced in Section 3.1 for the

identification of use case sequential dependencies. We will see that they play an

important role at a later stage (Section 3.3). We discuss further this issue in Section 4.

The case above is rather simple since, as mentioned above, only two operations have a

non-trivial and identical post-condition. In the general case, the conjunction of post-

conditions in the sequence of operations has to be used to determine the test oracle. This

may lead to complex cases where, for example, one subsequent operation’s post-

condition clause cancels out a former post-condition clause. This issue will be addressed

by future work.

A simpler alternative, that does not require complex OCL expression analyses and

transformations but entail more code instrumentation, is to systematically execute

assertions that instrument pre/post-conditions and class invariants at the entry/exit of each

operation and raise an exception when they are violated. This was recently suggested as a

potential solution to the oracle problem in [3] and [7]. In [7], the authors investigate

whether instrumented contracts, defined during Analysis, can be used as a substitute to

hard-coded test oracles in the test drivers and whether they help with diagnosing failures

and locate faults. Based on a case study, results indicate that, in roughly 80 percent of the

cases, instrumented contracts are good enough substitutes to hard-coded oracles in test

drivers.

3.2.5 Constructing Decision Tables

Once we have, for a given use case, identified the operation sequences to be tested, their

initial conditions and oracles, we can formalize all this in a decision table that will be

used as a formal set of test requirements, which will be part of the test plan. For

Carleton University TR SCE-01-01- Version 4 Revised June 2002

26

RemoveTitle, the corresponding decision table is provided in Table 2. Decision tables

for the other use cases of the Library example are provided in Appendices E, F, G.

Action Section Condition Section

Messages to Actor State Change

Variants
(use case J)

A B C D E I II III

j1 Yes No No No No No No Yes Yes

j2 No Yes No No No No Yes Yes No

j3 No No Yes No No No Yes Yes No

j4 No No No Yes No No Yes Yes No

j5 No No No No Yes Yes No No No

Table 2 – Decision Table for RemoveTitle (use case J)

Each row in Table 2 is what is called in testing terminology a variant [5]. Test cases

should cover all variants, at least once. Due to the fact that a product term (Section 3.2.2)

is tested instantiating iteration symbols into several operation sequences (Section 3.2.3),

each variant will be covered by several test cases, one for each tested operation sequence.

The columns model the initial conditions in which test cases must be run, the actions that

are taken as a result of running the test cases. Namely, this corresponds to system state

changes and output messages being sent to actors. Further details describing the columns

of Table 2 are provided below.

Initial Conditions16:

A: self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
self.titleControl.loancopy->select(loancopyStatus=onloan)
->size=0 and
self.titleControl.title.titleReservationCounter=0

B: self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
self.titleControl.loancopy->select(loancopyStatus=onloan)
->size>0 and
self.titleControl.title.titleReservationCounter>0

C: self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
self.titleControl.loancopy->select(loancopyStatus=onloan)
->size>0 and
self.titleControl.title.titleReservationCounter=0

16 The context of OCL expressions A-E is the boundary class for the corresponding use case, i.e.,
LibrarianTerminal.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

27

D: self.titleControl.title ->exists(t:Title | t.isbn=isbn) and
self.titleControl.loancopy->select(loancopyStatus=onloan)
->size=0 and
self.titleControl.title.titleReservationCounter>0

E: not self.titleControl.title->exists(t:Title | t.isbn=isbn)

Messages to Actor User:

I: titleNotExist

II: loanReservationExist

III: displayTitleInfo.displayItemInfo*

A * associated to a message, like in case III above, indicates that the message may be

sent several times. This number of iterations is determined by the operation sequence that

is being executed, as discussed in Section 3.2.3.

State Changes:

Title.allInstances= Title.allInstances@pre-set{title} and
Item.allInstances.title.select(isbn = title.isbn)->size=0

In this example, there is only one possible state change or no state change at all. But in

general, we have to expect that some alternative state changes will be possible.

Based on the example above, we can now summarize the steps of the procedure used to

extract a decision table for each use case. Our source of information is an Analysis model

described in UML, which is complying with our testability requirements (summarized in

Section 4).

1. For each use case, model possible operation sequences in a regular expression

having a sum-of-product terms form, where the alphabet are the public operations

of the objects involved in the use case sequence diagram.

2. For each product term, which models a set of possible operation sequences,

determine the initial conditions that must be set up by the test driver to be able to

execute any of the sequences matching the term.

3. Specify precisely the operation sequences that match the term to be executed and

tested. We use a strategy similar to loop testing but in a different context.

4. Identify test oracles by making use of the operation post-conditions specified in

the Analysis model (data dictionary).

Carleton University TR SCE-01-01- Version 4 Revised June 2002

28

5. Formalize all the information above into decision tables that follow the format

proposed above, which is similar to what is described in [5].

3.3 Generating Variant Sequences

If we assume that each use case has a decision table such as the one presented above, we

need to go further and devise a sequence of operations to be tested over an entire use case

sequence (as defined in Section 3.1). In other words, we need to go from use case

sequences to use case variant sequences, using use case decision tables. Assuming we

would have a use case sequence of three use cases A.B.C, having respectively a number

of variants |A|, |B|, and |C|, the maximum number of variant sequences would then be

|A| * |B| * |C|. As described in Section 3.2.5, one variant corresponds to a possible path

realization condition for one of the product terms in the interaction diagram regular

expression. A variant may require several test cases, as iteration symbols may be present

in the corresponding product term, which therefore requires several operation sequences

to be tested. More specifically, up to 4 test cases (number of iterations sets to 0, 1, an

intermediary number, and a maximum M) may be needed if we use the sequence test

strategy presented in Section 3.2.3. Note that, at the beginning of a use case variant

sequence, the system is in its initial state.

An issue to be noted is that the test scale specified by the tester (Section 3.1.1) determines

what use case variant sequences are possible. The scale of testing must then be chosen

carefully if the tester wants to consider all the possible use case variants sequences in the

decision tables. To illustrate this, let us take the following simplistic example: In the

Library system testing, assume the tester only wants one title and one item for this title

(no user or loan, …). In this situation, the only possible use case sequence to be tested

(following what is described in Section 3.1) is: AddTitle(t).AddItem(i).

RemoveItem(i).RemoveTitle(t). Since we do not have any loan for the item or

reservation for the title, variants 2, 3, and 4 for use case RemoveTitle are not possible

(see Table 2). In addition, variant 5 (removing a title that does not exist) for use case

RemoveTitle(t) is also impossible because title t is created in the sequence (the

parameter of RemoveTitle is the one of AddTitle). Therefore, RemoveTitle variant 1 is

the only possibility. For similar reasons, RemoveItem variant 1 is the only possible

Carleton University TR SCE-01-01- Version 4 Revised June 2002

29

variant. Then, the only possible use case variant sequence is

AddTitle1.AddItem1.RemoveItem1.RemoveTitle1. This variant sequence is the case

where a title is added, one corresponding item is added, and then the item and title

are subsequently removed. This corresponds to the first (nominal) variant in each of the

decision tables in Appendices E, F, G and Table 2.

In practice another issue may arise. Some variant sequences may turn out to be

impossible as some of the variants are not compatible. A variant bi of B is incompatible

with a variant aj of A if the state of the system after the execution of aj is contradicting (a

part of) the initial condition of bi. This is an issue that needs to be addressed as the

detection of impossible variant sequences need to be supported to help generate clean,

concise test requirements.

4 TESTABILITY

Since the application of the UML notation is not constrained by any particular, precise

development method, one can find a great variability in terms of the content and form of

UML artifacts, whether at the analysis or design stages. However, the way UML is used

determines the testability of the UML artifacts. That is, in our context, the ease with

which they can be used to support testing activities and the derivation of test artifacts

(test requirements, cases, oracles, drivers). Moreover, since automation is a crucial

consideration here, our methodology and its associated algorithms have precise

requirements regarding the information to be contained in UML artifacts. Thus, in the

previous sections, we made a number of assumptions regarding the way a UML analysis

model is to be developed. Those assumptions were carefully thought out and are referred

to as testability requirements. We discuss and justify them in this section, using the

metamodel in Figure 7, and explain how they can be automatically verified in the next

Section (Section 5).

The very first of those testability requirements concerns the sequential constraints

between use cases, in addition to the other dependencies shown in the use case diagram

(class UCSequentialDependencies class in Figure 7). We decided to build one activity

diagram per actor in the system to model such dependencies (see Section 3.1 and Figure

Carleton University TR SCE-01-01- Version 4 Revised June 2002

30

2). These activity diagrams capture the sequential dependencies between the use cases

related to the actors.

Analysis Document

UCSequentialDependencies

1 1..*

Extended Use Case

1 1..*

Data Dictionary Description

Class

Sequence Diagram

1 11 1..*

Collaboration Diagram

Class Diagram

1

1..*

Operation

1..* 1..*

1*

1

1..*

Invariant

Postcondition

Precondition

1

1

1 1

1

1

Interaction Diagram

Figure 7 – Meta-model describing Analysis testability requirements for TOTEM

Then each use case is described using an interaction diagram, which in UML is either an

interaction diagram or a collaboration diagram. We assume that these diagrams use OCL

for the description of the alternative object interactions (guard conditions), and extended

the UML numbering rules for messages in interaction diagrams (see Section 3.2), thus

making them unambiguous (see Figure 6). In addition, we are defining and using

extended use cases (as described in [5]) that specify, among other things, information

about the parameters that determine the behavior to be exhibited. For example, we show

in Section 3.2.2 that isbn is a formal parameter for the Remove Title use case. We

further show that the values of these parameters need to be carefully chosen to execute

some of the variant sequences (Section 3.3).

Finally, the data dictionary is assumed to provide − in addition to an informal description

of classes, attributes, and operations − the contracts (pre- and post-conditions for the

operations) and class invariants in OCL. For example, we presented such a post-condition

in Section 3.2.4, for method removeTitle in class TitleControl.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

31

Testability requirements are a trade-off between better testability and the effort overhead

they entail during Analysis and Design. We believe that having a description of the

business model supported by the system (the activity diagram capturing sequential

constraints between use cases), as well as precise definitions for operations and classes

(contracts), is not only relevant for testing but also a sound practice for a precise and

rigorous Analysis17. A similar argument can be made for precise OCL guard conditions in

the sequence diagrams describing each use case. Furthermore, [5] indicates that guard

conditions should be expressed in an executable syntax and, in the context of the UML,

OCL is a natural choice. Overall, our testability requirements seem realistic and justified,

though their costs and benefits during analysis are to be investigated further through case

studies.

Our view on testability is related to functional and behavioral models. In other words,

how easily can we derive complete test artifacts from UML diagrams? There exist other,

complementary testability definitions that are more related to source code and structural

models. Built-in test support (e.g., set and get methods for attributes) can improve two

important components of testability: observability (retrieving the state of the system) and

controllability (setting the system in a particular state) [5]. From a completely different

perspective, [1] assesses testability by quantifying the effort required for different unit

test strategies based on measures of control flow graphs.

5 AUTOMATION

The purpose of this section is to describe what should be the internal structure of a tool to

support our testing methodology, both in terms of packages and, when relevant, at the

class level. This led us to the development of a prototype tool that implements the core

architecture needed by the TOTEM strategy. Another benefit of this modeling exercise is

that we recap, in a structured manner, how all the concepts, representations, and

algorithms introduced earlier relate to each other.

Automation of the different steps of the TOTEM strategy requires that information

provided by UML diagrams is available, in full conformance to our testability

requirements. The meta-model in Figure 7 is therefore one of the core packages

17 This view is supported by a number of articles and books (two examples are [9, 14]).

Carleton University TR SCE-01-01- Version 4 Revised June 2002

32

(RequirementsMetamodel) of the TOTEM tool (see Figure 8), which serves as a

repository of UML diagrams’ information. The other packages in Figure 8 concern the

automatic construction of system test requirements (SystemTesting, which classes are

described in Figure 9), and parsing UML and OCL information.

Since these diagrams are built using UML case tools, a first solution is to use the API

provided by these tools to access UML diagrams’ information. An alternative relies on an

XMI representation of the diagrams, which are exported by an increasing number of case

tools, and for which parsers already exist. This second solution has the advantage of not

depending on a particular case tool, as long as the tool is able to produce XMI files.

Figure 8 – Packages of the TOTEM System Testing tool

RequirementsMetaModel depends on OCLparser as it needs to verify the correctness of

OCL expressions. Depending on our test oracle strategy (Section 3.2.4), SystemTesting

may need to manipulate OCL expressions to compare or transform them.

Testability requirements can be automatically verified in order to make sure UML

Analysis models are compliant before performing any further analysis for testing

purposes:

- An activity diagram describing sequential dependencies between use cases must

be available for each actor;

- Each use case must be described by an interaction diagram;

Requirements Metamodel System Testing

XMI parser OCL parser

Business Process
Diagram

Use Case
Sequence

Interaction
Diagram

Interaction Regular
Expression

Carleton University TR SCE-01-01- Version 4 Revised June 2002

33

- Interaction diagrams must make use of adequate numbering conventions for

messages;

- Guard conditions for messages in interaction diagrams as well as class invariants,

pre- and post-conditions must use the OCL.

Then, once the UML models have been shown to be compliant with testability

requirements, the different activities described in Section 3 can be automated:

- Given an activity diagram, producing use case sequences to be tested as described

in Section 3.1 needs to be automated. We provide algorithms for the most

complex parts of this process (Appendix H). In Figure 9, class

SystemTestingRequirements initializes (1) the composition allParamUCSeq

(all the parameterized use case sequences) with class ParamUCSeq

(parameterized use case sequence) from the activity diagram, (2) the composition

allOriginalInstUCSeq (all the original instantiated use case sequences) with

class InstUCSeq (instantiated use case sequence) from the test scale information,

and then (3) the composition completeUCSeq (the complete set of use case

sequences to be tested) with InstUCSeq ;

- The generation of use case scenarios from interaction diagrams is formalized, for

each use case, as a decision table and modeled in the SystemTesting package

(Figure 9):

- Regular expressions describing interactions diagrams as method sequences,

each unique sequence describing a use case scenario.

- Path realization condition and operation sequences for the product terms in the

regular expressions (i.e., the decision table variants).

- Test oracles for operation sequences. As discussed in Section 3.2.4, this

requires complex manipulations of OCL expressions, i.e., pre- and post-

conditions of operations in sequences. For example, we need to be able to

determine whether two OCL expressions contradict or subsume each other.

All this is not required though if we decide to use instrumented contracts, as

discussed above.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

34

- The next step is to produce variant sequences (Section 3.3) using both use case

sequences and scenario decision tables. One important automation issue is the

detection of incompatible variants across decision tables.

System Testing Interaction Regular Expression
1 1..*

Variant1 1..*

Operation Sequence

1

1..*

Oracle

1

1

-OCLExpression

Path Realization Condition

1

1

ParamUCSeq ParamUC

InstUCSeq InstUC

1..* *

useCases

1

1..*

allParamUCSeq

1

1..*

co
m

pl
et

eU
C

S
eq

1

1..*

al
lO

rig
in

al
In

st
U

C
S

eq

1

1..*

1

1..*

1..* *

Initial Condition

1

1..*

Figure 9 – Classes in the SystemTesting package

6 CONCLUSION AND FUTURE WORK

This paper has presented the TOTEM (Testing Object-orienTed systEms with the unified

Modeling language) functional system test methodology. We derive test requirements

from early artifacts produced at the end of the analysis development stage, namely use

case diagram, use case description, interaction diagram (sequence or collaboration)

associated with each use case, and class diagram (composed of application domain

classes and their contracts). This early use of analysis artifacts is very important as it

helps devising a system test plan, size the system test task, and plan appropriate resources

early in the life cycle. Once the low level design is complete, when detailed information

is available regarding both application domain and solution domain classes, then test

requirements can be used to derive test cases, test oracles, and test drivers.

We emphasized here the fundamental principles of our methodology, which is based in

part on published material [4, 5, 11]. We first showed how activity diagrams can be used

to capture sequential dependencies between use cases and allow the specification of use

case sequences to be tested. For each use case involved in a particular sequence, the key

issues regarding the selection of use case scenarios to undergo testing were then

addressed, i.e., what paths to cover in the corresponding sequence diagrams. The

Carleton University TR SCE-01-01- Version 4 Revised June 2002

35

derivation of key information for determining the initial system conditions for testing

scenarios and their corresponding test oracles was also addressed. Our methodological

decisions were justified in terms of their potential for automation and their implications

in terms of testability.

The TOTEM testing methodology can be easily embedded into incremental development

methods such as the Rational Unified Process (RUP) [13]:

- It only requires analysis artifacts to devise an early but precise test plan. Design

information is only needed later on to help with the generation of test cases and

harness. Our testability requirements for Analysis artifacts can be fulfilled in the

context of the RUP.

- Our methodology focuses on test automation, a feature that is of extreme

importance in the context of incremental development such as in the RUP.

Ongoing and future work include:

- How these test requirements (derived from use case dependencies and from

sequence diagrams) are used together with test requirements derived the system

class diagram (choosing specific object configurations the classes involved in the

scenarios) in order to produce complete test requirements for system testing.

- How system test requirements are used at a later stage to produce test cases,

oracles, and drivers. This is similar to the path-sensitization problem (i.e.,

deriving input values to execute selected paths), which is known to be

undecidable in the general case [4]. Similarly to [20], we will investigate the use

of meta-heuristics, such as genetic algorithms, to automatically generate test data

from test requirements.

- Go into more depth regarding automation and all the core algorithms that it

entails. This is important since a testing methodology without effective tool

support is not likely to be adopted. We have provided (1) some of the algorithms

for the construction of sequences of use cases to be tested and (2) a precise

procedure for the construction of use case scenarios such that the definition of the

Carleton University TR SCE-01-01- Version 4 Revised June 2002

36

corresponding algorithms should be straightforward. In general, our automation

strategy is based on a systematic use of OCL for contracts and guard conditions.

- The last point above leads us to the issue of testability. We have defined clear

testability requirements and justified why they were a good trade-off. We still

need to provide effective automation to help people achieve good testability (i.e.,

consistency and completeness checks).

- Last but not least, our methodology needs to be carefully experimented with,

within control settings and through industrial case studies. In particular, the cost

of our testability requirements (e.g., the definition of extended use cases) will

have to be evaluated.

- How non-functional aspects of system testing, such as performance testing, can be

integrated in the TOTEM approach.

ACKNOWLEDGEMENTS

The work presented here is part of a larger scale project named TOTEM, which stands for

Testing Object-orienTed systEms with the unified Modeling language

(http://www.sce.carleton.ca/Squall/Totem/). Lionel Briand and Yvan Labiche were in

part supported by NSERC operational grants. This work was further supported by the

CSER consortium and Mitel Networks. We are also grateful to Michelle Wang for her

help with some of the figures and examples in the report.

REFERENCES

[1] R. Bache and M. Mullerburg, “Measures of testability as a basis for quality
assurance,” Software Engineering Journal, vol. 5 (2), pp. 86-92, 1990.

[2] F. Basanieri and A. Bertolino, “A Practical Approach to UML-Based Derivation
of Integration Tests,” Proc. 4th International Software Quality Week Europe
(QWE'2000), Brussels (Belgium), November 20-24, 2000.

[3] B. Baudry, Y. Le Traon and J. M. Jezequel, “Robustness and Diagnosability of
OO Systems Designed by Contracts,” Proc. 7th International Software Metrics
Symposium, London, England, pp. 272-283, 4-6 April, 2001.

[4] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd
Ed., 1990.

[5] R. V. Binder, Testing Object-Oriented Systems - Models, Patterns, and Tools,
Addison-Wesley, 1999.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

37

[6] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User
Guide, Addison Wesley, 1999.

[7] L. Briand, Y. Labiche and H. Sun, “Investigating the Use of Analysis Contracts to
Improve the Testability of Object Oriented Code,” Carleton University, Technical
Report SCE-01-10, March, 2002,
http://www.sce.carleton.ca/Squall/Articles/TR_SCE-01-10.pdf, part of this work
(short version) is to appear in the proceedings of ISSTA 2002.

[8] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering -
Conquering Complex and Chalenging Systems, Prentice Hall, 2000.

[9] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. GilChrist, F. Hayes and P.
Jeremaes, Object-Oriented Development - The Fusion Method, Prentice Hall,
1994.

[10] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with
UML, Addison Wesley, 2000.

[11] D. Ince, Object-Oriented Software Engineering with C++, McGraw-Hill, 1991.

[12] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, 1992.

[13] P. Kruchten, The Rational Unified Process, An Introduction, Addison-Wesley,
1998.

[14] B. Meyer, “Design by Contracts,” IEEE Computer, vol. 25 (10), pp. 40-52, 1992.

[15] G. J. Myers, The art of software testing, John Wiley & Sons, 1979.

[16] A. J. Offutt and A. Abdurazik, “Generating Tests from UML specifications,”
Proc. 2nd International Conference on the Unified Modeling Language
(UML'99), Fort Collins, CO, pp. 416-429, October, 1999.

[17] A. J. Offutt and A. Abdurazik, “Using UML Collaboration Diagrams for Static
Checking and Test Generation,” Proc. 3rd International Conference on the
Unified Modeling Language (UML'00), York, UK, pp. 383-395, October, 2000.

[18] T. J. Ostrand and M. J. Balcer, “The Category-Partition Method for Specifying
and Generating Functional Test,” Communications of the ACM, vol. 31 (6), pp.
676-686, 1988.

[19] M. Roper, Software Testing, McGraw Hill, 1994.

[20] N. Tracey, A Search-Based Automated Test-Data Generation Framework for
Safety-Critical Software, Ph.D. Thesis, University of York, 2000.

[21] J. Warmer and A. Kleppe, The Object Constraint Language, Addison-Wesley,
1999.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

38

APPENDIX A: USE CASE DIAGRAM FOR THE LIBRARY SYSTEM

Find Loan

User

Borrower Librarian

Add User

Monitor System

Remove T itle

Remove Item

Add Item

Add Title

<<include>>

Remove User

Check Reservation

Remove Reservation

Return Loancopy

<<include>>

Renew Loan

<<include>>

<<include>>

Borrow Loancopy
<<include>>

<<include>>

Make Reservation

Borrower

Find T itle

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Librarian

Collect Fine

<<include>>

<<include>>

<<include>>

Search User

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 10 Use case diagram for the Library System

Carleton University TR SCE-01-01- Version 4 Revised June 2002

39

APPENDIX B: USE CASES DECRIPTIONS

In this appendix, we give the textual description (following what is suggested in [8]) of

the use cases used in the paper, that is the twelve use cases that appear in the activity

diagram in Figure 2. Note that we have added a section, named Parameters, that indicates

the formal parameters of the use case: formal parameters are described by their name,

type and kind (in, out or in/out).

Add Item
Use case name: Add Item

Participating actor: Librarian

Parameters: in Isbn: Integer, out ItemID: Integer

Entry condition:

1. The librarian requests the title information from the librarianterminal. The Find
Title use case is used. If the title doesn’t exist, the system will ask the librarian to
add the title, the Add Title use case is used.

Flow of events:

2. The title information is displayed on the librarianterminal.

Exit condition:

3. The librarian adds item, an itemId is generated for it.

Add User
Use case name: Add User

Participating actor: Librarian

Parameters: in UserID: Integer

Entry condition:

1. The librarian requests to add user from the librarianterminal.

Flow of events:

2. The librarian inputs the user information to the system. If the user information has
already been recorded in the system, the librarian will not be allowed to add the user.

Exit condition:

3. The user information has been stored in the system, a userId is generated for it or the
librarian is not allowed to add the user.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

40

Add Title
Use case name: Add Title

Participating actor: Librarian

Parameters: in Isbn: Integer

Entry condition:

1. The librarian requests to add title from the librarianterminal.

Flow of events:

2. The librarian inputs the title information such as isbn to the system. If any
information requested is missing or the same with other title, the system will prompt
an error message and go to the the beginning of this step; if the title’s information is
same with other title, the librarian will not be allowed to add the title and go to 3.

Exit condition:

3. A new title has been added to the system or the librarian is not allowed to add the
title.

Borrow Loancopy
Use case name: Borrow Loancopy

Participating actor: Librarian

Parameters: in UserID: Integer, in ItemID: Integer

Entry condition:

1. The librarian requests the user information from the librarianterminal. The Find
User use case is used. If the user doesn’t exist, then proceeds to 5.

Flow of events:

2. The librarian requests the title information. The Find Title use case is used. If the
title doesn’t exists, then proceeds to 5.

3. The librarian requests add loan. The system judges if the user is able to borrow book.
If the user’s privilege is revoked, the system will prompt a corresponding message.
The librarian can collect the fine. The Collect Fine use case is used. If the user’s
fine is not cleared, proceeds to 5. If the item is a referencecopy, or, the user already
has 10 loans, then the user is not allowed to borrow loancopy and proceeds to 5. The
system also checks the book reservation. The Check Reservation use case is used. If
the system denies the borrow request, then proceeds to 5.

4. The library lends the loancopy to the user. If the user has reached loan limit, the
system updates the user’s loan privilege. If the user has a reservation on that title, the
reservation is removed. The Remove Reservation use case is used.

Exit conditions:

5. The system denies the borrow request or a new loan is registered, a loanId is
generated for the loan.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

41

Collect Fine
Use case name: Collect Fine

Participating actor: Librarian

Parameters: in UserID: Integer, in ItemID: Integer

Entry condition:

1. The librarian requests the user information from the librarianterminal. The Find
User use case is used. If the user doesn’t exist, then proceeds to 3.

2. The librarian enters the fine collected, the system updates the user’s fine information.
If the user’s privilege is revoked, then system updates the user’s privilege.

Exit condition:

3. The user’s fine is cleared or the librarian is unable to collect the user’s fine.

Monitor System
Use case name: Monitor System

Participating actor: Librarian

Parameters:

Entry condition:

1. The librarian requests to monitor the system from the librarianterminal.

Flow of events:

2. All the book titles and the users of the library are displayed on the librarianterminal.

Exit condition:

3. The librarian completes monitoring the system.

Remove Item
Use case name: Remove Item

Participating actor: Librarian

Parameters: in ItemID: Integer

Entry condition:

1. The librarian requests the title information from the librarianterminal. The Find
Title use case is used. If the title doesn’t exist, then proceeds to 4.

Flow of events:

2. The title information is displayed on the librarianterminal.

3. The librarian specifies the item should be removed. If the item is loaned, the librarian
is not allowed to remove the item.

Exit condition:

4. The specified item has been removed or the librarian is not allowed to remove the
item.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

42

Remove Title
Use case name: Remove Title

Participating actor: Librarian

Parameters: in Isbn: Integer

Entry condition:

1. The librarian requests the title information from the librarianterminal. The Find
Title use case is used. If the title doesn’t exist, then proceeds to 3.

Flow of events:

2. The title information is displayed on the librarianterminal. If the title is reserved or
some of the title’s loancopies are loaned, the librarian is not allowed to remove the
title.

Exit condition:

3. The title has been removed, along with all the items associated with the title or the
librarian is not allowed to remove the title.

Remove User
Use case name: Remove User

Participating actor: Librarian

Parameters: in UserID: Integer

Entry condition:

1. The librarian requests the user information from the librarianterminal. The Find
User use case is used. If the user doesn’t exist or the user’s privilege is revoked,
proceeds to 3.

Flow of events:

2. The user information is displayed on the librarianterminal. If the user has loan, the
librarian is not allowed to remove the user.

Exit condition:

3. The user has been removed along with his/her reservation if any or the librarian is
not allowed to remove the user.

Renew Loan
Use Case Name: Renew Loan

Participating actor: Librarian

Parameters: in UserID: Integer, in ItemID: Integer

Entry condition:

1. The librarian requests the loan information from the librarianterminal. The Find
Loan use case is used. If the loan doesn’t exist, or the loan owner’s privilege is
revoked, proceeds to 5.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

43

Flow of events:

2. The loan information is displayed on the librarianterminal.

3. The librarian requests renew loan. If the user’s privilege is revoked, the system will
prompt a corresponding message. The librarian can collect the fine. If the user’s fine
is not cleared, then proceeds to 5. The system checks whether the title is reserved.
The Check Reservation use case is used. If the title is reserved, the librarian is not
allowed to renew the loan and proceeds to 5.

4. The system identifies the loan of the loancopy. If the loan is overdue, the system
prompts loan status information. The system checks the times of the renewing the
loan, if the loan has been renewed 2 times, the librarian is not allowed to renew the
loan.

Exit condition:

5. The corresponding loan is renewed, a new dueDate is generated for the loan or the
librarian is not allowed to renew the loan.

Return Loancopy
Use case name: Return Loancopy

Participating actor: Librarian

Parameters: in UserID: Integer, in ItemID: Integer

Entry condition:

1. The Librarian requests the loan information from the librarianterminal. The Find
Loan use case is used. If the loan doesn’t exist, then proceeds to 4.

Flow of events:

2. The loan information is displayed on the librarianterminal.

3. The librarian requests remove loan. The system checks whether the loan is overdue.
If the loan is overdue, the system prompts the corresponding message to notify the
librarian and the fine information will be recorded. If the loan has been overdue for
more than 3 days, the loan owner’s privilege will be revoked. Only after the user’s
fine is cleared, can the user’s privilege be retained.

Exit condition:

4. The corresponding loan is destroyed or the request is denied.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

44

APPENDIX C: CLASS DIAGRAMS

BorrowerTerminal

getUserType()

<<boundary>>

ItemControl

itemType : Integer

addItem()
create()
destroy()
removeItem()

(from Use Case View)

<<control>>

MonitorContol

create()
destroy()
requestMonitorSystem()

(from Use Case View)

<<control>>

LibrarianTerminal

addItem()
displayFineInfo()
displayItemId()
displayLoanInfo()
displaySystemInfo()
displayTitleInfo()
fineCleared()
getUserType()
isReferenceCopy()
loancopyNotExist()
loanNotExist ()
loanORreservationExist()
loanOverdue()
privilegeRetained()
removeItem()
removeLoan()
removeTitle()
removeUser()
renewFull()
renewLoan()
requestAddLoan()
requestAddTitle()
requestAddUser()
requestDenied()
requestLoanInfo()
requestMonitorSystem()
requestPermitted()
tit leAdded()
titleExist()
userAdded()
userExist()
userHasLoan()

<<boundary>>

1

1

1

1

1

1

1

1

TitleControl

create()
destroy()
removeTitle()
requestAddTitle()
requestTitleInfo()
searchTitle()

(from Use Case View)

<<control>>

LoanControl

create()
destroy()
removeLoan()
renewLoan()
requestAddLoan()
requestDenied()
requestLoanInfo()
requestPermitted()

(from Use Case View)

<<control>>

1

1

1

1

UserTerminal

countFull()
displayTitle()
displayUserInfo()
exit()
getUserType()
privilegeRevoked()
reservationExist()
requestMakeReservation()
requestRemoveReservation()
requestTitleInfo()
requestUserInfo()
reservationNotExist()
titleNotExist()
userNotExist()

<<bou ndary>>

1

1

1

1

UserControl

create()
destroy()
loanAdded()
loanRemoved()
removeUser()
requestAddUser()
requestUserInfo()
reservationAdded()
reservationRemoved()

<<control>>

1 11 1

1

1

1

1

ReservationControl

create()
destroy()
requestCheckReservation()
requestMakeReservation()
requestRemoveReservation()

(from Use Case View)

<<control>>

1

1

1

1

1

1

1

1

1

1

1

1

Figure 11 – Class Diagram (first view): links between boundary and control classes.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

45

Ite mContro l

itemType : Integer

addItem()
create()
destroy()
removeItem()

(from Use Case Vie w)

<<control>>

Moni to rCo ntol

create()
destroy()
requestMonitorSystem()

(from Use Case View)

<<control>>

LoanCopy

loancopyStatus : {onshelf,onloan}

calculateFine()
getItemType()
getLoan()
removeLoan()
renewLoan()
requestAddLoan()
updateLoanCopyStatus()

<<entity>>

TitleControl

create()
destroy()
removeTitle()
requestAddTitle()
requestTitleInfo()
searchTitle()

(from Use Case V iew)

<<control>>

Item

itemId : Integer
itemType : Integer

create()
destroy()
getItemType()

<<entity>>
1

1

1

1

Library

getTitle()
getUser()

<<entity>>
1

1

1

1

User

address : String
borrowPrivileges : Boolean
loanLimit : Integer = 10
loanCounter : Integer
name : String
privileges : Boolean
reservationCounter : Integer
reserveLimit : Integer = 5
reservePrivileges : Boolean
totalFine : real
userId : Integer
userType : Integer

create()
destroy()
getLoan()
getReservation()
loanAdded()
loanRemoved()
updateFineInfo()
updateBorrowPrivileges()
updatePrivileges()
updateReservePrivileges()
reservationAdded()
reservationRemoved()

<<entit y>>

Lo anCon trol

create()
destroy()
removeLoan()
renewLoan()
requestAddLoan()
requestDenied()
requestLoanInfo()
requestPermitted()

(from Use Case V iew)

<<control>>

0..n

1

0..n

1

Tit le

bookName : String
author : String
isbn : Integer
titleReservationCounter : Integer

create()
destroy()
getItem()
getReservation()
requestMakeReservation()
requestRemoveReservation()
updateReservationOrder()

<<entity>>
0..n

1

0..n

1

UserControl

create()
destroy()
loanAdded()
loanRemoved()
removeUser()
requestAddUser()
requestUserInfo()
reservationAdded()
reservationRemoved()

<<control>>

0..n

1

0..n

1

ReservationControl

create()
destroy()
re questCheckReservation()
requestMakeReservation()
requestRemoveReservation()

(from Use Case View)

<<contro l>>

0..n

1

0..n

1

Figure 12 – Class Diagram (second view): links between control and entity classes.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

46

ReferenceCopy

getItemType()

<<enti ty>>

GeneralUser
<<entity>>

Librarian

librarianPassword : String

<<entity>>

Loan

dueDate : Date
fine : real
loanId : Interger
loanStatus : {normal, overdue}
renewCounter : Integer
renewLimit : Integer = 2

create()
calculateFine()
destroy()
getUser()

<<entity>>

LoanCopy

loancopyStatus : {onshelf,onloan}

calculateFine()
getItemType()
getLoan()
removeLoan()
renewLoan()
requestAddLoan()
updateLoanCopyStatus()

<<entity>>

1

0..1

1

0..1

Reservation

holdingPeriod : Integer = 5
holdingStartDate : Date
reservationOrder : Integer
reservationStatus : Boolean
reserveDate : Date = current Date
reserveTime : Time = current Time

create() : Reservation
destroy()
getUser() : User

<<entity>>

Item

itemId : Integer
itemType : Integer

create()
destroy()
getItemType()

<<entity>>

Library

getTit le()
getUser()

<<entity>>

0. .n0. .n

User

address : String
borrowPrivileges : Boolean
loanLimit : Integer = 10
loanCounter : Integer
name : String
privileges : Boolean
reservationCounter : Integer
reserveLimit : Integer = 5
reservePrivi leges : Boolean
totalFine : real
userId : Integer
userType : Integer

create()
destroy()
getLoan()
getReservation()
loanAdded()
loanRemoved()
updateFineInfo()
updateBorrowPrivileges()
updatePrivi leges()
updateReservePrivileges()
reservationAdded()
reservationRemoved()

<<entity>>

0..n
1

0..n
1

0..n

1

0..n

1

0..n

1

0..n

1

Title

bookName : String
author : String
isbn : Integer
titleReservationCounter : Integer

create()
destroy()
getItem()
getReservation()
requestMakeReservation()
requestRemoveReservation()
updateReservationOrder()

<<entity>>

0..n

1

0..n

1
1

0..n

1

0..n

0..n

1

0..n

1

0..n

1

0..n

1

Figure 13 – Class Diagram (third view): links between entity classes.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

47

APPENDIX D: OTHER USE CASE SEQUENCE DIAGRAMS (ADD ITEM, ADD

TITLE, REMOVE ITEM)

 : LibrarianTerminal

 : Librarian

 : T itleControl : Item : ItemControl

requestT i tleInfo(isbn)

requestT i tleInfo(isbn)

exi t()

[Not self.title->exists(t:T itle|t.isbn=isbn)] titleNotExist(isbn)

ti tleNotExist(isbn)

Refer to Add T itle
Use Case

[self.ti tle->exist(t:Title|t.isbn=title.isbn)] displayTi tleInfo(ti tle)

addItem(isbn)

requestAddTitle(isbn)

addItem(title)

destroy()

create()

Refer to Find
T itle Use Case

displayTitleInfo(title.*)

create()

destroy()

item := create()

ti tleAdded()

displayItemId(i tem.*)

displayItemId(i tem)

[i:=1..ti tle.item->size] displayItemInfo(item[i].)

Figure 14 – Add Item sequence diagram

Carleton University TR SCE-01-01- Version 4 Revised June 2002

48

 : Title

 : Librarian

 : LibrarianTerminal : TitleControl

requestAddTitle(isbn)

requestAddTitle (isbn)

exi t()

[self.ti tle->exists(t:T i tle|t.isbn=isbn)] ti tleExist(isbn)

ti tleExist(isbn)

create()

destroy()

[Not self.title->exists(t:T itle|t.isbn=isbn)] title := create(isbn)

ti tleAdded()

ti tleAdded()

Figure 15 – Add Title sequence diagram

 : Librarian

 : LibrarianTerminal : TitleControl : Title : Item : ItemControl

requestTi tleInfo(isbn)

requestTi tleInfo(isbn)

removeItem(i temId)

exi t()

loanORreservationExist(itemId)

create()

destroy()

removeItem(i tem)

[loancopy.loancopyStatus=onloan]loanORreservationExist(i tem)

[Not sel f.loancopy.loancopySta tus=onloan]
destroy()

destroy()

create()

Refer to Find
T itle Use Case[Not self.ti tl e->exists(t:Title|t.isbn=isbn)] ti tleNotExist(isbn)

ti tleNotExist(isbn)

[self.ti tle->exists (t:T itle|t.isbn=ti tle.isbn)] displayT itleInfo(ti tle,i tem[])

[i:= 1 .. ti tle.item->size] displayTitleInfo(isbn,item[i].)

Figure 16 – Remove Item sequence diagram

Carleton University TR SCE-01-01- Version 4 Revised June 2002

49

APPENDIX E: DECISION TABLES FOR USE CASE ADD ITEM

Regular expression:

requestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
(getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

displayItemInfo
User

*+titleNotExist
LibrarianTerminal

.titleNotExist
User

requestAddTitle
LibrarianTerminal

.create
TitleControl

.requestAddTitle
TitleControl

.
create

Title
.TitleAdded

 LibrarianTerminal
.titleAdded

User
).

addItem
LibrarianTerminal

.create
ItemControl

.addItem
ItemControl

.create
Item

.
displayItemId

 LibrarianTerminal
.displayItemId

User
.exit

LibrarianTerminal
.

destroy
ItemControl

.destroy
TitleControl

Regular expression in sum-of-products form:

requestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

displayItemInfo
User

*.addItem
LibrarianTerminal

.create
ItemControl

.addItem
ItemControl

.
create

 Item
.displayItemId

 LibrarianTerminal
.displayItemId

User
.exit

LibrarianTerminal
.

destroy
ItemControl

.destroy
TitleControl

+
requestTitleInfo

LibrarianTerminal
.create

TitleControl
.requestTitleInfo

TitleControl
.

titleNotExist
LibrarianTerminal

.titleNotExist
User
.

requestAddTitle
LibrarianTerminal

.create
TitleControl

.requestAddTitle
TitleControl

.
create

Title
.titleAdded

LibrarianTerminal
.titleAdded

User
.addItem

LibrarianTerminal
.

create
ItemControl

.addItem
 ItemControl

.create
Item
.displayItemId

LibrarianTerminal
.

displayItemId
User

.exit
LibrarianTerminal

.destroy
ItemControl

.destroy
TitleControl

Test Requirements for Interaction Diagrams

Initial conditions:
Term1: self.titleControl.title->exists(t:Title|t.isbn=isbn)
Term2: not self.titleControl.title->exists(t:Title|t.isbn=isbn)

Scenario Sequences:
Product term 1 sequence:

requestTitleInfo
LibrarianTerminal

.create
TitleControl

.
requestTitleInfo

TitleControl
.getItem

Title
.displayTitleInfo

LibrarianTerminal
.

displayTitleInfo
User
.displayItemInfo

User

*.addItem
LibrarianTerminal

.
create

ItemControl
.addItem

ItemControl
.create

Item
.displayItemId

LibrarianTerminal
.

displayItemId
User

.exit
LibrarianTerminal

.destroy
ItemControl

.destroy
TitleControl

Product term 2 sequence:
requestTitleInfo

LibrarianTerminal
.create

TitleControl
.

requestTitleInfo
TitleControl

.titleNotExist
LibrarianTerminal

.
titleNotExist

User
.requestAddTitle

LibrarianTerminal
.create

TitleControl
.

requestAddTitle
TitleControl

.create
Title

.titleAdded
LibrarianTerminal

.
titleAdded

User
).addItem

LibrarianTerminal
.create

ItemControl
.addItem

ItemControl
.

create
Item

.displayItemId
LibrarianTerminal

.displayItemId
User

.
exit

LibrarianTerminal
.destroy

ItemControl
.destroy

TitleControl

Oracles for test sequences
Title.allInstances->select(isbn=title.isbn).item->size =
Title.allInstances->select(isbn=title.isbn).
item->size@pre+1

Carleton University TR SCE-01-01- Version 4 Revised June 2002

50

Decision Table

Action Section Condition
Section Message to Actor

Variants
(use case G)

A I II III IV

State
Change

g1 Yes No Yes No Yes Yes

g2 No Yes No Yes Yes Yes

Initial Conditions: Context of OCL expressions is LibrarianTerminal
A: self.titleControl.title->exists(t:Title|t.isbn=isbn)

Message to Actor User:
I: titleNotExist
II: displayTitleInfo.displayItemInfo*
III: titleAdded
IV: displayItemId

State Change:
Title.allInstances->select(isbn=title.isbn).item->size

=Title.allInstances->select(isbn=title.isbn).
item->size@pre+1

Carleton University TR SCE-01-01- Version 4 Revised June 2002

51

APPENDIX F: DECISION TABLES FOR USE CASE ADD TITLE

Regular expression:

requestAddTitle
LibrarianTerminal

.create
TitleControl

.requestAddTitle
TitleControl

.
(create

Title
.TitleAdded

LibrarianTerminal
.titleAdded

User
+titleExist

LibrarianTerminal
.

titleExist
User

).exit
LibrarianTerminal

.destroy
TitleControl

Regular expression in sum-of-products form:

requestAddTitle
LibrarianTerminal

.create
TitleControl

.requestAddTitle
TitleControl

.
create

Title
.TitleAdded

LibrarianTerminal
.titleAdded

User
.exit

LibrarianTerminal
.

destroy
TitleControl

+
requestAddTitle

LibrarianTerminal
.create

TitleControl
.requestAddTitle

TitleControl
.

titleExist
LibrarianTerminal

.titleExist
User

.exit
LibrarianTerminal

.destroy
TitleControl

Test Requirements for Interaction Diagrams

Initial conditions:
Term1: not self.titleControl.title->exists(t:Title|t.isbn=isbn)
Term2: self.titleControl.title->exists(t:Title|t.isbn=isbn)

Scenario Sequences:

Product term 1 sequence:
requestAddTitle

LibrarianTerminal
.create

TitleControl
.requestAddTitle

TitleControl
.

create
Title

.TitleAdded
LibrarianTerminal

.titleAdded
User

.exit
LibrarianTerminal

.
destroy

TitleControl

Product term 2 sequence:
requestAddTitle

LibrarianTerminal
.create

TitleControl
.requestAddTitle

TitleControl
.

titleExist
LibrarianTerminal

.titleExist
User

.exit
LibrarianTerminal

.destroy
TitleControl

Oracles for test sequences
Title.allInstances->size=Title.allInstances->size@pre+1

Decision Table

Action Section Condition
Section Messages to Actor

Variants
(use case I)

A I II

State
Change

i1 Yes No Yes Yes

i2 No Yes No No

Initial Conditions: Context of OCL Expressions is LibrarianTerminal
A: not self.titleControl.title->exists(t:Title|t.isbn=isbn)

Message to Actor Librarian:
I: titleExist
II: titleAdded

State Change:
title.allinstances->size=title.allinstances->size@pre+1

Carleton University TR SCE-01-01- Version 4 Revised June 2002

52

APPENDIX G: DECISION TABLES FOR USE CASE REMOVE ITEM

Regular expression:

requestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
(getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

displayItemInfo
User

*.removeItem
LibrarianTerminal

.createItemControl.
removeItemItemControl.(destroyItem+loanORreservationExistLibrarianTerminal)+
titleNotExistLibrarianTerminal.titleNotExistUser).exitLibrarianTerminal.destroyTitleControl.
destroyItemControl

Regular expression in sum-of-products form:

requestTitleInfo
LibrarianTerminal

.create
TitleControl

.requestTitleInfo
TitleControl

.
getItem

Title
.displayTitleInfo

LibrarianTerminal
.displayTitleInfo

User
.

displayItemInfo
User

*.removeItem
LibrarianTerminal

.create
ItemControl

.
removeItem

ItemControl
.destroy

Item
.exit

LibrarianTerminal
.destroy

TitleControl
.

destroy
ItemControl

+
requestTitleInfo

LibrarianTerminal
.create

TitleControl
.requestTitleInfo

TitleControl
.

getItem
Title

.displayTitleInfo
LibrarianTerminal

.displayTitleInfo
User

.
displayItemInfo

User

*.removeItem
LibrarianTerminal

.create
ItemControl

.
removeItem

ItemControl
.loanORreservationExist

LibrarianTerminal
.exit

LibrarianTerminal
.

destroy
TitleControl

.destroy
ItemControl

+
requestTitleInfo

LibrarianTerminal
.create

TitleControl
.requestTitleInfo

TitleControl
.

titleNotExist
LibrarianTerminal

.titleNotExist
User
.exit

LibrarianTerminal
.

destroy
TitleControl

.destroy
ItemControl

Test Requirements for Interaction Diagrams

Initial conditions:

Term1: self.titleControl.title->exists(t:Title|t.isbn=isbn) and

Not self.itemControl.loancopy->select

(itemId=loancopy.itemId).loancopyStauts=onloan

Term2: self.titleControl.title->exists(t:Title|t.isbn=isbn) and

self.itemControl.loancopy->select

(itemId=loancopy.itemId).loancopyStauts=onloan

Term3: not self.titleControl.title->exists (t:Title|t.isbn=isbn)

Scenario Sequences:
Product term 1 sequence:

requestTitleInfo
LibrarianTerminal

.create
TitleControl

.
requestTitleInfo

TitleControl
.getItem

Title
.displayTitleInfo

LibrarianTerminal
.

displayTitleInfo
User
.displayItemInfo

User

*.removeItem
LibrarianTerminal

.
create

ItemControl
.removeItem

ItemControl
.destroy

Item
.exit

LibrarianTerminal
.

destroy
TitleControl

.destroy
ItemControl

Product term 2 sequence:
requestTitleInfo

LibrarianTerminal
.create

TitleControl
.

requestTitleInfo
TitleControl

.getItem
Title

.displayTitleInfo
LibrarianTerminal

.
displayTitleInfo

User
.displayItemInfo

User

*.removeItem
LibrarianTerminal

.
create

ItemControl
.removeItem

ItemControl
.loanORreservationExist

LibrarianTerminal

.exit
LibrarianTerminal

.destroy
TitleControl

.destroy
ItemControl

Carleton University TR SCE-01-01- Version 4 Revised June 2002

53

Product term 3 sequence:
requestTitleInfo

LibrarianTerminal
.create

TitleControl
.

requestTitleInfo
TitleControl

.titleNotExist
LibrarianTerminal

.
titleNotExist

User
.exit

LibrarianTerminal
.destroy

TitleControl
.destroy

ItemControl

Oracles for test sequences
Title.allInstances->select(isbn=title.isbn).item
= Title.allInstances->select(isbn=title.isbn).item@pre-
set{item}

Decision Table

Action Section Condition Section

Messages to Actor

Variants
(use case H)

A B C I II III

State
Change

h1 Yes No No No Yes No Yes

h2 No Yes No No Yes Yes No

h3 No No Yes Yes No No No

Initial Conditions: Context of OCL Expressions is LibrarianTerminal
A: self.titleControl.title->exists(t:Title|t.isbn=isbn)

and
not self.itemControl.loancopy->select
(itemId=loancopy.itemId).loancopyStatus =onloan

B: self.titleControl.title->exists(t:Title|t.isbn=isbn)
and
self.itemControl.loancopy->select
(itemId=loancopy.itemId).loancopyStatus = onloan

C: not self.titleControl.title->exists(t:Title|t.isbn=isbn)

Message to Actor Librarian:
I: titleNotExist
II: displayTitleInfo.displayItemInfo*
III: loanORreservationExist

State Changes:
Title.allInstances->select(isbn=title.isbn).item
= Title.allInstances->select(isbn=title.isbn).item@pre-set{item}

Carleton University TR SCE-01-01- Version 4 Revised June 2002

54

APPENDIX H: ALGORITHMS

In this appendix, we describe several methods and provide some algorithms for the

production of complete use case sequences to be tested from the activity diagram

describing use case sequential dependencies and test scale information. More specifically,

we focus on the combination of instantiated use case sequences. We remind Figure 9 in

Figure 17 because algorithms make use of classes and relationships this figure specifies.

+MergeInstUCSeq(in percentage : int)

System Testing Interaction Regular Expression
1 1..*

Variant

1

1..*

Operation Sequence

1

1..*

Oracle

1

1

-OCLExpression

Path Realization Condition

1

1

ParamUCSeq ParamUC

InstUCSeq InstUC

+Interleavings(in percentage : int) : SequenceOfInstUCSeq
+numOfInterleavings() : int
+setCommonElem() : InstUC
+setSeqOne() : InstUCSeq
+setSeqTwo() : InstUCSeq

-sequence1 : InstUCSeq
-sequence2 : InstUCSeq

PISubSeq

1..* *

useCases

1..*

1

1..*

2

Sequence

typeOfElement

SequenceOfInstUCSeq

«bind»(InstUCSeq)

1

1..*

allParamUCSeq

1

1

co
m

pl
et

eU
C

S
eq

1

1..*

a
llO

ri
g

in
a

lIn
st

U
C

S
e

q

1

1..*

1

1..*

1..* *

Initial Condition

1

1..*

Figure 17 – Classes in the SystemTestingRequirements package

Remember that (from Figure 17) class SystemTestingRequirements initializes:

- Composition allParamUCSeq (all the parameterized use case sequences) with

class ParamUCSeq (parameterized use case sequence) from the activity diagram;

- Composition allOriginalInstUCSeq (all the original instantiated use case

sequences) with class InstUCSeq (instantiated use case sequence) from the test

scale information;

Carleton University TR SCE-01-01- Version 4 Revised June 2002

55

- Composition completeUCSeq (the complete use case sequences to be tested).

This is done by method MergeInstUCSeq (described below18).

Method MergeInstUCSeq is a method of class SystemTestingRequirements. This

method uses the original sequence of instantiated use case sequences (composition

allOriginalInstUCSeq in Figure 17), and merges them taking into account their

possible common elements. Each time two sequences are interleaved, only a given

percentage of all the possible interleavings is produced (parameter num). This method

uses method GenerateInterleavings described below. The result is a set of complete

use case sequences (composition completeUCSeq in Figure 17).

Procedure MergeInstUCSeq(int percentage)

begin
// current is the current sequence of instantiated use case sequences
// with which one of the original sequence is merged, producing the
// next sequence of instantiated use case sequences.
SequenceOfInstUCSeq current = null, next = null;
// i (resp. j) is used to go through the original (resp. the current)
// sequence.
int i, j;

// must remove the redundant sequences TBD

if (allOriginalInstUCSeq->size = 0) then

begin
return null;

end
if (allOriginalInstUCSeq->size = 1) then

begin
return allOriginalInstUCSeq.at(1);

end

// We merge the two first original sequences and produce the first
// value for variable current.
current = GenerateInterleavings(allOriginalInstUCSeq.at(1),
allOriginalInstUCSeq.at(2), percentage);

// We then merge each of the remaining original sequence one by one.

for (i = 3; i <= allOriginalInstUCSeq->size; i++) do

begin
// We merge original sequence I to all the sequences in current.

for (j = 1; j <= current->size; j++) do

18 Note that three methods of class SystemTestingRequirements are described, though only one is
shown in Figure 17 because of the size of their signature.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

56

begin
next.append(GenerateInterleavings(current.at(j),
allOriginalInstUCSeq.at(i), percentage));

end
// next become the new current sequence.
current = next;
next = null;

end
this->completeUCSeq = current;

end // of procedure MergeInstUCSeq

Private method GenerateInterleavings of class SystemTestingRequirements

generates a given percentage (parameter percentage) of all the possible interleavings

of two instantiated use case sequences (parameters S1 and S2). It first calls

IdentifyCommonElements(S1, S2), then produces the interleavings (given

percentage) in all the PISubSequences (information returned by

IndentifyCommonElements), and merges all these interleavings with the common

elements. It returns a sequence of all the interleavings produced.

Function GenerateInterleavings(InstUCSeq S1, InstUCSeq S2, int

percentage): SequenceOfInstrUCSeq

Private method IdentifyCommonElements of class SystemTestingRequirements

identifies the common elements between two instantiated use case sequences (parameters

S1 and S2) that must be merged. It identifies the common elements as well as the sub

sequences, between the common elements, that differ. This method returns a sequence of

object of class PISubSequences. In each of these objects, there is a common element and

the following two subsequences.

Function IdentifyCommonElements(InstUCSeq S1, InstUCSeq S2):
Sequence(PISubSequences)

begin
// i and j are used to go through sequences S1 and S2.
// k and l indicate the position of the last common element.
int i, j, k, l;
PISubSequences pi;

for (i = 1, l = 1, k = 1; I <= S1->size; i++) do

begin
// if we’ve reached the end of S2, it’s not necessary to continue.

Carleton University TR SCE-01-01- Version 4 Revised June 2002

57

if (l = S2->size) then

begin
break;

endif
for (j = l; j <= S2->size; j++) do

begin
// Do we have a common element?

if (S1->at(i) = S2->at(j)) then

begin
pi = new PISubSequences();
// initializes all the attributes of pi to null
pi.setCommonElem(S1->at(i));

if (k < i) then

begin
pi.setSeqOne(S1.subsequence(k, i-1));

end
if (l < j) then

begin
pi.setSeqTwo(S2.subsequence(l, j-1));

end
k = i + 1;
l = j + 1;
IdentifyCommonElements.append(pi);

break;

endif
end

end

// Is there anything else to consider in the two sequences S1 and S2?

if ((i != S1->size + 1) || (j != S2->size + 1)) then

begin
pi = new PISubSequences();
pi.setCommonElem(null);

if (k < S1->size + 1) then

begin
pi.setSeqOne(S1.subsequence(k, S1->size));

end
if (l < S2->size + 1) then

begin
pi.setSeqTwo(S2.subsequence(l, S2->size));

end
IdentifyCommonElements.append(pi);

end
return IdentifyCommonElements;

end // of function IdentifyCommonElements

