
Page 1

 1 © J.-Pierre Corriveau, 1997- present T5-1

Model-Based Testing
with

Use Cases

MBT: Generate Tests (and possibly test cases)
from a Model

 2 © J.-Pierre Corriveau, 1997- present T5-1

From Use Cases
To Test Purposes

Page 2

 3 © J.-Pierre Corriveau, 1997- present T5-1

System Testing

•  Fundamental truth about OO software testing:
individual verification of components cannot
guarantee a correctly functioning system.

– We need to test the system against the requirements
– Binder suggests 3 patterns for system-level testing

•  UML ’s use cases are typically assumed to
capture the requirements when in fact they each
capture a set of scenarios associated to some
requirement(s)…

•  Complete, consistent and verifiable requirements
are necessary to develop an effective test suite 

–  Use cases are in English and thus not test-ready.
–  <<uses>> and <<extends>> are transitive: Binder suggests at

least checking every fully expanded UC.
–  A scenario graph of a use case can help understanding the

paths to test.

 4 © J.-Pierre Corriveau, 1997- present T5-1

Binder ’s Format for Testing Patterns

•  The proposed format is:
–  Name: suggests a general approach
–  Intent: kind of test suite produced by this pattern
–  Context: When does this pattern apply?
–  Fault Model: What kinds of faults are to be detected?
–  Strategy: How is the test suite designed and coded?
–  Oracle: How can we derive expected results?
–  Automation: How much is possible?
–  Entry and Exit Criteria: Pre- and Post conditions to use
–  Consequences: Advantages and disadvantages

Page 3

 5 © J.-Pierre Corriveau, 1997- present T5-1

Pattern 1: Extended UC Test

•  Intent: Build a system-level test suite by modeling essential
capabilities as extended use-cases

•  Context: Applies if most, if not all, essential requirements of
the SUT can be expressed as extended Use Cases

•  Strategy: A UC specifies a family of responses to be
produced for specific combinations of external input and
system state. This pattern represents these relationships as
a decision table.

•  To use eUCs we need to determine operational variables
•  Operational variables are inputs, outputs, and environment

conditions that:
–  lead to « significantly different » paths of a use case
–  abstract the state of the system under test
–  result in « significantly different » system responses

 6 © J.-Pierre Corriveau, 1997- present T5-1

ATM Example

•  Figure 8.4: Use Case Diagram for an ATM system
•  Table 14.1 considers different resulting paths of a

same use case in terms of input and output
combinations

•  This viewpoint is re-expressed in table 14.2 in
terms of operational variables for each use case:

–  We need 4 variables to capture all combinations
–  We will discuss combinational models in detail later but we

must understand NOW that the variants do not overlap!
» We have partitioned the input and output space

successfully!
•  Finally, we can minimally ensure every variant is

made true at least once, and false at least once.
–  A true test case is a set of values that satisfies all conditions in

a variant
–  A false test case has at least one condition false
–  see table 14.3

Page 4

 7 © J.-Pierre Corriveau, 1997- present T5-1

Use Case Diagram for ATM

 8 © J.-Pierre Corriveau, 1997- present T5-1

I/O for Use Cases

Page 5

 9 © J.-Pierre Corriveau, 1997- present T5-1

Identifying Operation Variables

 10 © J.-Pierre Corriveau, 1997- present T5-1

From Op. Vars to Tests (1)

Page 6

 11 © J.-Pierre Corriveau, 1997- present T5-1

From Op. Vars to Tests (2)

 12 © J.-Pierre Corriveau, 1997- present T5-1

Use Case Traceability Matrix

To wrap up the pattern:

Page 7

 13 © J.-Pierre Corriveau, 1997- present T5-1

eUCs: Typical Expected Faults

–  domain faults: usually on boundary of conditions
»  Card has expired

–  logic faults: logic of specification is incorrectly coded
»  Allowing a negative balance

–  incorrect handling of don’t cares
»  In a high-interest savings account, there’s a charge for a

withdrawal only if your balance is less than 10K. In fact, this
charge should be for everyone in this type of account.

–  incorrect or missing dependency on pre-conditions
»  a UC behaves correctly despite a violated pre-condition...

•  Expired card works…
–  undesirable feature interactions (or is it scenario interactions)

»  e.g., ATM shut downs while user is doing a transaction!
–  incorrect output (e.g., wrong balance)
–  abnormal termination (e.g., ATM eats your card…)
–  omissions and surprises

»  e.g., PIN does not get validated, all your accounts are zeroed…

 14 © J.-Pierre Corriveau, 1997- present T5-1

eUCs: Other Fields

•  Oracle: expected results by human intuition
•  Automation: no… finding opvars is not necessarily trivial
•  Entry criteria:

–  extended UCs must complete, consistent, verifiable (how to check?)
–  no execution of test cases at system level before its components

have been tested (i.e., bottom up test execution…)
•  Exit criteria: (as a % of completeness of req coverage)

–  XUVC = (# of implemented UCs) * (Total # variants tested) * 100
 (# of required UCs) (Total # of variants)

•  Consequences:
–  Leaves out performance, fault tolerance, etc.
–  extended UC reduces to a decision table
–  Given no one agrees on level of abstraction of a UC, this pattern may

be very dififcult to apply!

Page 8

 15 © J.-Pierre Corriveau, 1997- present T5-1

Pattern 2: Covered in CRUD

•  Intent: Verifies that all basic operations are
exercised for each class in the system
under test…

•  Strategy:
– Build a use case/class coverage table matrix

 Class 1 Class 2 Class 3
 C R U D C R U D C R U D
UC1 √ √ √ √ √
UC2 √√ √ √ √ √
– C: creation; R: read, U: update, D: delete

•  Exit criterion:
– All basic operations of each class have been exercised

at least once…

 16 © J.-Pierre Corriveau, 1997- present T5-1

Pattern 3: Allocate Tests by Profile

•  Intent: Allocate the overall testing budget to each
use case in proportion to its relative frequency.

•  Context: any time you use Pattern 1, especially in
the presence of a combinatorial explosion of
possible paths.

•  Strategy: you must somehow (!) obtain an
operational profile from the potential users. Then
you merely sort.

•  My comment:
–  frequency alone may not be sufficient: priority or importance (a

la Boehm) must also be considered!

Page 9

 17 © J.-Pierre Corriveau, 1997- present T5-1

Profiling

 18 © J.-Pierre Corriveau, 1997- present T5-1

Implementation Specific System Tests

•  Several issues are typically downplayed if
not ignored through use cases:

– Configuration (wrt versions of s/w and h/w)
– Compatibility
–  Setup/shutdown
–  Performance (see next slide)

•  For Human Computer Interaction:
– Usability, security, documentation, operator procedure

testing

•  Beyond system testing?
– Alpha and beta testing (by independent volunteers),

acceptance testing (by real customer), compliance
testing (wrt standards and regulations)

Page 10

 19 © J.-Pierre Corriveau, 1997- present T5-1

About Performance

•  We need quantitative formulations of performance reqs:
–  Throughput: number of tasks completed per unit of time
–  Response time: we need average and worst-case
–  Utilization: how busy is the system

•  Other issues:
–  We need a worst case analysis
–  Performance modeling initially requires lots of magic numbers
–  Load testing considers how the system responds to increases in input

events
–  Concurrency testing: load testing with concurrent events
–  Stress testing: rate of inputs exceeds design limits
–  Recovery Testing: testing recovery from a failure mode

•  For real-time systems we must distinguish 3 types of
events:

–  Repeating: must be accepted within a certain interval
–  Intermittent critical: aperiodic input with response within a fixed interval of

time
–  Repeating critical: combination of 2 previous ones

