Model-Based Testing
with
Use Cases

MBT: Generate Tests (and possibly test cases)
from a Model

© J.-Pierre Corriveau, 1997- present T5-1 1

From Use Cases
To Test Purposes

© J.-Pierre Corriveau, 1997- present T5-1 2

Page 1

System Testing

* Fundamental truth about OO software testing:
individual verification of components cannot
guarantee a correctly functioning system.

— We need to test the system against the requirements
— Binder suggests 3 patterns for system-level testing

* UML ’s use cases are typically assumed to
capture the requirements when in fact they each
capture a set of scenarios to some
requirement(s)...

» Complete, consistent and verifiable requirements
are necessary to develop an effective test suite ®
— Use cases are in English and thus not test-ready.

— <<uses>> and <<extends>> are transitive: Binder suggests at
least checking every fully expanded UC.

— A scenario graph of a use case can help understanding the
paths to test.

© J.-Pierre Corriveau, 1997- present T5-1

Binder ’s Format for Testing Patterns

* The proposed format is:
— Name: suggests a general approach
— Intent: kind of test suite produced by this pattern
— Context: When does this pattern apply?
— Fault Model: What kinds of faults are to be detected?
— Strategy: How is the test suite designed and coded?
— Oracle: How can we derive expected results?
— Automation: How much is possible?
— Entry and Exit Criteria: Pre- and Post conditions to use
— Consequences: Advantages and disadvantages

© J.-Pierre Corriveau, 1997- present T5-1

Page 2

Pattern 1: Extended UC Test

+ Intent: Build a system-level test suite by modeling essential
capabilities as extended use-cases

» Context: Applies if most, if not all, essential requirements of
the SUT can be expressed as extended Use Cases

+ Strategy: A UC specifies a family of responses to be
produced for specific combinations of external input and
system state. This pattern represents these relationships as
a decision table.

* To use eUCs we need to determine operational variables

» Operational variables are inputs, outputs, and environment
conditions that:

— lead to « significantly different » paths of a use case
— abstract the state of the system under test
— result in « significantly different » system responses

© J.-Pierre Corriveau, 1997- present T5-1

ATM Example

* Figure 8.4: Use Case Diagram for an ATM system

+ Table 14.1 considers different resulting paths of a
same use case in terms of input and output
combinations

* This viewpoint is re-expressed in table 14.2 in
terms of operational variables for each use case:
— We need 4 variables to capture all combinations

— We will discuss combinational models in detail later but we
must understand NOW that the variants do not overlap!

» We have partitioned the input and output space
successfully!
* Finally, we can minimally ensure every variant is
made true at least once, and false at least once.

— A true test case is a set of values that satisfies all conditions in
a variant

— A false test case has at least one condition false
— see table 14.3

© J.-Pierre Corriveau, 1997- present T5-1

Page 3

Cash Box ATM Controller
JHeEs e
Repair
Cardholder

BankTransaction

«extends» «extends»

Deposit

ATM Technician

sl §

Replenish

MaintainCommLink

FIGUREB4 Use Case Diagram, cash box example.

%

ATM Network

T

%

Establish Bank customer

Session

Caéh : Bank customer
Withdrawal

Cas.h ; | TM op;;aior‘wifh

Replenishment armed guard

TABLE141 Some Use Cases and Scenarios for an Automatic Teller Machine

L N A e B A R 1 B 23T

(1) Wrong PIN entered once; corrected PIN entered.
Display menu.

(2) PIN OK; customer's bank not online. Display “Try
later.”

(3) PIN OK; customer’s accounts are closed. Display
“Call your bank.”

(4) Stolen card inserted; valid PIN entered. Retain
card.

(1) Requests $50; account open; balance $1,234.56;
$50 dispensed.

(2) Requests $100; account closed.
(3) Requests $155.39; account open; $150 dispensed,

(1) ATM opened; cash dispenser is empty: $15,000 is
added.

(2) ATM opened; cash dispenser is full;

Page 4

Invalid

Valid

Valid

Valid

Valid
Revoked

Revoked

DC

Matches card
PIN

Matches card
PIN

Matches card
PIN

Doesn’'t match
DC

DC

DC

Bank
acknowledges

Bank
acknowledges

Bank does not
acknowledge

DC

Bank
acknowledges

Bank does not
acknowledge

TABLE 142 Operational Relation for the Establish Session Use Case

DC
Closed
Open
DC

DC
DC

DC

Insert an ATM Ejec

card

Contact your
bank

Select a trans- N
action

Please try Ejec
later

Reenter PIN
Card invalid R

Card invalid

DC

BLE143 Minimal Test Suite for the Establish Session Use Case

DC

Page 5

Invalid DC Insert an ATM Eject
card
%*@# Insert an ATM Eject
card
Any true test for variants 2-7.
Valid Matches card Bank Closed Contactyour Eject
PIN acknowledges bank
1234 1234 ack CLSD Contact your
bank
Any true test for variants 1, 3-7.
Valid Matches card Bank Open Select a trans- None
PIN acknowledges action
1234 1234 ack OPEN Select a trans- None
action

Valid Matches card Bank does not DC Please try later Eject
PIN acknowledge

1234 1234 nack Please try later Eject

Any true test for variants 2-7. et

Valid Doesn't match DC DC Reenter PIN None

1234 1134

Any true test for variants 1-4, 6, 7.’_. PR ATV £

Revoked DC Bank DC Card invalid Retain
acknowledges

5555 ack Card invalid Retain

Any true test for vpriagts'1—6, 3nd T 4

Revoked DC Bank does not DC Card invalid Eject
acknowledge

5555 nack Card invalid Eject

Any true test for variants 1-6.

To wrap up the pattern:

I6URE 141 Use cose test case traceability matrix.

Page 6

eUCs: Typical Expected Faults

— domain faults: usually on boundary of conditions
» Card has expired

— logic faults: logic of specification is incorrectly coded
» Allowing a negative balance

— incorrect handling of don’t cares

» In a high-interest savings account, there’s a charge for a
withdrawal only if your balance is less than 10K. In fact, this
charge should be for everyone in this type of account.

— incorrect or missing dependency on pre-conditions

» a UC behaves correctly despite a violated pre-condition...

» Expired card works...

— undesirable feature interactions (or is it scenario interactions)

» e.d., ATM shut downs while user is doing a transaction!
— incorrect output (e.g., wrong balance)
— abnormal termination (e.g., ATM eats your card...)
— omissions and surprises

» e.g., PIN does not get validated, all your accounts are zeroed...

© J.-Pierre Corriveau, 1997- present T5-1 13

eUCs: Other Fields

* Oracle: expected results by human intuition
« Automation: no... finding opvars is not necessarily trivial
* Entry criteria:
— extended UCs must complete, consistent, verifiable (how to check?)

— no execution of test cases at system level before its components
have been tested (i.e., bottom up test execution...)

+ Exit criteria: (as a % of completeness of req coverage)
— XUVC = (# of implemented UCs) * (Total # variants tested) * 100
(# of required UCs) (Total # of variants)
+ Consequences:
— Leaves out performance, fault tolerance, etc.
— extended UC reduces to a decision table

— Given no one agrees on level of abstraction of a UC, this pattern may
be very dififcult to apply!

© J.-Pierre Corriveau, 1997- present T5-1 14

Page 7

Pattern 2: Covered in CRUD

* Intent: Verifies that all basic operations are
exercised for each class in the system

under test...
 Strategy:
— Build a use case/class coverage table matrix
Class 1 Class 2 Class 3
CRUD CRUD CRUD
uct v v v
uc2 W VAN

— C: creation; R: read, U: update, D: delete

» Exit criterion:

— All basic operations of each class have been exercised
at least once...

© J.-Pierre Corriveau, 1997- present T5-1

Pattern 3: Allocate Tests by Profile

 Intent: Allocate the overall testing budget to each
use case in proportion to its relative frequency.

« Context: any time you use Pattern 1, especially in
the presence of a combinatorial explosion of
possible paths.

» Strategy: you must somehow (!) obtain an
operational profile from the potential users. Then
you merely sort.

* My comment:

— frequency alone may not be sufficient: priority or importance (a
la Boehm) must also be considered!

© J.-Pierre Corriveau, 1997- present T5-1

Page 8

TABLE 145 Test Case Allocation for ATM

Use Case Probability Number of Tests
Establish Session 0.37 308
Cash Withdrawal 0.18 150
Checking Deposit 0.15 125
Savings Deposit 0.12 100
Funds Transfer 0.08 67
Balance Inquiry 0.06 50
Restock 0.02 17
Collect Deposits 0.02 17

Total 1.00 834

+ Several issues are typically downplayed if
not ignored through use cases:
— Configuration (wrt versions of s/w and h/w)
— Compatibility
— Setup/shutdown
— Performance (see next slide)

* For Human Computer Interaction:

— Usability, security, documentation, operator procedure
testing

* Beyond system testing?

— Alpha and beta testing (by independent volunteers),
acceptance testing (by real customer), compliance
testing (wrt standards and regulations)

© J.-Pierre Corriveau, 1997- present T5-1 18

Page 9

About Performance

* We need quantitative formulations of performance reqs:
— Throughput: number of tasks completed per unit of time
— Response time: we need average and worst-case
— Utilization: how busy is the system
* Other issues:
— We need a worst case analysis
— Performance modeling initially requires lots of magic numbers

- Loadttesting considers how the system responds to increases in input
events

— Concurrency testing: load testing with concurrent events
— Stress testing: rate of inputs exceeds design limits
— Recovery Testing: testing recovery from a failure mode
* For real-time systems we must distinguish 3 types of
events:
— Repeating: must be accepted within a certain interval

— Intermittent critical: aperiodic input with response within a fixed interval of

time
— Repeating critical: combination of 2 previous ones

© J.-Pierre Corriveau, 1997- present T5-1

Page 10

